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Abstract. We are concerned with the subvariety of commutative, boun-
ded, and integral residuated lattices, satisfying divisibility and prelinear-
ity, namely, BL-algebras. We give an explicit combinatorial description
of the category that is dual to finite BL-algebras. Building on this, we
obtain detailed structural information on the locally finite subvarieties of
BL-algebras that are analogous to Grigolia’s subvarieties of finite-valued
MV-algebras. As an illustration of the power of the finite duality pre-
sented here, we give an exact recursive formula for the cardinality of free
finitely generated algebras in such varieties.
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1 Introduction

Hájek’s Basic Logic BL [8] is the logic of all continuous triangular norms and their
residua [4]. It is a fundamental object of study in the area of mathematical fuzzy
logic, whose aim is to develop formal systems to make inferences in the presence
of vagueness or uncertainty. The Lindenbaum-Tarski algebraic semantics of BL
is given by the variety of BL-algebras, that is, commutative, bounded, integral
residuated lattices satisfying divisibility and prelinearity.

To use such a tool as BL in practice, one needs to be able to manipulate
BL-algebras effectively. In this direction, combinatorial representations of BL-
algebras are of the foremost importance. In this paper we show that combi-
natorial representations are available for finite BL-algebras and locally finite4

subvarieties of BL-algebras. Towards this aim, we shall introduce a full-fledged
spectral duality for finite BL-algebras.
4 A variety of algebras is locally finite if each finitely generated member of the variety

is finite; equivalently, if finitely generated free algebras are finite.



It turns out that dual objects are finite weighted forests, that is, forests labeled
with natural numbers. We define morphisms of weighted forests so as to provide
a natural categorical equivalence with the opposite of the category of finite BL-
algebras and their homomorphisms. Thus, any finite BL-algebra arises as the
algebra of parts of a weighted forest, in an appropriate sense.

The combinatorial structure of forests allows us to effectively compute prod-
ucts and coproducts in the dual category, and then the duality affords a transla-
tion back to finite BL-algebras. This provides us with a powerful tool to extract
structural information from finite BL-algebras. As an example of this machinery,
we study the BL-algebraic analogous of Grigolia’s subvarieties of finite-valued
MV-algebras, obtaining the exact structure of their dual weighted forests, to-
gether with an exact recursive formula for the cardinality of free finitely gener-
ated algebras in such varieties.

2 Preliminaries

We write N = {1, 2, . . .}, \ for set-theoretic difference, a|b if a, b ∈ N and a
divides b, and |A| for the cardinality of the set A.

A basic hoop is an algebra (A,¯,→,∧,∨,>) of type (2, 2, 2, 2, 0) such that
(A,¯,>) is a commutative monoid, (A,∧,∨) is a lattice, and the following prop-
erties hold:

(residuation) x¯ y ≤ z if and only if x ≤ y → z,
(integrality) x ∧ > = x,
(divisibility) x ∧ y = y ¯ (y → x),
(prelinearity) (x → y) ∨ (y → x) = >;

equivalently, a basic hoop is a commutative, integral, divisible residuated lattice
satisfying prelinearity. Note that basic hoops form a variety since residuation
can be formulated by identities; see [8, 2.3.10]. A Wajsberg hoop is a basic hoop
satisfying ¬¬x = x. (Throughout, we use ¬x as an abbreviation for x → ⊥.)

A BL-algebra is an algebra (A,¯,→,∧,∨,⊥,>) of type (2, 2, 2, 2, 0, 0) such
that (A,¯,→,∧,∨,>) is a bounded basic hoop, that is,

x ∧ ⊥ = ⊥
holds. In each BL-algebra, the operations ∧, ∨, and > are definable from the
other operations, as follows: x∧ y = x¯ (x → y), x∨ y = ((x → y) → y)∧ ((y →
x) → x), and > = ⊥ → ⊥; see [8, 2.1.10]. In the sequel, we shall therefore
feel free to use the shorter signature (A,¯,→,⊥) instead of the complete one,
whenever convenient.

