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Abstract. We study the computational problem of checking whether
a quantified conjunctive query (a first-order sentence built using only
conjunction as Boolean connective) is true in a finite poset (a reflex-
ive, antisymmetric, and transitive directed graph). We prove that the
problem is already NP-hard on a certain fixed poset, and investigate
structural properties of posets yielding fixed-parameter tractability when
the problem is parameterized by the query. Our main algorithmic result is
that model checking quantified conjunctive queries on posets of bounded
width is fixed-parameter tractable (the width of a poset is the maximum
size of a subset of pairwise incomparable elements). We complement our
algorithmic result by complexity results with respect to classes of finite
posets in a hierarchy of natural poset invariants, establishing its tightness
in this sense.

1 Introduction

Motivation. The model checking problem for first-order logic is the problem of
deciding whether a given first-order sentence is true in a given finite structure; it
encompasses a wide range of fundamental combinatorial problems. The problem
is trivially decidable in O(nk) time, where n is the size of the structure and k is
the size of the sentence, but it is not polynomial-time decidable or even fixed-
parameter tractable when parameterized by k (under complexity assumptions in
classical and parameterized complexity, respectively).

Restrictions of the model checking problem to fixed classes of structures or
sentences have been intensively investigated from the perspective of parameterized
algorithms and complexity [5,10,11]. In particular, starting from seminal work
by Courcelle [6] and Seese [16], structural properties of graphs sufficient for fixed-
parameter tractability of model checking have been identified. An important
outcome of this research is the understanding of the interplay between structural
properties of graphs and the expressive power of first-order logic, most notably
the interplay between sparsity and locality, culminating in the recent result by
Grohe, Kreutzer, and Siebertz that model checking first-order logic on classes
of nowhere dense graphs is fixed-parameter tractable [14,12]. On graph classes
closed under subgraphs the result is known to be tight; at the same time, there
are classes of somewhere dense graphs (not closed under subgraphs) with fixed
parameter tractable first-order (and even monadic second-order) logic model



checking; the prominent examples are graph classes of bounded clique-width
solved by Courcelle, Makowsky, and Rotics [7].

In this paper, we investigate posets (short for partially ordered sets). Posets
form a fundamental class of combinatorial objects [9] and may be viewed as
reflexive, antisymmetric, and transitive directed graphs. Besides their naturality,
our motivation towards posets is that they challenge our current model checking
knowledge; indeed, posets are somewhere dense (but not closed under substruc-
tures) and have unbounded clique-width [1, Proposition 5]. Therefore, not only
are they not covered by the aforementioned results [12,7], but most importantly,
it seems likely that new structural ideas and algorithmic techniques are needed
to understand and conquer first-order logic on posets.

In recent work, we started the investigation of first-order logic model check-
ing on finite posets, and obtained a parameterized complexity classification of
existential and universal logic (first-order sentences in prefix form built using
only existential or only universal quantifiers) with respect to classes of posets
in a hierarchy generated by basic poset invariants, including for instance width
and depth [1].1 In particular, as articulated more precisely in [1], a complete
understanding of the first-order case reduces to understanding the parameterized
complexity of model checking first-order logic on bounded width posets (the width
of a poset is the maximum size of a subset of pairwise incomparable elements);
these classes are hindered by the same obstructions as general posets, since
already posets of width 2 have unbounded clique-width [1, Proposition 5].

Contribution. In this paper we push the tractability frontier traced in [1] closer
towards full first-order logic, by proving that model checking (quantified) conjunc-
tive positive logic (first-order sentences built using only conjunction as Boolean
connective) is tractable on bounded width posets.2 The problem of model checking
conjunctive positive logic on finite structures, also known as the quantified con-
straint satisfaction problem, has been previously studied with various motivations
in various settings [3,5]; somehow surprisingly, conjunctive logic is also capable
of expressing rather interesting poset properties (as sampled in Proposition 2).

