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Abstract. Fuzzy logics based on residuated t-norms provide a robust mathe-
matical formalism for logical deduction under uncertain or vague premises. In this
paper, we describe a decision algorithm for the tautology problem of Basic Logic,
which is the logic of continuous t-norms and their residua [Háj98, CEGT00]. Our
algorithm is a refinement of the semantic method of Baaz, Hájek, Montagna, and
Veith [BHMV02].

1 Introduction

Imagine designing a family of propositional logics that satisfies the following
list of requirements:

(i) the propositional variables: p1, p2, . . . , are interpreted over the real
unit interval [0, 1], linearly ordered by ≤ in the usual way (fuzzyness);

(ii) the logical symbols: ⊥ (falsum), ¯ (fuzzy conjunction), and → (fuzzy
implication), are respectively interpreted over the constant 0 and the
binary functions f¯ and f→ on [0, 1] (truth functionality);

(iii) f¯ is associative, commutative, monotone and continuous;

(iv) f¯(x, 1) = x and f→(x, y) = 1 if and only if x ≤ y, so that the
restrictions of f¯ and f→ to {0, 1}2 behave like Boolean conjunction
and implication;

(v) the fuzzy modus ponens rule, A¯ (A→ B) ` B, is sound.

In this scenario, the pairs of operations known as t-norms and residua
provide suitable interpretations for fuzzy conjunction and implication. In-
deed, a continuous t-norm ∗ is a continuous binary function on [0, 1] that
is associative, commutative, monotone (x ≤ y implies x ∗ z ≤ y ∗ z) and
has 1 as unit (x ∗ 1 = x). Given a continuous t-norm ∗, the associated
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residuum is the binary function on [0, 1] uniquely determined by the con-
dition x →∗ y = max{z : x ∗ z ≤ y}. Notice that x ≤ y is equivalent to
x→∗ y = 1, and implies y →∗ z ≤ x→∗ z and z →∗ x ≤ z →∗ y. Notice also
that the fuzzy modus ponens is sound, since by definition x ∗ (x→∗ y) ≤ y,
and powerful, in the sense that the value of y is lower bounded by the max-
imal value of x ∗ (x→∗ y) which preserves the requirement of soundness.

Hence, a t-norm ∗ naturally determines a propositional fuzzy logic L∗

satisfying requirements (i)-(v) above. Formally, let [0, 1]∗ = ([0, 1], ∗,→∗, 0)
be the algebra over [0, 1] equipped with the t-norm ∗ and its residuum →∗.
We call [0, 1]∗ the t-algebra of ∗. Then, L∗ is the propositional logic on the
connectives ¯,→ and the constant ⊥ respectively interpreted on [0, 1]∗ as
∗, →∗ and 0 (over this basis, ¬A and > are defineable via A→ ⊥ and ¬⊥,
respectively). The tautologies of L∗ are the formulas evaluating to 1 on
[0, 1]∗ under any valuation of the variables in [0, 1].

Interestingly, the Hilbert calculus BL (Hájek’s Basic Logic) given by the
axioms:

(A1) (A→ B)→ ((B → C)→ (A→ C))

(A2) (A¯B)→ A

(A3) (A¯B)→ (B ¯A)

(A4) (A¯ (A→ B))→ (B ¯ (B → A))

(A5a) ((A→ (B → C))→ ((A¯B)→ C))

(A5b) ((A¯B)→ C))→ ((A→ (B → C))

(A6) ((A→ B)→ C)→ (((B → A)→ C)→ C)

(A7) ⊥ → A

and the rule A ¯ (A → B) ` B, turns out to be the logic of all continuous
t-norms and their residua. That is, BL ` A if and only if, for all continuous t-
norms ∗, A is a tautology of L∗ [Háj98, CEGT00]. In this light, we formalize
the t-tautology problem as follows:

Problem: t-TAUT = {〈A〉 : BL ` A} ⊆ {0, 1}∗
Input: 〈A〉 ∈ {0, 1}∗
Output: 1 if and only if 〈A〉 ∈ t-TAUT

where 〈A〉 ∈ {0, 1}∗ is a binary encoding of A of length polynomial in the
complexity of A, size(A), which is the number of connectives occurring in
A. For technical reasons, we put size(>) = 0.