A BL-algebra is called: a BL-chain, if the reduct (A,∧,∨,⊥,>) is totally
ordered; a Gödel algebra, if it satisfies x ¯ x = x (elements of a BL-algebra
satisfying x ¯ x = x are said to be idempotent); and an MV-algebra [3] if it
satisfies ¬¬x = x.

We shall make use of the ordinal sum construction. Let {(Ai,¯i,→i,>i)}i∈I ,
for I a linearly ordered set with minimum 0, be a family of totally ordered



Wajsberg hoops such that Ai ∩ Aj = {>i} = {>j} for all i, j ∈ I, with
A0 bounded. Then the ordinal sum of the family {Ai}i∈I is the BL-algebra
(
⋃

i∈I Ai,¯,→,⊥0), where:

x¯ y =





x if x ∈ Ai, y ∈ Aj , i < j

x¯i y if x, y ∈ Ai

y if x ∈ Ai, y ∈ Aj , j < i

x → y =





>0 if x ∈ Ai, y ∈ Aj , i < j

x →i y if x, y ∈ Ai

y if x ∈ Ai, y ∈ Aj , j < i

3 Spectral Duality for Finite BL-algebras

Fix a finite BL-algebra A. Recall that a filter of A is a nonempty upper set5

F ⊆ A that is closed under ¯. Further, a filter F of A is prime if x → y ∈ F or
y → x ∈ F for each x, y ∈ F . We write Spec A for the (prime) spectrum of A, the
set of prime filters of A partially ordered by reverse inclusion. Congruences θ of
A are in bijection with filters F of A via F = {x ∈ A | (x,>) ∈ θ}. Prime filters
precisely correspond to those congruences θ on A such that A/θ is a BL-chain.
See [8, 2.3.14] for details.

For any finite BL-chain C we define the top part of C to be

T (C) = {x ∈ C | x > c, c the largest idempotent below >} .

The weighted spectrum of A is the function wSpec A : Spec A → N such that

p 7→ |T (A/p)| ,

for every prime filter p ∈ Spec A.

Throughout, poset means finite partially ordered set (with the partial order
relation usually denoted by ≤). A forest is a poset such that the collection of
lower bounds of any given element is totally ordered. A weighted forest is a
function w : F → N, where F is a forest. Consider two weighted forests w : F →
N, w′ : F ′ → N. By a morphism g : w → w′ we mean an order-preserving map
g : F → F ′ that is

(M1) open (or is a p-morphism), i.e. whenever x′ ≤ g(x) for x′ ∈ F ′ and
x ∈ F , then there is y ≤ x in F such that g(y) = x′, and

(M2) respects weights, meaning that for each x ∈ F , there exists y ≤ x in
F such that g(y) = g(x) and w′(g(y)) divides w(y).

5 A lower set of a poset P is a subset D such that x ∈ D and y ≤ x ∈ P imply y ∈ D.
The smallest lower set containing a subset S ⊆ P is denoted ↓ S. Upper sets and
the notation ↑ S are defined analogously.



Contemplation of these definitions shows that weighted forests and their mor-
phisms form a category. Let us write WF for the latter category, and FBL for the
category of finite BL-algebras and their homomorphisms.

It is possible to prove that wSpec A is a weighted forest for any finite BL-
algebra A. In fact, wSpec can be turned into a contravariant functor from FBL
to WF, as follows. Given a homomorphism h : A → B of finite BL-algebras, one
proves that there is a function

Spec h : Spec B → Spec A (1)

defined by
p ∈ Spec B 7→ h−1(p) ∈ Spec A . (2)

Moreover, one checks that Spec h is an open order-preserving map from the
forest Spec B to the forest Spec A, and that it respects the weights of wSpec B
and wSpec A. Hence, Spec h defines a morphism

wSpec h : wSpec B → wSpec A

of weighted forests. Direct inspection now shows that wSpec sends identity maps
to identity maps, and preserves composition. To sum up, wSpec is a contravari-
ant functor from FBL to WF.