More precisely, our contribution is twofold. First, we identify conjunctive
positive logic as a minimal syntactic fragment of first-order logic that allows for
full quantification, and has computationally hard expression complexity on posets;
namely, we prove that there exists a finite poset where model checking (quantified)
conjunctive positive logic is NP-hard (Theorem 1). Next, as our main algorithmic
result, we establish that model checking conjunctive positive logic on finite posets,
parameterized by the width of the poset and the size of the sentence, is fixed-
parameter tractable with an elementary parameter dependence (Theorem 2). The
aforementioned fact that model checking conjunctive positive logic is already
NP-hard on a fixed poset justifies the relaxation to fixed-parameter tractability by

1 Existential and universal logic are maximal syntactic fragments properly contained
in first-order logic.

2 Conjunctive positive logic and existential (respectively, universal) logic are incompa-
rable syntactic fragments of first-order logic.
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showing that, if we insist on polynomial-time algorithms, any structural property
of posets (captured by the boundedness of a numeric invariant) is negligible.

Informally, the idea of our algorithm is the following. First, given a poset P
and a sentence φ, we rewrite the sentence in a simplified form (which we call a
reduced form), equisatisfiable on P (Proposition 1). Next, using the properties of
reduced forms, we define a syntactic notion of “depth” of a variable in φ and a
semantic notion of “depth” of a subset of P, and we prove that P |= φ if and
only if P verifies φ upon “relativizing” variables to subsets of matching depth
(Lemma 1 and and Lemma 2). The key fact is that the size of the subsets of P
used to relativize the variables of φ is bounded above by the width of P and
the size of φ (Lemma 3), from which the main result follows (Theorem 2). We
remark that the approach outlined above differs significantly from the algebraic
approach used in [1]; moreover, both stages make essential use of the restriction
that conjunction is the only Boolean connective allowed in the sentences.

It follows immediately that model checking conjunctive positive logic on classes
of finite posets of bounded width, parameterized by the size of the sentence, is
fixed-parameter tractable (Corollary 1). On the other hand, there exist classes of
finite posets of bounded depth (the depth of a poset is the maximum size of a
subset of pairwise comparable elements) and classes of finite posets of bounded
cover-degree (the cover-degree of a poset is the degree of its cover relation) where
model checking conjunctive positive logic is shown to be coW[2]-hard and hence
not fixed parameter tractable, unless the exponential time hypothesis [8] fails, see
Proposition 3. Combined with the algorithm by Seese [16], these facts complete
the parameterized complexity classification of the investigated poset invariants,
as depicted in Figure 1.

width

size

degree

cover-degree depth Fig. 1: On all classes of posets bounded
under invariants in the gray region,
model checking conjunctive positive logic
is fixed-parameter tractable; on some
classes of posets bounded under the re-
maining invariants, the problem is not
fixed-parameter tractable unless FPT =
coW[2].

The classification of conjunctive positive logic in this paper matches the
classification of existential logic in [1], and further emphasizes the quest for a
classification of full first-order logic on bounded width posets. We believe that
the work presented in this paper and [1] enlightens the spectrum of phenomena
that a fixed-parameter tractable algorithm for model checking the full first-order
logic on bounded width posets, if it exists, has to capture.

Throughout the paper, we mark with ? all statements whose proofs are omitted;
we refer to [2] for a full version.
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2 Preliminaries

For all integers k ≥ 1, we let [k] denote the set {1, . . . , k}. We focus on relational
first-order logic. A vocabulary σ is a set of constant symbols and relation symbols ;
each relation symbol is associated to a natural number called its arity ; we let
ar(R) denote the arity of R ∈ σ. All vocabularies considered in this paper are
finite.

An atom α (over vocabulary σ) is an equality t = t′ or an application of a
predicate Rt1 . . . tar(R), where t, t′, t1, . . . , tar(R) are variable symbols (in a fixed
countable set) or constant symbols, and R ∈ σ. We let FO denote the class of
first-order sentences.

A structure A (over σ) is specified by a nonempty set A, called the universe of
the structure, an element cA ∈ A for each constant symbol c ∈ σ, and a relation
RA ⊆ Aar(R) for each relation symbol R ∈ σ. Given a structure A and B ⊆ A
such that {cA | c ∈ σ} ⊆ B, we denote by A|B the substructure of A induced by
B, defined as follows: the universe of A|B is B, cA|B = cA for each c ∈ σ, and
RA|B = RA ∩ Bar(R) for all R ∈ σ. A structure is finite if its universe is finite
and trivial if its universe is a singleton. All structures considered in this paper
are finite and nontrivial.