As a stronger result, Aglianò and Montagna [AM03] have shown that
A ∈ t-TAUT if and only if A is a tautology with respect to the interpretation
of the propositional language into a special t-algebra, defined as follows.
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Definition 1. The algebra ω[0, 1]ÃL is the algebra on the support [0, +∞]
equipped with the operations ∗, →∗ and the constants 0, +∞, where ∗ and
→∗ are respectively defined by:

x ∗ y =





min{x, y} if bxc 6= byc
max{bxc, x + y − bxc − 1} if bxc = byc < +∞
+∞ if x = y = +∞

x→∗ y =





y if byc < bxc
bxc+ 1− x + y if bxc = byc and y < x

+∞ if x ≤ y

where bxc is the integer part of x and b+∞c = +∞.
A valuation (of the propositional language into ω[0, 1]ÃL) is a function v

such that v(⊥) = 0, v(pi) ∈ [0, +∞] for all i ∈ N, v(A¯ B) = v(A) ∗ v(B)
and v(A→ B) = v(A)→∗ v(B).

Theorem 1 (Aglianò and Montagna, 2003). A ∈ t-TAUT if and only if
v(A) = v(>) for every valuation v.

The interpretation ω[0, 1]ÃL allows to show that the complement of t-
TAUT is (complete for) NP, and, as a consequence, that t-TAUT is decid-
able [BHMV02]. Hence, it is natural to investigate decision algorithms for
t-TAUT. In this paper, we present an algorithm, called Bottom-Up-BL,
which is a refinement of the semantic method of Baaz, Hájek, Montagna,
and Veith (BHMV-BL, in the sequel).

2 A Bottom-Up Algorithm for t-Tautologies

The present section introduces Bottom-Up-BL. After presenting the basic
idea, patterned after BHMV-BL (Subsection 2.1), we describe in detail
how Bottom-Up-BL works (Subsection 2.2), and we provide an example
(Subsection 2.3). The main result of the paper is that Bottom-Up-BL
is correct for t-TAUT (Subsection 2.4). Not surprisingly, the worst case
running time of the algorithm is exp(nO(1)), where O(n) bounds above the
size of the input. For background on algorithms, we refer the reader to
[CLRS01].

2.1 Idea

Any valuation v determines a total order ≤A over the subformulas of A (plus
>), stipulating that B1 ≤A B2 if and only if v(B1) ≤ v(B2), for B1, B2 sub-
formulas of A. Such an order satisfies either A <A > or A =A >. However,
there exist total orders of the subformulas of A (plus >) not corresponding
to any valuation v. We call the former orders consistent, and the latter
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Figure 1.1: (a) depicts the partition (given a formula A) of the set of orders into
consistent orders, C, inconsistent orders, U , and locally inconsistent orders, L ⊆ U . By
definition, C, U 6= ∅. BHMV-BL searches C ∪ U , while Bottom-Up-BL searches (C ∪
U) \L. (b) and (c) depict the search spaces of Bottom-Up-BL, given in input (distinct)
formulas A1 and A2. The gray regions, M1 and M2, are the set of the orders where
A1 <A1 > and A2 <A2 > respectively. In the first case the output is 0 (M1 ∩ C1 6= ∅), in
the second case the output is 1 (M2 ∩ C2 = ∅.)

orders inconsistent, respectively, sets C and U in Figure 1.1(a). As an ex-
ample, if B1, B2, B1 → B2, B1 ¯ B2 are subformulas of A, any order where
B1 → B2 <A B2 or B1 <A B1 ¯B2 is inconsistent, observed that any valu-
ation v satisfies both v(B2) ≤ v(B1 → B2) and v(B1 ¯ B2) ≤ v(B1). Now,
the important consequence of Theorem 1 is that the semantic consistency of
a given order is computable in polynomial time. Hence, since C∪U is finite,
the algorithm BHMV-BL can check exhaustively all the orders for semantic
consistency; the output will be 1 if and only if all consistent orders satisfy
A =A > (equivalently, all the orders satisfying A <A > are inconsistent).
Our simple observation is that BHMV-BL approach allows for the follow-
ing refinement: if we construct the orders inductively on the complexity of
the subformulas of A, starting from all the orders of the variables of A, we
can immediately detect some inconsistencies (applying Fact 1, see below),
and therefore we can avoid the computation of a certain number of incon-
sistent orders (the set L ⊆ U of locally inconsistent orders in Figure 1.1(a)),
improving the effectiveness of the computation (we guess that L is large).