Conversely, we next construct a contravariant functor from weighted forests
to finite BL-algebras. If F is a forest, a subforest of F is any lower set of F .
If w : F → N is a weighted forest, a weighted subforest of w is defined as any
w′ : F ′ → N with F ′ a subforest of F such that w′(x) ≤ w(x) for all x ∈ max F ′,
and w′(x) = w(x) otherwise. We write Sub w for the set of all weighted subforests
of w.

It turns out that Sub w carries a natural structure of BL-algebra, as follows.
To begin with, writing ∅ : ∅ → N for the unique empty weighted forest, we set
⊥ = ∅, and > = w. To define ¯, consider subforests u : U → N and v : V → N
of w. Define a function a : U ∩ V → N ∪ {0} by

a(x) =





max(0, u(x) + v(x)− w(x)) if x ∈ max U ∩max V

u(x) if x ∈ max U and x /∈ max V

v(x) if x /∈ max U and x ∈ max V

w(x) otherwise,

for each x ∈ U ∩ V . Let E = {x ∈ U ∩ V | a(x) > 0}, and define u¯ v : E → N
by the restriction u¯ v = a ¹ E.

Turning to implication, we define u → v. First, we set

A = F \ ↑ (U \ V ) ,

B = {x | x ∈ max U ∩max V and u(x) > v(x)} .



Then we set E = (A \ ↑ B) ∪B. We define (u → v) : E → N by

(u → v)(x) =





v(x) + w(x)− u(x) if x ∈ B

v(x) if x ∈ (U ∩ V ) \ (max U ∩max V )
w(x)− u(x) if x ∈ min U \ V

w(x) otherwise,

for each x ∈ E.
Lattice operations u ∨ v : U ∪ V → N and u ∧ v : U ∩ V → N turn out to be

as follows:

(u ∨ v)(x) =





max(u(x), v(x)) if x ∈ U and x ∈ V

u(x) if x ∈ U and x /∈ V

v(x) if x /∈ U and x ∈ V

for each x ∈ U ∪ V , and

(u ∧ v)(x) =





min(u(x), v(x)) if x ∈ max U ∩max V

u(x) if x ∈ max U and x /∈ max V

v(x) if x /∈ max U and x ∈ max V

w(x) otherwise,

for each x ∈ U ∩ V , respectively.

It can now be proved that for any weighted forest w : F → N, the algebraic
structure

( Sub w,¯,→,∧,∨,⊥,>)

is a (finite) BL-algebra. To turn Sub into a contravariant functor from WF to
FBL, we take inverse images again. Namely, if g : w → w′ is a morphism between
the weighted forests w : F → N and w′ : F ′ → N, we define Sub g : Sub F ′ →
Sub F by

U ∈ Sub F ′ 7→ g−1(U) ∈ Sub F .

One can prove that Sub g so defined is a homomorphism of BL-algebras. To sum
up, Sub is a contravariant functor from WF to FBL.

Finally, one can prove that wSpec and Sub yield a duality. Here we omit the
proof for space constraints.

Theorem 1 (Finite Duality). The category of finite BL-algebras and their
homomorphisms is dually equivalent to the category of weighted forests and their
morphisms. That is, the composite functors wSpec ◦ Sub and Sub ◦ wSpec are
naturally isomorphic to the identity functors on WF and FBL, respectively.

In particular, by [10, Thm. IV.4.1] the functor wSpec is essentially surjective,
and this yields the following representation theorem for finite BL-algebras.



Corollary 1. Any finite BL-algebra is isomorphic to (Sub w,¯,→,∧,∨,⊥,>),
for a weighted forest w : F → N that is unique to within an isomorphism of
weighted forests.

While the previous corollary has already been proved in [6, §5] and, as a special
case of a more general construction, in [9, §6], the finite duality theorem is a
novelty. In the rest of the paper, we illustrate the potential of this duality for
the investigation, and possibly the classification, of locally finite subvarieties of
BL-algebras.