For a structure A and a sentence φ over the same vocabulary, we write A |= φ
if the sentence φ is true in the structure A. When A is a structure, f is a mapping
from the variables to the universe of A, and ψ(x1, . . . , xn) is a formula over the
vocabulary of A, we write A, f |= ψ or (liberally) A |= ψ(f(x1), . . . , f(xn)) to
indicate that ψ is satisfied in A under f .

We refer the reader to [8] for the standard algorithmic setup of the model
checking problem, and for standard notions in parameterized complexity theory.
As for notation, the model checking problem for a class of σ-structures C and
a class of σ-sentences L ⊆ FO is denoted by MC(C,L); it is the problem of
deciding, given (A, φ) ∈ C × L, whether A |= φ. We let ‖(A, φ)‖, ‖A‖, and ‖φ‖
denote, respectively, the size of the (encoding of the) instance (A, φ), the structure
A, and the sentence φ. The parameterization of an instance (A, φ) returns ‖φ‖.

Conjunctive Positive Logic. In this paper, we study the (quantified) conjunctive
positive fragment of first-order logic, in symbols FO(∀,∃,∧), containing first-order
sentences built using only logical symbols in {∀,∃,∧}.

A conjunctive positive sentence is in alternating prefix form if it has the form

φ = ∀x1∃y1 . . . ∀xl∃ylC(x1, y1, . . . , xl, yl), (1)

where l ≥ 0 and C(x1, y1, . . . , xl, yl) is a conjunction of atoms whose variables are
contained in {x1, y1, . . . , xl, yl}; it is possible to reduce any conjunctive positive
sentence to a logically equivalent conjunctive positive sentence of form (1) in
polynomial time. For a simpler exposition, every conjunctive positive sentence
considered in this paper is assumed to be given in alternating prefix form (or is
implicitly reduced to that form if required by the context).

Let σ be a relational vocabulary. Let A be a σ-structure and let φ be a
conjunctive positive σ-sentence as in (1). It is well known that the truth of φ
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in A can be characterized in terms of the Hintikka (or model checking) game
on A and φ. The game is played by two players, Abelard (male, the universal
player) and Eloise (female, the existential player), as follows. For increasing
values of i from 1 to l, Abelard assigns xi to an element ai ∈ A, and Eloise
assigns yi to an element bi ∈ A; the sequence (a1, b1, . . . , al, bl) is called a play on
A and φ, where (a1, . . . , al) and (b1, . . . , bl) are the plays by Abelard and Eloise
respectively; Eloise wins if and only if A |= C(a1, b1, . . . , al, bl).

A strategy for Eloise (in the Hintikka game on A and φ) is a
sequence (g1, . . . , gl) of functions of the form gi : A

i → A, for all
i ∈ [l]; it beats a play f : {x1, . . . , xl} → A by Abelard if A |=
C(f(x1), g1(f(x1)), . . . , f(xi), gi(f(x1), . . . , f(xi)), . . .), where i ∈ [l]. A strat-
egy for Eloise is winning (in the Hintikka game on A and φ) if it beats all
Abelard plays. It is well known (and easily verified) that A |= φ if and only if
Eloise has a winning strategy (in the Hintikka game on A and φ).

For X1, Y1, . . . , Xl, Yl ⊆ A, we denote by

φ′ = (∀x1 ∈ X1)(∃y1 ∈ Y1) . . . (∀xl ∈ Xl)(∃yl ∈ Yl)C(x1, y1, . . . , xl, yl), (2)

the relativization in φ of variable xi to Xi and yi to Yi for all i ∈ [l], and liberally
write A |= φ′ meaning that φ′ is satisfied in the intended expansion of A. It is
readily verified that, if φ′ is as in (2), then A |= φ′ if and only if, in the Hintikka
game on A and φ, Eloise has a strategy of the form gi : X1 × · · · ×Xi → Yi for
all i ∈ [l], beating all plays f by Abelard such that f(xi) ∈ Xi for all i ∈ [l].

Partially Ordered Sets. We refer the reader to [4] for the few standard notions in
order theory used in the paper but not defined below.

