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Abstract

We investigate the combinatorics of interpolation in Gödel logic, the
propositional logic whose algebraic semantics is the variety of Heyting
algebras generated by chains.

1 Motivation

In recent work, Busaniche and Mundici prove that  Lukasiewicz logic has the
Robinson property RP [4], exploiting the geometry of prime filters in the free
finitely generated MV-algebra. In this note we recast their techniques in the
combinatorial setting of Gödel logic, proving the RP for that logic (Theorem 1).
As the algebraic semantics of  Lukasiewicz logic and Gödel logic, respectively
MV-algebras and Gödel algebras, are varieties of commutative residuated lat-
tices, the RP is equivalent to the deductive interpolation property DIP [8].

The results presented can be obtained by the literature. Indeed, the RP
of Gödel logic follows from the stronger, classical result, that Gödel logic has
the Craig interpolation property CIP; this has been proved nonconstructively
by Maksimova in 1977 [9], and constructively by Baaz and Veith in 1999 [2].
In the commutative case, the CIP is equivalent to a very strong version of the
RP, the superRP; in general, the superRP implies a strong version of the RP,
the strongRP, and the strongRP implies the RP; the latter is equivalent, in the
commutative case, to the DIP [8]. Therefore, a constructive proof of the RP
(equivalently, of the DIP) for Gödel logic is implicit in the aforementioned work
of Baaz and Veith.

Nevertheless the methods we adopt, based on the finite structure of the
free finitely generated Gödel algebra, are naturally related to the dual space of
Gödel algebras [5], and are suitable for investigating consequence relations and
interpolation properties of other substructural and many-valued logics [1]. In
fact, an important motivation for us to investigate the combinatorics of the DIP
in Gödel logic is related to Hájek’s Basic logic BL, as we now explain. 1

BL fails the CIP but, as Montagna proved nonconstructively in recent work,
enjoys the DIP [10]. A natural development of the latter result, in fact asked for

1Hájek’s Basic logic, BL, can be equivalently introduced as the logic of all continuous trian-
gular norms and their residua (emphasizing its foundational rôle with respect to many-valued
logics), or the logic of commutative bounded integral divisible prelinear residuated lattices,
namely BL-algebras (emphasizing its pretty high positioning in the lattice of substructural
logics). For background, we refer the reader to [7, 6].
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by Montagna, is to provide an explicit construction of deductive interpolants in
BL, together with an analysis of the computational complexity of the construc-
tion. Now, exploiting a nontrivial combination of geometrical techniques from
 Lukasiewicz logic and combinatorial techniques from Gödel logic, we recently
obtained a concrete representation of the free finitely generated BL-algebra in
terms of suitable real functions [3]. In our opinion, this semantics setting is
a natural framework for the investigation of the consequence relation in BL,
and in particular for attaining a constructive, direct proof of the DIP (together
with a complexity bound). Since, in this perspective, the constructive DIP is
obtained from the fusion of the geometry of  Lukasiewicz logic and the combi-
natorics of Gödel logic, the present work complements the aforementioned work
of Busaniche and Mundici, and prepares future work on BL.

2 Contribution

Gödel algebras are Heyting algebras satisfying the prelinearity equation (x →
y) ∨ (y → x) = >; they form the algebraic semantics of Gödel logic (a.k.a.
Dummet logic). Gödel logic can be regarded from an intuitionistic perspective,
as the intermediate logic complete with respect to linear Kripke frames, or
from a many-valued perspective, as the fuzzy logic complete with respect to the
algebra ([0, 1],∧,→,⊥) of type (2, 2, 0), where x ∧ y = min(x, y), x → y equals
1 if x ≤ y and y otherwise, and ⊥ = 0.

By universal algebraic facts, for every finite set X of variables, the free
X-generated Gödel algebra GX is isomorphic to the clone of term operations
from [0, 1]X to [0, 1] in the algebra ([0, 1],∧,→,⊥) above, equipped with the
basic operations defined pointwise. The algebra GX has the following, nice
combinatorial description [1].