4 Grigolia’s Subvarieties of BL-algebras

In the variety of BL-algebras, we adopt the abbreviation x ⊕ y for the binary
term operation

((x → (x¯ y)) → y) ∨ ((y → (y ¯ x)) → x) .

In each MV-algebra, one has ((x → (x ¯ y)) → y) ∨ ((y → (y ¯ x)) → x) =
¬(¬x¯ ¬y), that is, ⊕ coincides with the ÃLukasiewicz sum. Thus, our usage of
⊕ is consistent with standard MV-algebraic notation. Further, it is an exercise
to check that, in every BL-algebra, the operation ⊕ is commutative, associative,
and satisfies x⊕> = >; cf. [2, Definition 2.2]. Thus, we can consistently shorten
x⊕ x⊕ · · · ⊕ x to hx, and similarly x¯ x¯ · · · ¯ x to xh, where in both cases x
occurs h many times, for h > 0 an integer. Finally, we set x0 = > and 0x = ⊥.

In [7, pag. 81–82], Grigolia axiomatized the variety MVk generated by the
k-element MV-chain ÃLk, for each integer k ≥ 2, extending the axioms for MV-
algebras by the following axiom schemata.6

(G1) xk = xk−1,
(Gh) k(xh) = (h(xh−1))k, for every integer 2 ≤ h ≤ k − 2 that does not

divide k − 1.

For a given k ≥ 2, we define BLk to be the variety of BL-algebras satisfying
(G1–Gh), for all integers h such that 2 ≤ h ≤ k − 2, and such that h is not a
divisor of k − 1.

Note that BLk contains the variety of Gödel algebras. Indeed, one checks
that each Gödel algebra satisfies xh = xk and hx = kx for every h, k > 0, so
that axioms (G1) and (Gh) boil down to x = x.

For k, l ∈ N, we write Bl
k to denote the ordinal sum of l copies of ÃLk.

Lemma 1. Fix k ≥ 2.

(1) The variety BLk is generated by {Bl
k | l ∈ N}.

(2) The variety BLk is locally finite.
(3) For a finite BL-algebra A, the following are equivalent.

(i) A ∈ BLk.
6 Here, Grigolia’s axioms are presented in the version adopted in [3, 8.5.1].



(ii) wSpec A has range included in the set of divisors of k − 1.

Proof. (1) Suppose a term τ(X1, . . . , Xn) in the language of BL-algebras fails
— i.e., evaluates to an element 6= > — in a BL-algebra B lying in BLk. Since
each BL-algebra is a subdirect product of BL-chains ([8, 2.3.16]), it is safe to
assume that B is a chain. By [1, Theorem 3.7], B is an ordinal sum of totally
ordered Wajsberg hoops, the first of which is bounded (equivalently, is an MV-
chain). Moreover, τ fails in a finitely generated subalgebra of B. Since a finitely
generated subalgebra of an ordinal sum of Wajsberg hoops is an ordinal sum
of finitely many components, we may assume that B is a finite ordinal sum
of Wajsberg hoops Wi, i = 1, . . . , l, with W1 an MV-chain. Either by direct
inspection, or by the argument in [11, Theorem 1], one sees it is safe to assume
l = n + 1. Since B satisfies (G1), if x ∈ Wi \ {>} then xk−1 is idempotent. But
then xk−1 must be the bottom of Wi. Indeed, it is well-known that the only
idempotents of linearly ordered Wajsberg hoops are the top and (when it exists)
the bottom element. Therefore, each Wi is an MV-chain. Since by hypothesis
this MV-chain satisfies (Gh) and (Gh) is ⊥-free, h ≥ 1, it follows that each Wi