More precisely, let A be a formula and S be the set of the subformulas of
A. Any valuation v determines a partition of S ∪ {>} into h = |H| blocks,
where H = {bv(B)c : B ∈ S ∪ {>}}. Let b1 < · · · < bh−1 < +∞ be the
natural total order over H, let I = {⊥1, . . . ,⊥h} be a set of fresh constant
symbols (idempotents, in the sequel) and put v(⊥j) = bj for all 1 ≤ j < h
and v(⊥h) = +∞. Now, v determines a total order ≤A over S ∪ {>} ∪ I,
stipulating that, for every pair B1, B2 of formulas in S ∪{>}∪ I, B1 ≤A B2

if and only if v(B1) ≤ v(B2).

Notation 1. Let B1, B2 ∈ S. In the sequel, B1 =A B2 is for B1 ≤A B2 and
B2 ≤A B1, and B1 <A B2 is for B1 ≤A B2 and B1 6=A B2. Also, if there
exists j ≤ h such that B1 <A ⊥j ≤A B2, we write B1 ¿ B2; if there exists
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j < h such that ⊥j ≤A B1 <A B2 <A ⊥j+1, we write B1 ≺ B2; if there
exists j < h such that ⊥j ≤A B1 ≤A B2 <A ⊥j+1, we write B1 4 B2.

As before, we say that an order ≤A over S ∪ {>}∪ I is consistent if and
only if it corresponds to a valuation. Some inconsistencies follow immedi-
ately from Definition 1.

Fact 1. Let A, S and I as above, and let ≤A be any total order over S ∪
{>}∪I. Then, ≤A is consistent only if it satisfies all the following statements
(B1, B2, B1 ¯B2, B1 → B2, C1, C2, C1 ¯ C2, C1 → C2 ∈ S):

(i) If B1 ¿ B2 or ⊥j =A B1 ≤A B2 (j ≤ h), then B1 ¯B2 =A B1.

(ii) If B1 4 B2, then B1 ¯B2 ≺ B1.

(iii) If B1 ≤A C1 and B2 ≤A C2, then B1 ¯B2 ≤A C1 ¯C2. If in addition
⊥j <A C1¯C2 and B1 <A C1 or B2 <A C2, then B1¯B2 <A C1¯C2.

(iv) If B1 ≤A B2, then B1 → B2 =A >.

(v) If B2 ¿ B1, then B1 → B2 =A B2.

(vi) If B2 ≺ B1, then B2 ≺ B1 → B2.

(vii) If B1 ≤A C1 and C2 ≤A B2, then C1 → C2 ≤A B1 → B2. If in
addition B1 <A C1 or C2 <A B2, then C1 → C2 <A B1 → B2.

We insist that the condition above is necessary, but not sufficient (in
general the inclusion L ⊆ U in Figure 1.1(a) is strict). The idea beyond
Bottom-Up-BL is to exploit systematically Fact 1 to reduce the search
space, avoiding the computation of locally inconsistent orders (compare the
description of the iteration step given in Subsection 2.2).

2.2 Algorithm

We describe in detail the algorithm Bottom-Up-BL, commenting on the
pseudocode below. The input to the algorithm is a formula A, where
a1, . . . , ak are the atoms (subformulas of complexity 0) of A and size(A) = n.
Notice that, if size(A) = n, then the variables of A are at most n + 1.