A structure G = (G,EG) with ar(E) = 2 is called a digraph. Two digraphs
G and H are isomorphic if there exists a bijection f : G→ H such that for all
g, g′ ∈ G it holds that (g, g′) ∈ EG if and only if (f(g), f(g′)) ∈ EH. The degree
of g ∈ G, in symbols degree(g), is equal to |{(g′, g) ∈ EG | g′ ∈ G} ∪ {(g, g′) ∈
EG | g′ ∈ G}|, and the degree of G, in symbols degree(G), is the maximum
degree attained by the elements of G.

A digraph P = (P,≤P) is a partially ordered set (in short, a poset) if ≤P

is a reflexive, antisymmetric, and transitive relation over P . For all Q ⊆ P ,
we let minP(Q) and maxP(Q) denote, respectively, the set of minimal and
maximal elements in the substructure of P induced by Q; we also write min(P)
instead of minP(P ), and max(P) instead of maxP(P ). For all Q ⊆ P , we let
(Q]P, respectively [Q)P, denote the downset, respectively upset, of P induced
by Q. Let P be a poset and let p, q ∈ P . We write p ≺P q if q covers p in P,
and p ‖P q if p and q are incomparable in P. If P is a class of posets, we let
cover(P) = {cover(P) | P ∈ P}, where cover(P) = {(p, q) | p ≺P q}.

We introduce a family of poset invariants. Let P be a poset. The size of P
is |P |. The depth of P, depth(P), is the maximum size of a chain in P. The
width of P, width(P), is the maximum size of an antichain in P. The degree of P,
degree(P), is the degree of P as a digraph. The cover-degree of P, cover-degree(P),
is the degree of the cover relation of P, that is, degree(cover(P)). We say that a
class of posets P is bounded w.r.t. the poset invariant inv if there exists b ∈ N
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Fig. 2: The Hasse diagrams of the bowtie
poset B (left) and of the representa-
tion Mα of the formula α (right, see
Section 4 for the interpretation of Mα)
used in Theorem 1. The idea of the re-
duction is to simulate the constant ci
in ψ ∈ FOσ(∃,∧), interpreted on the
element i ∈ B, by the variable wi in
φ ∈ FOτ (∀,∃,∧), where i ∈ {0, 1, 2, 3}.

such that inv(P) ≤ b for all P ∈ P. The above poset invariants are ordered as
in Figure 1, where inv ≤ inv′ if and only if: P is bounded w.r.t. inv implies P is
bounded w.r.t. inv′ for every class of posets P [1, Proposition 3].

3 Expression Hardness

In this section we prove that conjunctive positive logic on posets is NP-hard
in expression complexity. Let B = (B,≤B) be the bowtie poset defined by the
universe B = {0, 1, 2, 3} and the covers 0, 2 ≺B 1, 3; see Figure 2.

Theorem 1. MC({B},FO(∀,∃,∧)) is NP-hard.

Proof. Let τ = {≤} and σ = τ ∪ {c0, c1, c2, c3} be vocabularies where ≤ is a
binary relation symbol and ci is a constant symbol (i ∈ B). Let FOσ(∃,∧) contain
first-order sentences built using only logical symbols in {∃,∧} and nonlogical
symbols in σ; FOτ (∀,∃,∧) is described similarly. Let B∗ be the σ-structure such
that B∗ = B, (B∗,≤B∗) is isomorphic to B under the identity mapping, and
cB
∗

i = i for all i ∈ B.
By [15, Theorem 2, Case n = 2], the problem MC({B∗},FOσ(∃,∧)) is NP-

hard. It is therefore sufficient to give a polynomial-time many-one reduction from
MC({B∗},FOσ(∃,∧)) to MC({B},FOτ (∀,∃,∧)). The idea of the reduction is
to simulate the constants in σ by universal quantification and additional variables;
the details follow.

Let ψ be an instance of MC({B∗},FOσ(∃,∧)), and let {xi, yi, wi | i ∈ B} be
a set of 12 fresh variables (not occurring in ψ). Let ψ′ be the FOτ (∃,∧)-sentence
obtained from ψ by replacing atoms of the form ci ≤ u and u ≤ ci, respectively,
by atoms of the form wi ≤ u and u ≤ wi (where ci is a constant in σ and u,wi
are variables). Let α be the conjunction of atoms defined by (see Figure 2)

{w0, w2} ≤ {w1, w3} ∧
∧

j∈{0,2}

{xj} ≤ {yj , wj} ∧
∧

j∈{1,3}

{yj , wj} ≤ {xj},

where, for sets of variables S and S′, the notation S ≤ S′ denotes the conjunction
of atoms of the form s ≤ s′ for all (s, s′) ∈ S × S′.