lies in MVk. In conclusion, since MVk is generated by ÃLk, τ fails in the ordinal
sum of n + 1 copies of ÃLk, as was to be shown.
(2) This is an immediate consequence of the fact that MVk is locally finite by [3,
8.6.1], along with the observation that an n-generated BL-chain is the ordinal
sum of at most n + 1 summands.
(3) (i) ⇒ (ii). If p is a prime filter of A, the top part T (A/p) of the BL-chain A/p
can be made into an MV-chain lying in MVk by adding a bottom element to it,
and extending the operations in the only possible way. If such an MV-chain has
cardinality c, then c− 1 divides k − 1, hence (ii) follows.
(ii) ⇒ (i). Suppose A 6∈ BLk. Then there is a prime filter p of A such that the
BL-chain A/p does not lie in BLk. Equivalently, A/p is an ordinal sum of finitely
many finite MV-chains ÃLci , i = 1, . . . , u, and there exists j ∈ {1, . . . , u} such that
ÃLcj does not lie in MVk. The latter condition means that cj − 1 does not divide
k − 1. Let q be the prime filter of A/p generated by the bottom of ÃLcj+1 , if
j < u; otherwise, let q be the trivial filter {>} of A/p. Now |T ((A/p)/q)| does
not divide k − 1 by construction, and |T ((A/p)/q)| is in the range of wSpec A
by the isomorphism theorems.

5 The Weighted Spectrum of Free Algebras in BLk

We write Freen,k for the free n-generated algebra in BLk, for k ≥ 2 and n ≥ 0
an integer. By [3, 8.6.1], the free n-generated MV-algebra in MVk is given by
the direct product

FreeMVn,k =
∏

d | (k−1)

ÃLα(n,d)
d+1 , (3)

where d ∈ N, α(0, d) is 0 if d > 1 and 1 if d = 1, and, for n ≥ 1,

α(n, d) = (d + 1)n +
∑

∅6=X⊆PrDiv (d)

(−1)|X|(gcd X + 1)n , (4)



where PrDiv (d) is the set of coatoms in the lattice of divisors of d. Geometrically,
α(n, d) counts the number of points in [0, 1]n whose denominator is d.7 We now
define a variant of α. We let β(0, d) = 0 if d > 1 and 1 if d = 1, and, for n ≥ 1,

β(n, d) = dn +
∑

∅6=X⊆PrDiv (d)

(−1)|X|(gcd X)n . (5)

Geometrically, β(n, d) counts the number of points in [0, 1)n whose denomi-
nator is d — in other words, β does not take into account those points of [0, 1]n

having at least one coordinate set to 1. Compare Figure 1 for an example. No-
tice that letting L(d) = { (e1, e2) | lcm (e1, e2) = d }, where lcm (a, b) denotes
the least common multiple of integers a and b, we have

∑

(e1,e2)∈L(d)

β(h, e1)β(k, e2) = β(h + k, d) . (6)
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Fig. 1. α(1, 4) = 4, α(2, 4) = 5, α(4, 4) = 16 (left), and β(1, 4) = 1, β(2, 4) = 3,
β(4, 4) = 12 (right).

We next use (5) to define a family of weighted forests that shall be proved
dual to free algebras in BLk. To this purpose, we introduce some additional
notation. If U is a forest we write U⊥ for the forest obtained from U by adding a
new bottom element ⊥. Further, if u : U → N is a weighted forest, we write u⊥ for
the weighted forest having U⊥ as domain, and such that u⊥ agrees with u over U ,
and u⊥(⊥) = 1. It is a standard fact that varieties of algebras are both complete
and cocomplete. If, moreover, V is a subvariety of the variety W, then a product
of V-algebras computed in V coincides with the same product computed in W.
Then Theorem 1 implies at once that WF has all finite coproducts. We write u+v
for the coproduct of the weighted forests u : U → N and v : V → N. Clearly, since
products in varieties of algebras are Cartesian, we have u+v : U +V → N, where
7 The denominator of a rational point (r1/s1, . . . , rn/sn), where ri, si ≥ 0 are integers

such that si 6= 0 and ri and si are relatively prime, is the least common multiple of
the set si’s.



U + V is the disjoint union of U and V , and u + v agrees with u on U , and with
v on V . Thus, up to an isomorphism, any weighted forest can be written as a
coproduct

∑u
i=1 Ti of weighted trees in essentially just one way. Here, as usual,

a tree is a forest with a minimum element.
For coproducts in varieties and subvarieties the situation is generally not as

simple. In our case, however, we have the following properties (proofs of the
following two lemmas are omitted for space constraints).