Bottom-Up-BL(〈A〉)
1 for h← 2 to k + 1
2 oA ← ⊥1 <A · · · <A ⊥h =A >
3 wA(⊥j)1≤j<h = 0, wA(⊥h) = wA(>) = 1
4 pA ← ∅
5 ORDh ← {(oA, wA, pA)}
6 for i← 0 to n
7 S ← {E : E subformula of A, size(E) = i}
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8 ORDi ← extensions of ORDi−1 to S not excluded by Fact 1
9 . Let ORDn = {(oA,1, wA,1, pA,1), . . . , (oA,l, wA,l, pA,l)}.
10 if (∃1 ≤ m ≤ l)A <A,m > holds and pA,m is feasible
11 output 0
12 output 1

Let 2 ≤ h ≤ k + 1, and let S, I be as above. Let S−1 = {>} ∪ I and
Si = {E : E ∈ S ∪{>}∪ I, size(E) ≤ i} ⊆ S, for i = 0, . . . , n. In the sequel,
for all −1 ≤ i ≤ n, ORDi is a finite set of triples of the form (oA, wA, pA),
where:

(i) oA (order, in the sequel) is the union of a relation E1 <A E2 satisfy-
ing irreflexivity, antisymmetry and transitivity over Si, and a relation
E1 =A E2 satisfying reflexivity, symmetry and transitivity over Si,
with the (technical) exception to the symmetry of =A that there are
not E ∈ Si \ I and ⊥j ∈ I satisfying E =A ⊥j . Moreover, oA satisfies
the chain E1/1 · · ·/|Si|−1E|Si|, where Si =

⋃|Si|
p=1 Ep and /p ∈ {<A, =A}

for all p = 1, . . . , |Si| − 1. In the sequel, given an order oA, ≤A is for
<A or =A and, if B1 and B2 are subformulas of A, minA{B1, B2} is
B1 if B1 ≤A B2 and B2 otherwise.

(ii) wA is a linear function over Si.

(iii) pA is a set of linear equality and inequality constraints with integer
coefficients over unknowns (among) x1, . . . , xn, xn+1.

In lines 2-5 the algorithm settles ORDh (2 ≤ h ≤ k + 1) to the triple
(oA, wA, pA), where oA = {⊥1 <A ⊥2, . . . ,⊥h−1 <A ⊥h} ∪ {⊥h =A >},
wA(⊥j) = 0, for 1 ≤ j < h, wA(⊥h) = wA(>) = 1 and pA = ∅.

Now, let ORDh be fixed. The main loop of Bottom-Up-BL spans lines
6-8. The ith iteration of the loop (0 ≤ i ≤ n) is aimed to extend the triples
in ORDi−1 to all subformulas of A of complexity less than or equal to i
(stipulate that ORD−1 is ORDh). In the description below, we consider
several possible ways of extending each triple in ORDi−1, and we assume
that the algorithm put every extension considered in ORDi.

Initialization (Step i = 0). For each (oA, wA, pA) ∈ ORDh, the order
oA is extended to the atoms a1, . . . , ak of A in such a way that: (i) If ⊥ is
an atom of A, then ⊥1 =A ⊥ holds in the extended order. (ii) For each
1 ≤ j < h, there exists an atom a of A such that ⊥j ≤A a <A ⊥j+1 holds
in the extended order. (iii) There not exists a variable p of A such that
p <A ⊥1 or ⊥h <A p holds in the extended order. Notice that ⊥j =A p
can hold in the extended order, but p =A ⊥j can not hold because of the
previous stipulation on =A, for 1 ≤ j ≤ h. There are several possible ways
of extending oA to the atoms. For each of such choices, wA and pA are
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extended as follows. As regards to wA: if a is ⊥, then wA(a) = 0, otherwise,
if a is a variable pi, then wA(a) = xi (i ≥ 1). As regards to pA: (i) For each
pair pi, pj such that pi =A pj , the constraint xi = xj is added to pA. (ii)
For each pair pi, pj such that pi <A pj , the constraint xi < xj is added to
pA. (iii) For each pi such that ⊥j =A pi, the constraint xi = 0 is added to
pA if j < h, otherwise the constraint xi = 1 is added to pA. (iv) For each
pi such that ⊥j <A pi, the constraint 0 < xi is added to pA. (v) For each pi

such that pi <A ⊥j , the constraint xi < 1 is added to pA.