We finally define the FOτ (∀,∃,∧)-sentence φ by putting φ =
∀y0 . . . ∀y3∃x0 . . . ∃x3∃w0 . . . ∃w3(α ∧ ψ′). The reduction is clearly feasible in
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polynomial time; we now prove that the reduction is correct, that is, B∗ |= ψ if
and only if B |= φ.

An assignment f : {y0, y1, y2, y3} → B is said to be nontrivial if
{f(y0), f(y2)} = {0, 2} and {f(y1), f(y3)} = {1, 3}, and trivial otherwise; in
particular, nontrivial assignments are bijective.

Claim 1 (?) B, f |= ∃x0 . . . x3w0 . . . w3(α ∧ ψ′) for all trivial assignments f .

Claim 2 (?) Let f be a nontrivial assignment. The following are equivalent.

(i) B, f |= ∃x0 . . . x3w0 . . . w3(α ∧ ψ′).
(ii) B∗ |= ψ.

We conclude the proof by showing that B∗ |= ψ if and only if B |= φ. If B 6|= φ,
then there exists an assignment f such that B, f 6|= ∃x0 . . . ∃x3∃w0 . . . ∃w3(α∧ψ′);
by Claim 1, f is nontrivial. Then B∗ 6|= ψ by Claim 2. Conversely, if B |= φ, then in
particular B, f |= ∃x0 . . . ∃x3∃w0 . . . ∃w3(α ∧ ψ′) for all nontrivial assignments f ,
and hence B∗ |= ψ by Claim 2. ut

4 Reduced Forms

In this section, we introduce reduced forms for conjunctive positive sentences on
posets and prove that, given a poset P and a sentence φ, a reduced form for φ is
easy to compute and equivalent to φ on P.

In the rest of this section, σ = {≤} is the vocabulary of posets, and φ is a
conjunctive positive σ-sentence as in (1). Since φ will be evaluated on posets,
where the formulas x ≤ y ∧ y ≤ x and x = y are equivalent, we assume that no
atom of the form x = y occurs in φ; otherwise, such an atom can be replaced by
the formula x ≤ y ∧ y ≤ x maintaining logical equivalence.

We represent φ by the pair (Qφ,Mφ), where Qφ = (Qφ, E
Qφ) and Mφ =

(Mφ, E
Mφ) are digraphs encoding the prefix and the matrix of φ respectively,

as follows. The universes are Qφ = Mφ = {x1, y1, . . . , xl, yl}; we let M∀φ =

{x1, . . . , xl} and M∃φ = {y1, . . . , yl} denote, respectively, the set of universal
and existential variables in φ. The structure Qφ is a chain with cover relation
x1 ≺Qφ y1 ≺Qφ · · · ≺Qφ xl ≺Qφ yl. The structure Mφ is defined by the edge
relation EMφ = {(x, y) | x ≤ y is an atom of φ}. We say that φ is in reduced
form if:

(i) Mφ is a poset;
(ii) the substructure of Mφ induced by M∀φ is an antichain;

(iii) for all distinct x and x′ in M∀φ , it holds that [x)Mφ ∩ [x′)Mφ = (x]Mφ ∩
(x′]Mφ = ∅;

(iv) for all x ∈M∀φ and all y ∈M∃φ ∩ ((x]Mφ ∪ [x)Mφ), it holds that x <Qφ y.

Let φ ∈ FO(∀,∃,∧). For all Z ⊆ Mφ, we let φ|Z denote the conjunctive
positive sentence represented by (Qφ|Z ,Mφ|Z). It is readily observed that, for
all Z ⊆Mφ, it holds that φ |= φ|Z .
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Proposition 1 (?). Let P be a class of posets. There exists a polynomial-time
algorithm that, given an instance (P, φ) of MC(P,FO(∀,∃,∧)), either correctly
rejects, or returns a sentence φ′ ∈ FO(∀,∃,∧) in reduced form such that P |= φ′

if and only if P |= φ.