Lemma 2. (i) The category WF has all finite products. (ii) If u, v are weighted
forests, and u×v is their product with projections πu : u×v → u and πv : u×v →
v, then Sub u× v, along with the injections Sub πu, Sub πv, is the coproduct
of Sub u and Sub v in the category of all BL-algebras. (iii) For each integer
k ≥ 2, coproducts computed in BLk coincide with coproducts computed in the
category of all BL-algebras. (iv) For any three weighted forests u, v, w, we have
u× (v + w) ∼= (u× v) + (u× w).

Note that, using (iv) in Lemma 2, we obtain the binomial expansion

(u + v)m ∼=
m∑

i=0

(
m

i

)
uivm−i ,

for any two weighted forests u, v. Here and in the sequel, in the expressions
involving products and coproducts we adopt the standard notation of elementary
arithmetic.

We now describe the finite products in the category WF. Let v : Fv → N and
w : Fw → N be two weighted forests. By Fv × Fw we mean the product of the
underlying forests as described in [5]. We further denote by πv : (Fv ×Fw) → Fv

and πw : (Fv × Fw) → Fw the associated projections. The product of v and w
in WF is the function (v ×w) : (Fv × Fw) → N together with the projections πv

and πw, defined as follows.
Pick p ∈ Fv and q ∈ Fw. In case p 6∈ min Fv and q 6∈ min Fw there are exactly

three disjoint classes of points in Fv × Fw, denoted by (p|q), (p, q), (q|p), such
that all points in them project through πv to p and through πw to q. Further,
any point in Fv×Fw that projects to p and q, respectively, falls into one of these
classes. In particular, by [5], each point in (p|q) is such that its predecessor in
Fv ×Fw projects to p through πv and to the predecessor of q in Fw through πw.
The case of the class of points (q|p) is symmetric. Each point in (p, q) is such
that its predecessor in Fv × Fw projects to the respective predecessors through
both projections.

If exactly one point in {p, q} is minimal in the forest it belongs, say p ∈
min Fv, then there is exactly one point in Fv × Fw, precisely in (p|q), such
that its predecessor projects to p through πv and to the predecessor of q in Fw

through πw. If p ∈ min Fv and q ∈ min Fw then there is exactly one point in
Fv × Fw, classed in (p, q), such that πv(p, q) = p and πw(p, q) = q. Moreover,
(p, q) ∈ min(Fv × Fw).



Let r ∈ Fv × Fw be such that πv(r) = p and πw(r) = q. Then

(v × w)(r) =





w(q) if r ∈ (p|q)
v(p) if r ∈ (q|p)
lcm (v(p), w(q))) if r ∈ (p, q)

where lcm (a, b) denotes the least common multiple of a, b ∈ N.
Throughout, let Pd denote the weighted tree consisting of just one point

having weight d, for d ∈ N. The description of finite products in WF given above
allows to prove the following properties.

Lemma 3. Let u⊥ and v⊥ be two trees in WF. If u 6= ∅ 6= v then

u⊥ × v⊥ ∼= (u× v⊥ + u× v + u⊥ × v)⊥ .

Further, PdPe
∼= Plcm (d,e), Pdu⊥ × Pev⊥ ∼= Plcm (d,e)(u⊥ × v⊥), P1u⊥ ∼= u⊥.

For k ≥ 2, we introduce the following definitions:

– M0
k = P1.

– For each integer n ≥ 1,

Mn
k =

∑

d|(k−1)

β(n, d)Pd .

Note in particular that if k−1 is prime, or equal to 1, then M1
k = P1+(k−2)Pk−1.

Lemma 4. Fix k ≥ 2. Set F 1
k = M1

k + (M1
k )⊥. Then

wSpec Free1,k
∼= F 1

k .