First, build the labelled forest S, as follows. 2 Step 0: For each possible
ordered partition (B1, B2) of the set X ∪ {0, 1} into two nonempty blocks, such
that 0 ∈ B1 and 1 ∈ B2, create a node r with label (B1, B2). Step 1 ≤ i ≤ n+1:
Let v be a leaf of S at step i − 1, labelled by (B1, . . . , Bm). For each possible
ordered partition (B′

m, B′′
m) of the block Bm into two nonempty blocks, such

that 1 ∈ B′′
m, create a node v′ with label (B1, . . . , Bm−1, B

′
m, B′′

m), and add
an edge (v, v′). 3 Second, given S, build the forest SX , whose domain is a
multiset of subsets of X ∪{0, 1}, as follows: Iterate over the leaves of S in some
arbitrary but fixed order; let (B1, . . . , Bj−1, Bj , Bj+1, . . . , Bm) be the leaf of S
addressed by the ith iteration; if 0 ≤ j ≤ m is the greatest index such that edges
(B1, B2), . . . , (Bj−1, Bj) are in SX after the (i−1)th iteration, take new copies
of Bj+1, . . . , Bm−1, Bm and put edges (Bj , Bj+1), . . . , (Bm−1, Bm) in SX . See
Figure 1 in Appendix A.

Let AX denote the maximal antichains in SX , and let CX denote the maxi-
mal chains in SX . The natural (chainwise) order over AX yields a bounded lat-
tice, with bottom ⊥X = {min(CX)}CX∈CX

and top >X = {max(CX)}CX∈CX
.

Fact 1. The free X-generated Gödel algebra GX is isomorphic to the algebra
over AX where ⊥ = ⊥X and, for every AX , A′

X ∈ AX and every CX ∈ CX :
2For background on posets, we refer the reader to any standard reference.
3The poset structure of S, far from being artificial, is extremely natural. It is related to

the category that is dual to finite Gödel algebras and their homomorphisms, namely, forests
and open order preserving maps [5].
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(AX ∧A′
X)∩CX = min(AX ∩CX , A′∩CX); (AX → A′

X)∩CX equals max(CX)
if AX ∩ CX ≤ A′

X ∩ CX and A′
X ∩ CX otherwise.

In particular, the variety of Gödel algebras is locally finite. The above com-
binatorial representation of free finitely generated Gödel algebras allows for a
constructive proof of the CIP of Gödel logic.

We prepare the notation. Let X ⊆ Y ⊆ Z be finite sets of variables. Given
a maximal chain CY ∈ CY , or a maximal antichain AY ∈ AY , we want to
identify the projection of CY , or AY , with respect to the variables in Y \X, and
the cylindrification of CY , or AY , with respect to the variables in Z \ Y . The
formalism follows.

Notation 1. Fix CY ∈ CY . We write CX for the maximal chain in CX such
that, P < P ′ is in CX iff there exist Q < Q′ in CY such that P = Q ∩X and
P ′ = Q′ ∩X. We write CZ for any maximal chain in CZ such that, if P < P ′

is in CZ , P ∩ Y 6= ∅, and P ′ ∩ Y 6= ∅, then P ∩ Y < P ′ ∩ Y is in CY .
Fix AY ∈ AY . We write AX for the maximal antichain in AX such

that, for every maximal chain CX ∈ CX and every cylindrification CY of CX

over Y \ X, it holds that AX ∩ CX = (AY ∩ CY ) ∩ X. We stipulate that
AX exists iff, for every fixed CX ∈ CX , it holds that |{(AY ∩ CY ) ∩ X :
CY cylindrification of CX over Y \X}| = 1. We write AZ for the maximal
antichain in AZ such that, for every maximal chain CY ∈ CY , and every
maximal chain C ′

Z ∈ CZ such that C ′
Y = CY , (AZ ∩ C ′

Z) ∩ Y = AY ∩ CY .
This notation extends to subsets of AY , as follows. Let HY ⊆ AY . Then,
HX = {AX ∈ AX : AY ∈ HY }, and HZ = {AZ ∈ AZ : AY ∈ HY }.

Definition 1 (CIP). Gödel logic has the CIP iff, for every pair of finite sets
X and Y of variables, with Z = X ∩ Y and W = X ∪ Y , every A′

X ∈ AX , and
every A′′

Y ∈ AY , if A′
W → A′′

W = >W , then there exists AZ ∈ AZ such that
A′

W → AW = AW → A′′
W = >W .