Iteration (Step i + 1, i ≥ 0). Let Si, Si+1, ORDi and ORDi+1 be
determined as above. At iteration i + 1, the algorithm computes ORDi+1,
given ORDi. Each triple in ORDi+1 is the result of the extension of a triple
in ORDi to all the subformulas of A of complexity i + 1. There are several
possibilities to extend an order oA,i over Si to an order oA,i+1 over Si+1.
Among all, the algorithm computes only the extensions considered below
(wA,i and pA,i are extended accordingly). For a fixed (oA, wA, pA) ∈ ORDi

and a fixed subformula E of A of complexity i + 1, Bottom-Up-BL works
as follows. If E has the form B1 ¯B2, then:

(¯1) If B1 ¿ B2 or ⊥j =A B1 ≤A B2 for some j ≤ h, then oA is extended
to B1 ¯B2 by adding B1 ¯ B2 =A B1. Also, wA(B1 ¯B2) = wA(B1)
is settled, and no constraint is added to pA.

(¯2) If B2 ¿ B1 or ⊥j =A B2 ≤A B1 for some j ≤ h, then oA is extended
to B1 ¯B2 by adding B1 ¯ B2 =A B2. Also, wA(B1 ¯B2) = wA(B2)
is settled, and no constraint is added to pA.

(¯3) Otherwise, let j < h be maximal such that ⊥j <A B1 <A ⊥j+1 and
⊥j <A B2 <A ⊥j+1. Then, oA is extended to B1 ¯ B2 in such a
way that: (i) ⊥j ≤A B1 ¯ B2 <A minA {B1, B2} <A ⊥j+1 holds in
the extended order. (ii) For any pair C1, C2 of formulas, if B1 ≤A C1,
B2 ≤A C2 and C1¯C2 has already been added in oA, then B1¯B2 ≤A

C1¯C2 holds in the extended order. Moreover, if ⊥j <A C1¯C2 (j <
h), B1 ≤A C1, B2 ≤A C2 and at least one of the last two inequalities
is strict, then B1 ¯ B2 <A C1 ¯ C2 holds in the extended order. (iii)
For any pair C1, C2 of formulas, if C1 ≤A B1, C2 ≤A B2 and C1 ¯ C2

has already been added in oA, then C1 ¯ C2 ≤A B1 ¯B2 holds in the
extended order. Moreover, if ⊥j <A C1 ¯ C2 (j < h), C1 ≤A B1,
C2 ≤A B2 and at least one of the last two inequalities is strict, then
C1 ¯ C2 <A B1 ¯ B2 holds in the extended order. There are several
possible ways of extending oA to B1 ¯ B2 satisfying the conditions
above. For each choice, wA and pA are extended accordingly, as follows.
As regards to wA, if⊥j =A B1¯B2 for some j < h, then wA(B1¯B2) =
0 is settled, otherwise wA(B1¯B2) = wA(B1)+wA(B2)− 1 is settled.
As regards to pA: (i) If ⊥j =A B1 ¯ B2 for some j < h, then the
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constraint wA(B1)+wA(B2) ≤ 1 is added to pA. (ii) If ⊥j <A B1¯B2

for some j < h, then the constraint 1 < wA(B1) + wA(B2) is added
to pA. Also, if B1 ¯ B2 =A D for some formula D already added to
oA, the constraint wA(B1 ¯ B2) = wA(D) is added to pA; otherwise,
if the formulas D1, D2, already added to oA, are respectively maximal
such that D1 <A B1¯B2 and minimal such that B1¯B2 <A D2, the
constraints wA(D1) < wA(B1 ¯ B2) and wA(B1 ¯ B2) < wA(D2) are
added to pA.

If E has the form B1 → B2, then:

(→1) If B1 ≤A B2, then oA is extended to B1 → B2 by adding ⊥h =A > =A

B1 → B2. Also, wA(B1 → B2) = 1 is settled, and no constraint is
added to pA.

(→2) If B2 ¿ B1, then then oA is extended to B1 → B2 by adding B1 →
B2 =A B2. Also, wA(B1 → B2) = wA(B2) is settled, and no constraint
is added to pA.