Proof. If S is any set and B is a BL-algebra, let us write BS for the BL-algebra
of all functions S → B endowed with the operations inherited pointwise from
B. By the argument proving (1) in Lemma 1, we know that if a term τ(X1)
in the language of BL-algebras fails in some BL-algebra lying in BLk, then it
must fail in B2

k. Hence, by standard universal-algebraic considerations, Free1,k

is (isomorphic to) the subalgebra of (B2
k)B2

k that is generated by the identity
function, the latter being a free generator. Let us write C ∼= ÃLk and D ∼= ÃLk

for the first and second summand of B2
k, respectively, and b for the bottom

element of D (i.e., the unique idempotent of B2
k besides top and bottom). A

trivial structural induction shows that any element f ∈ Free1,k is such that (i)
f(p/q) = r/q for p/q an irreducible fraction in [0, 2] such that q divides k − 1;
(ii) f(c) ∈ C for any c ∈ C; (iii) f(>) = ⊥ implies f(d) = ⊥, while f(>) = >
implies f(d) ≥ b, for any d ∈ D. Conversely, let f ∈ (B2

k)B2
k satisfy (i–iii)

above. A straightforward adaptation of [11, Thm. 2] shows that f ∈ Free1,k.
As an immediate consequence of this representation of Free1,k it follows that
Spec Free1,k is isomorphic to the underlying forest of F 1

k . A further computation
confirms that wSpec Free1,k is isomorphic to F 1

k . As a matter of fact, each prime



filter of Free1,k is singly generated by a function f ∈ Free1,k of one of the following
three types: (1) there exists c ∈ C \ {>} such that f(c) = > and f(a) = 0 for
all c 6= a ∈ B2

k; (2) there exists d ∈ D \ {>} such that f(d) = f(>) = >, while
f(e) = b for all e ∈ D \ {d,>}, and f(c) = 0 for all c ∈ C \ {>}; (3) f(>) = >,
f(d) = b for all d ∈ D \ {>}, and f(c) = 0 for all c ∈ C \ {>}. Notice that the
only filter of type (3) includes all filters of type (2) and no other inclusions hold
in wSpec Free1,k.

Example 1. Figure 2 displays the weighted forest F 1
3 (to the left), and the

weighted forest F 1
7 (to the right).

1 2 1

1 2

1 2 3 3 6 6 1

1 2 3 3 6 6

Fig. 2. F 1
3 (left) and F 1

7 (right).

For each k ≥ 2 and each integer n ≥ 1, let us define

Fn
k = F 1

k × · · · × F 1
k︸ ︷︷ ︸

n times

= (F 1
k )n .

Lemma 5. Fix k ≥ 2, and for each integer n ≥ 0,

Fn
k
∼= wSpec Freen,k .

Proof. By standard universal algebra, in any variety the free algebra on κ free
generators, for κ a cardinal, is isomorphic to the copower of κ-many copies
of the free algebra on one generator. Thus, Freen,k

∼= ∑n
i=1 Free1,k, where

the right-hand side coproduct is computed in BLk. Using Lemma 2 we have
wSpec Freen,k

∼= wSpec (
∑n

i=1 Free1,k) ∼= ∏k
i=1 wSpec Free1,k. By Lemma 4,∏k

i=1 wSpec Free1,k
∼= ∏k

i=1 F 1
k = Fn

k , and the lemma is proved.

Our next objective is to obtain an explicit description of Fn
k for any n and

k. To this aim, we define the following weighted trees. Fix k ≥ 2, and an integer
d ≥ 1:

– T 0
k,d = Pd.

– For each integer n ≥ 1,

Tn
k,d = Pd




n∑

i=1

∑

e|k−1

(
n

i

)
β(i, e)Tn−i

k,e



⊥

.



Lemma 6. Fix integers k ≥ 2, d ≥ 1, and m ≥ 1.

(1) T 1
k,1

∼= (M1
k )⊥.

(2) Tm
k,d

∼= PdT
m
k,1.

(3) Mm
k
∼= (M1

k )m.
(4) Tm

k,d
∼= (T 1

k,d)m.