5 Fixed-Parameter Tractability

In this section, we prove that model checking conjunctive positive logic is fixed-
parameter tractable parameterized by the size of the sentence and the width
of the poset; it follows, in particular, that model checking conjunctive positive
logic is fixed-parameter tractable (parameterized by the size of the sentence) on
classes of posets of bounded width. We refer the reader to the introduction for
an informal outline of the proof idea.

In the rest of this section, σ = {≤} is the vocabulary of posets, P is a poset
and φ = (Qφ,Mφ) is a conjunctive positive σ-sentence as in (1) satisfying clauses
(i) and (ii) of the definition of reduced form.

5.1 Depth in the Sentence

Using the fact that φ is in reduced form, we define the following. For all y ∈M∃φ :
lower-depth(y) = depth(Mφ|(y]Mφ ); upper-depth(y) = depth(Mφ|[y)Mφ ). In

words, lower-depth(y) is the size of the largest chain in the substructure of Mφ

induced by the downset of y in Mφ, and upper-depth(y) is the size of the largest
chain in the substructure of Mφ induced by the upset of y in Mφ.

Next, we define a partition of M∃φ into two blocks Lφ and Uφ, the lower and

upper variables respectively, as follows. For all y ∈ M∃φ let y ∈ Lφ if and only

if there either exists x ∈ M∀φ such that y ≤Mφ x, or y ‖Mφ x for all x ∈ M∀φ
and lower-depth(y) ≤ upper-depth(y). Similarly, y ∈ Uφ if and only if there
either exists x ∈ M∀φ such that y ≥Mφ x, or y ‖Mφ x for all x ∈ M∀φ and
lower-depth(y) > upper-depth(y). In words, an existential variable y in φ is
lower if and only if it is below a universal variable in the matrix of φ, or is
incomparable to all universal variables in the matrix of φ but “closer” to the
bottom of the matrix of φ in that lower-depth(y) ≤ upper-depth(y); a similar
idea drives the definition of upper variables.

Finally we define, for all y ∈M∃φ : depth(y) = lower-depth(y) if y ∈ Lφ, and
depth(y) = upper-depth(y) if y ∈ Uφ; in words, the depth of a lower variable is
its “distance” from the bottom as measured by lower-depth(y), and similarly for
upper variables.

5.2 Depth in the Structure

Relative to the poset P, we define, for all i ≥ 0, the set Pi as follows.

– L0 = min(P), U0 = max(P) \ L0, and P0 = L0 ∪ U0.
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– Let i ≥ 1, and let R ⊆ Pi−1 be such that R ∩ Li−1 is downward closed in
P|Li−1

(that is, for all l, l′ ∈ Li−1, if l ∈ R ∩ Li−1 and l′ ≤P l, then l′ ∈ R)
and R ∩ Ui−1 is upward closed in P|Ui−1

(that is, for all u, u′ ∈ Ui−1, if
u ∈ R ∩ Ui−1 and u ≤P u′, then u′ ∈ R). Let

Pi−1,R =

{
p ∈ P

∣∣∣∣ for all l ∈ Li−1, l ≤P p if and only if l ∈ R,
for all u ∈ Ui−1, p ≤P u if and only if u ∈ R

}
;

in words, p ∈ Pi−1,R if and only if the elements in Li−1 below p are exactly
those in R ∩ Li−1 (and the elements in Li−1 \R are incomparable to p) and
the elements in Ui−1 above p are exactly those in R∩Ui−1 (and the elements
in Ui−1 \ R are incomparable to p). We now define Pi = Li ∪ Ui where Li
and Ui are as follows:

Li = Li−1 ∪
⋃

R⊆Pi−1

minP(Pi−1,R), Ui =
(
Ui−1 ∪

⋃
R⊆Pi−1

maxP(Pi−1,R)
)
\ Li.

Let p ∈ P . Let i ≥ 0 be minimum such that p ∈ Pi (note that for every p ∈ P
such minimum i exists, and Li ∩ Ui = ∅ by construction). If p ∈ Li, then p ∈ LP

and lower-depth(p) = i, and if p ∈ Ui, then p ∈ UP and upper-depth(p) = i.
Note that LP and UP partition P into two blocks containing the lower and upper
elements respectively. Finally we define, for all p ∈ P : depth(p) = lower-depth(p),
if p ∈ LP, and depth(p) = upper-depth(p), if p ∈ UP.