(→3) If B2 ≺ B1, then let j < h be maximal such that ⊥j ≤A B2. Then,
oA is extended to B1 → B2 in such a way that: (i) ⊥j ≤A B2 <A

B1 → B2 <A ⊥j+1 holds in the extended order. (ii) For any pair
C1, C2 of formulas, if B1 ≤A C1, C2 ≤A B2 and C1 → C2 has already
been added in oA, then C1 → C2 ≤A B1 → B2 holds in the extended
order. Moreover, if at least one of the above two inequalities is strict,
then C1 → C2 <A B1 → B2 holds in the extended order. (iii) For
any pair C1, C2 of formulas, if C1 ≤A B1, B2 ≤A C2 and C1 → C2

has already been added in oA, then B1 → B2 ≤A C1 → C2 holds
in the extended order. Moreover, if at least one of the above two
inequalities is strict, then B1 → B2 <A C1 → C2 holds in the extended
order. Again, there are several possible ways of extending oA to B1 ¯
B2 satisfying the conditions above. For each choice, wA and pA are
extended accordingly, as follows. As regards to wA, wA(B1 → B2) =
wA(B2)+1−wA(B1) is settled. As regards to pA: (i) If B1 → B2 =A D
for some formula D already added to oA, the constraint wA(B1 →
B2) = wA(D) is added to pA. (ii) Otherwise, let the formulas D1, D2,
already added to oA, be respectively maximal such that D1 <A B1 →
B2 and minimal such that B1 → B2 <A D2. Then, if D2 <A ⊥j+1, the
constraint wA(D1) < wA(B1 ¯ B2) and wA(B1 ¯ B2) < wA(D2) are
added to pA; otherwise, if ⊥j+1 =A D2, only the constraint wA(D1) <
wA(B1 ¯B2) is added to pA.

Termination (Step i = n). The number of orders of the form B1 ≤A

· · · ≤A B(k+n)+1+h, where each Bi is a distinct formula in S ∪ {>} ∪ I is
clearly finite. The main loop of the algorithm computes a (proper) subset
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of these orders for every fixed h, so it terminates for every formula A. Let
ORDn be the set computed at termination of the main loop, for some 2 ≤
h ≤ k + 1. For each triple (oA, wA, pA) ∈ ORDn, the order oA contains
> and all the subformulas of A, including A itself. If there exists a triple
(oA, wA, pA) ∈ ORDn such that A <A > holds in oA and pA is feasible (line
10), then Bottom-Up-BL breaks the external loop and outputs 0 (line 11).
Otherwise, Bottom-Up-BL iterates the external loop if h ≤ k (line 1), or
outputs 1 if h > k (line 12).

2.3 Example

Let A be ((p1 → ⊥) → ⊥) → p1. The atoms of A are p1 and ⊥ and the
subformulas of A excluding atoms, ordered by increasing complexity, are
p1 → ⊥, (p1 → ⊥)→ ⊥ and A. For h = 2, we have ORDh = {(oA, wA, pA)}
where oA ­ ⊥1 <A,1 ⊥2 =A >. At step i = 0, we have ORD0 =
{(oA,1, wA,1, pA,1), (oA,2, wA,2, pA,2)} where oA,1 ­ ⊥1 =A,1 ⊥ =A,1 p1 <A,1

⊥2 =A,1 >, and oA,2 ­ ⊥1 =A,2 ⊥ <A,2 ⊥2 =A,2 > =A,2 p1. For h = 3,
we have ORDh = {(oA, wA, pA)} where oA ­ ⊥1 <A ⊥2 <A ⊥3 =A >.
At step i = 0, we have ORD0 = {(oA,3, wA,3, pA,3), (oA,4, wA,4, pA,4)} where
oA,3 ­ ⊥1 =A,3 ⊥ <A,3 ⊥2 =A,3 p1 <A,3 ⊥3 =A,3 >, and oA,4 ­ ⊥1 =A,4

⊥ <A,4 ⊥2 <A,4 p1 <A,4 ⊥3 =A,4 >. Now, for h = 3 and i = 1, 2, 3,
Bottom-Up-BL computes, among the other possibilities, the following ex-
tension of (oA,4, wA,4, pA,4) above, where wA,4(⊥) = wA,4(⊥1) = wA,4(⊥2) =
0, wA,4(p1) = x1, wA,4(⊥3) = wA,4(>) = 1, and pA,4 = {0 < x1, x1 < 1}. By
(→2), subformula p1 → ⊥ adds p1 → ⊥ =A,4 ⊥ and settles wA,4(p1 → ⊥) =
wA,4(⊥) = 0 (pA,4 is unchanged). By (→1), subformula (p1 → ⊥)→ ⊥ adds
> =A,4 (p1 → ⊥) → ⊥ and settles wA,4((p1 → ⊥) → ⊥) = wA,4(>) = 1
(pA,4 is unchanged). By (→2), A adds A =A,4 p1 <A,4 > and settles
wA,4(A) = wA,4(p1) = x1 (pA,4 is unchanged). Hence, at termination,
A <A,4 > holds in oA,4 and pA,4 is feasible (any real number in (0, 1) is
a solution to pA,4), and Bottom-Up-BL outputs 0.