In the combinatorial setting of Fact 1, we can readily construct the strongest
interpolant AZ to A′

X and A′′
Y , that is, an interpolant AZ such that, if BZ ≤

AZ ∈ AZ interpolates A′
X and A′′

Y , then BZ = AZ . For a pictorial intutition of
the construction, see Figure 2 in Appendix A.

Proposition 1. Gödel logic has the CIP.

The motivation previously discussed leads us to now consider a weaker prop-
erty than the CIP, namely, the RP. We recall some terminology first.

A (proper) filter HX in the free X-generated Gödel algebra is a (proper)
subset of AX such that >X is in HX and, if both AX and AX → A′

X are in
HX , then A′

X is in HX . A filter HX is prime if it is proper and, for every pair
AX , A′

X ∈ AX , either HX contains AX → A′
X or HX contains A′

X → AX . By
Fact 1, filters of free Gödel algebras have the following combinatorial structure.

Fact 2. Let HX ⊆ AX . (i) HX is a filter iff there is AX ∈ AX such that HX =
{A′

X | AX ≤ A′
X}. Call AX the generator of HX , and write HX = 〈AX〉. (ii)

HX = 〈AX〉 is prime iff, for a suitable choice of CX ∈ CX and B > min(CX)
in CX , AX is the lowest element in AX such that AX ∩CX = B. Call B ∈ CX

the pivot of HX . 4

4Given a prime filter generator AX , we can uniquely determine the pivot of AX by imposing
a linear order over subsets of X ∪ {0, 1}.
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Note that every filter HX is trivially generated by
∧

AX∈HX
AX . More in-

trinsically, every filter can be displayed as the intersection of finitely many prime
filters, namely,

Fact 3. For every filter HX in GX , there exist prime filters 〈A1〉, . . . , 〈Ak〉 in
GX such that HX = 〈

∨
i∈[k] Ai〉.

We follow [4] to recast in Gödel logic the classical definition of the RP [8].
Below, X and Y are finite sets of variables, with Z = X ∩ Y and W = X ∪ Y .

Definition 2 (prime RP, constructive prime RP). Gödel logic has the (con-
structive) prime RP iff, for every every pair HX and IY of prime filters in GX

and GY respectively, if HZ = IZ , there is (a construction of) a prime filter JW

in GW such that JX = HX and JY = IY .

Theorem 1. Gödel logic has the constructive prime RP.

For a pictorial intuition on the construction, see Figure 3 in Appendix A.
Now the classical RP, that is, the property that for every pair HX = 〈A′

X〉 and
IY = 〈A′′

Y 〉 of filters in GX and GY respectively, if HZ = IZ , then the filter
〈A′

W ∧ A′′
W 〉 in GW is such that 〈A′

W ∧ A′′
W 〉X = HX and 〈A′

W ∧ A′′
W 〉Y = IY ,

follows as a corollary, exploiting Fact 3.
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A Figures

Figure 1: The labelled forests SZ , SX , SY , where X = {x, z}, Y = {y, z},
Z = X ∩ Y , W = X ∪ Y . Compare page 2.
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(d) SW .

Figure 2: Sampling the CIP (Definition 1 and Proposition 1) with X = {x, z}
and Y = {y, z}. The labels of SX , SY , SZ , and SW , here omitted, are as in
Figure 1.

(a) A′
X ∈ AX . (b) A′

W ∈ AW .

(c) A′′
Y ∈ AY . (d) A′′

W ∈ AW .

(e) AZ ∈ AZ . (f) AW ∈ AW .

(g) A′
W → A′′

W = >W . AZ interpolates A′
X and A′′

Y .



Figure 3: Sampling the constructive prime RP (Definition 2 and Theorem 1).
The labels of SX , SY , SZ , and SW are as in Figure 1. HX and IY are the prime
filters in GX and GY respectively, generated by A′

X and A′′
Y in (c) and (e). Note

that HZ = IZ = 〈AZ〉 for the AZ in (a). The generator BW of prime filter JW

in GW such that JX = HX and JY = IY is the red antichain depicted in (g).

(a) AZ ∈ AZ . (b) AW ∈ AW .

(c) A′
X ∈ AX . (d) A′

W ∈ AW .

(e) A′′
Y ∈ AY . (f) A′′

W ∈ AW .

(g) BW ∈ AW , the red antichain, generates the desired JW in GW .