5.3 Depth Restricted Game

We now establish and formalize the relation between the depth in φ and the
depth in P (see Lemma 1); this is the key combinatorial fact underlying the
model checking algorithm.

Relative to the Hintikka game on P and φ, we define the following. A pair
(y, p) ∈M∃φ×P is depth respecting if (y, p) ∈ (Lφ×LP)∪(Uφ×UP) and depth(p) ≤
depth(y). A strategy (g1, . . . , gl) for Eloise is depth respecting if, for all i ∈ [l]
and all plays f : {x1, . . . , xl} → P by Abelard, the pair (yi, gi(f(x1), . . . , f(xi)))
is depth respecting.

Let b ≥ 0 be the maximum depth of a variable in φ. A play f : {x1, . . . , xl} →
P by Abelard is bounded depth if, for all i ∈ [l], it holds that f(xi) ∈ Pb+1.

Lemma 1. The following are equivalent (w.r.t. the Hintikka game on P and φ).

(i) Eloise has a winning strategy.
(ii) Eloise has a depth respecting winning strategy.

(iii) Eloise has a depth respecting strategy beating all bounded depth Abelard plays.

Proof. (ii)⇒ (iii) is trivial. We prove (i)⇒ (ii) and (iii)⇒ (i).
(i) ⇒ (ii): Let g = (g1, . . . , gl) be a winning strategy for Eloise. Let the

Abelard play f : {x1, . . . , xl} → P and the existential variable yj ∈ M∃φ be a
minimal witness that the above winning strategy for Eloise is not depth respecting,
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in the following sense: (yj , gj(f(x1), . . . , f(xj))) is not depth respecting, but for
all f ′ : {x1, . . . , xl} → P and all yj′ ∈ M∃φ such that either yj , yj′ ∈ Lφ and
lower-depth(yj′) < lower-depth(yj), or yj , yj′ ∈ Uφ and upper-depth(yj′) <
upper-depth(yj), it holds that (yj′ , gj(f

′(x1), . . . , f ′(xj))) is depth respecting.
We define a strategy g′ = (g1, . . . , gj−1, g

′
j , gj+1, . . . , gl) for Eloise such that g′j

restricted to P j\{(f(x1), . . . , f(xj))} is equal to gj (in other words, g′j differs from
gj only in the move after f : {x1, . . . , xl} → P ), and (yj , g

′
j(f(x1), . . . , f(xj))) is

depth respecting. There are two cases to consider, depending on whether yj ∈ Lφ
or yj ∈ Uφ. We prove the statement in the former case; the argument is symmetric
in the latter case.

So, assume yj ∈ Lφ. Let gj(f(x1), . . . , f(xj)) = p and i = depth(yj). Let
R ⊆ Pi−1 (with R ∩ Li−1 downward closed in P|Li−1 and R ∩ Ui−1 upward
closed in P|Ui−1) be such that, for all l ∈ Li−1 and u ∈ Ui−1, it holds that
l ≤P p if and only if l ∈ R and p ≤P u if and only if u ∈ R. Hence p ∈ Pi−1,R.
Then there exists m ∈ minP(Pi−1,R) such that m ≤P p. By construction we
have depth(m) = i. Let g′j : P j → P be exactly as gj with the exception that
g′j(f(x1), . . . , f(xj)) = m; note that the pair (yj ,m) is depth respecting.

Claim 3 (?) Let f ′ be any play by Abelard. Then g′ = (g1, . . . , g
′
j , . . . , gl) beats

f ′ in the Hintikka game on P and φ.

We obtain a depth respecting winning strategy for Eloise by iterating the
above argument thanks to Claim 5.

(iii) ⇒ (i): Let b ≥ 0 be the maximum depth of a variable in φ, and let
g = (g1, . . . , gl) be a depth respecting strategy for Eloise beating all bounded
depth plays by Abelard. We define a strategy g′ = (g′1, . . . , g

′
l) for Eloise, as

follows.
Let f : {x1, . . . , xl} → P be a play by Abelard, say f(xi) = pi for all i ∈ [l].