2.4 Correctness

Bottom-Up-BL is sound and complete for t-TAUT. Formally,

Theorem 2. Let A be a formula. Then, 〈A〉 ∈ t-TAUT if and only if
Bottom-Up-BL outputs 1 on input 〈A〉.

The proof stems from the following correspondence between classes of
valuations and triples (oA, wA, pA) with feasible pA’s computed by Bottom-
Up-BL. On the one hand, let (oA, wA, pA) be a triple computed by Bottom-
Up-BL, where pA is feasible. Let b = b1 < · · · < bj < · · · < bh−1 be any
linear order of h− 1 nonnegative integers and let x = (x1, . . . ,xn,xn+1) be
any solution to pA (there are several possible choices). Then, the valuation

9



A Bottom-Up Algorithm for t-Tautologies

v corresponding to (oA, wA, pA) under b and x is such that, for 1 ≤ i ≤
n + 1: if ⊥h =A pi, then v(pi) = +∞; otherwise, if j < h is maximal such
that ⊥j ≤A pi <A ⊥j+1, then bv(pi)c = bj and v(pi) − bv(pi)c = xi. For
definiteness, put v(pi) = 0 for all i > n + 1. On the other hand, let v be a
valuation and let v0, . . . , vn be the restrictions of v to the subformulas of A of
complexity ≤ 0, . . . ,≤ n respectively. Also, let H = {bv(ai)c : 1 ≤ i ≤ k},
h = |H| + 1 and b1 < · · · < bj < · · · < bh−1 be the natural total order
of H. Now, extend v to ⊥1, . . . ,⊥h,> by putting v(⊥h) = v(>) = +∞
and v(⊥j) = bj for 1 ≤ j ≤ h − 1. Then, for i = 0, . . . , n the triple
(oA,i, wA,i, pA,i) corresponding to vi can be computed mimicking iterations
from 0 to i of Bottom-Up-BL main loop with h settled as above (the case
i = n gives the triple corresponding to the valuation v): oA,i is settled to
the order ≤A,i determined by valuation vi; wA,i and pA,i are settled in such
a way that clauses (¯1), (¯2), (¯3) and (→1), (→2), (→3) are satisfied,
with respect to the order oA,i. Such a correspondence owns the following
key property.

Fact 2. If a valuation v corresponds to a triple (oA, wA, pA) computed by
Bottom-Up-BL such that A <A > holds in oA and pA is feasible, then
v(A) < v(>). Conversely, if a triple (oA, wA, pA) computed by Bottom-
Up-BL corresponds to a valuation v such that v(A) < v(>), then A <A >
holds in oA and pA is feasible.

3 Conclusion

In this paper, we refined the decision algorithm for t-tautologies of Baaz,
Hájek, Montagna, and Veith [BHMV02]. Specifically, we exploited an induc-
tive construction to avoid the brute force computation of all the orders of the
subformulas of the input formula. We mention two natural developments of
the present work.

From the complexity point of view, it would be interesting to investigate
the existence of a class F of formulas such that the set of locally incon-
sistent orders of any A ∈ F is provably large. Indeed, any A ∈ F would
be easy for Bottom-Up-BL, but still hard for BHMV-BL. From the al-
gorithmic point of view, it would be interesting to formalize a top-down
refinement of BHMV-BL, patterned after the logical calculus presented in
[BM07], and to compare its performances against those of the bottom-up
refinement presented in this paper. In particular, [BM07] implies that the
bound exp(nO(1)) can be improved to exp(3n/2), where O(n) bounds above
the size of the input.
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[Háj98] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publish-
ers, Dordrecht, 1998.

11