Let i ∈ [l] and let Ri ⊆ Pb (with Ri ∩ Lb−1 downward closed in P|Lb−1
and

Ri ∩ Ub−1 upward closed in P|Ub−1
) be such that for all l ∈ Lb, it holds that

l ≤P pi if and only if l ∈ Ri and for all u ∈ Ub, it holds that pi ≤P u if and
only if u ∈ Ri. By construction, there exists ri ∈ Pb+1 such that for all l ∈ Lb,
it holds that l ≤P ri if and only if l ≤P pi and for all u ∈ Ub, it holds that
ri ≤P u if and only if pi ≤P u. Let f ′ : {x1, . . . , xl} → P be the bounded depth
play by Abelard defined by f ′(xi) = ri for all i ∈ [l]. Finally define, for all i ∈ [l],
g′i(f(x1), . . . , f(xi)) = gi(f

′(x1), . . . , f ′(xi)).

Claim 4 (?) g′ = (g′1, . . . , g
′
l) is a winning strategy for Eloise.

This concludes the proof of the lemma. ut

5.4 Fixed-Parameter Tractability

The following two lemmas allow to establish the correctness (Lemma 2, relying
on Lemma 1) and the tractability (Lemma 3) of the presented model checking
algorithm, respectively.
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Lemma 2 (?). Let b ≥ 0 be the maximum depth of a variable in φ. Let D = Pb+1

and, for all i ∈ [l], let

Di =

{
Ldepth(yi), if yi ∈ Lφ,

Udepth(yi), if yi ∈ Uφ.

Then, P |= φ if and only if P |= (∀x1 ∈ D)(∃y1 ∈ D1) . . . (∀xl ∈ D)(∃yl ∈ Dl)C.

Lemma 3 (?). Let w = width(P) and let k ≥ 0. Then, |Pk| ≤ 2w(3w)k .

We are now ready to describe the announced algorithm. The underlying idea
is that the characterization in Lemma 2 is checkable in fixed-parameter tractable
time since |Di| ≤ |D| for all i ∈ [l], and |D| is bounded above by a computable
function of width(P) and ‖φ‖.

Theorem 2 (?). There exists an algorithm that, given a poset P and a sentence
φ ∈ FO(∀,∃,∧), decides whether P |= φ in

exp4
w(O(k)) · nO(1)

time, where w = width(P), k = ‖φ‖, and n = ‖(P, φ)‖.

Corollary 1. Let P be a class of posets of bounded width. Then, the problem
MC(P,FO(∀,∃,∧)) is fixed-parameter tractable.

6 Fixed-Parameter Intractability

In this section, we prove that model checking conjunctive positive logic on classes
of bounded depth and bounded cover-degree posets is coW[2]-hard, and hence
unlikely to be fixed-parameter tractable [8].

We first observe the following. Let φk be the FO(∀,∃,∧)-sentence (k ≥ 1)

∀x1 . . . ∀xk∃y1 . . . ∃yk∃w

 ∧
i∈[k]

yi ≤ xi ∧
∧
i∈[k]

yi ≤ w

 . (3)

Proposition 2 (?). For every poset P and k ≥ 1, P |= φk iff for every k
elements p1, . . . , pk ∈ min(P), there exists u ∈ P such that p1, . . . , pk ≤P u.

We now describe the reductions. Let H be the class of hypergraphs (a hyper-
graph is a σ-structure H such that UH 6= ∅ for all U in a unary vocabulary σ).
For the depth invariant, we define a function d from H to a class of posets of
depth at most 2 where d(H) = P such that: min(P) = H; max(P) = σ; h ≺P U
for all h ∈ min(P) and U ∈ max(P) such that h 6∈ UH. For the cover-degree
invariant, we similarly define a function c from H to a class of posets with cover
graphs of degree at most 3 (see [2] for details). We then use Proposition 2 to
obtain:

Proposition 3 (?). Let r ∈ {c, d}. Then, MC({r(H) | H ∈ H},FO(∀,∃,∧)) is
coW[2]-hard.
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7 Conclusion

We provided a parameterized complexity classification of the problem of model
checking quantified conjunctive queries on posets with respect to the invariants
in Figure 1; in particular, we push the tractability frontier of the model checking
problem on bounded width posets closer towards the full first-order logic. The
question of whether first-order logic is fixed-parameter tractable on bounded
width posets remains open.
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