Proof. (1) follows immediately from the definition of T 1
k,1, T 0

k,1 and M1
k . (2)

follows from Lemma 3 and the definition of T 1
k,1 and Tm

k,1.
(3) By induction on m. The base case is trivial. Write (M1

k )m as M1
k ×

(M1
k )m−1. By induction, Mm−1

k
∼= (M1

k )m−1. By Lemma 3, since products dis-
tribute over coproducts,

M1
k ×Mm−1

k
∼=

∑

d|k−1

β(1, d)Pd ×
∑

e|k−1

β(m− 1, e)Pe

∼=
∑

d|k−1

∑

e|k−1

β(1, d)β(m− 1, e)Plcm (d,e)

∼=
∑

d|k−1

β(m, d)Pd
∼= Mm

k (by (6)).

(4) By induction on m. The base case is trivial. Write (T 1
k,d)m as T 1

k,d ×
(T 1

k,d)m−1. By induction Tm−1
k,d

∼= (T 1
k,d)m−1. Let

V =
m−1∑

i=1

∑

e|k−1

(
m− 1

i

)
β(i, e)Tm−1−i

k,e ,

so PdV⊥ ∼= Tm−1
k,d . By Lemma 3,

T 1
k,d×Tm−1

k,d
∼= Pd

(
(M1

k )⊥ × V⊥
) ∼= Pd

(
(M1

k × V⊥) + (M1
k × V ) + (T 1

k,1 × V )
)
⊥ .

By distributivity and Lemma 3, since M1
k is a forest of one-point trees:

M1
k × V⊥ ∼=

∑

e|k−1

β(1, e)PeV⊥ ∼=
∑

e|k−1

β(1, e)Tm−1
k,e ;

analogously,

M1
k × V ∼=


 ∑

e|k−1

β(1, e)Pe


×




m−1∑

i=1

∑

e|k−1

(
m− 1

i

)
β(i, e)Tm−1−i

k,e




∼=
m−1∑

i=1

∑

e1|k−1

∑

e2|k−1

(
m− 1

i

)
β(1, e1)β(i, e2)Tm−(i+1)

k,lcm (e1,e2)

∼=
m−1∑

i=2

∑

e|k−1

(
m− 1
i− 1

)
β(i, e)Tm−i

k,e (by (6)) ;



finally,

T 1
k,1 × V ∼=

m−1∑

i=1

∑

e|k−1

(
m− 1

i

)
β(i, e)(T 1

k,1 × Tm−1−i
k,e )

∼=
m−1∑

i=1

∑

e|k−1

(
m− 1

i

)
β(i, e)Tm−i

k,e (Induction Hypothesis)

∼=
m−1∑

i=2

∑

e|k−1

(
m− 1

i

)
β(i, e)Tm−i

k,e +
∑

e|k−1

(m− 1)β(1, e)Tm−1
k,e .

Summing up we have

T 1
k,d × Tm−1

k,d
∼= Pd

(
(M1

k × V⊥) + (M1
k × V ) + (T 1

k,1 × V )
)
⊥

∼= Pd




m∑

i=1

∑

e|k−1

(
m

i

)
β(i, e)Tm−i

k,e



⊥

,

as was to be proved.

Example 2. The rightmost trees in Figure 2 are T 1
3,1 (left) and T 1

7,1 (right). The
rightmost tree in Figure 3 is T 2

3,1.

We are finally in a position to exhibit the promised explicit description of
wSpec Freen,k.

Theorem 2. For each k ≥ 2 and each integer n ≥ 0,

Fn
k
∼=

n∑

i=0

∑

d|k−1

β(i, d)
(

n

i

)
Tn−i

k,d .

Proof. By definition,

Fn
k = (F 1

k )n = (M1
k + (M1

k )⊥)n ∼= (M1
k + T 1

k,1)n . (7)

Since products distribute over coproducts, (7) yields

(M1
k + T 1

k,1)n ∼=
n∑

i=0

(
n

i

)
(M1

k )i(T 1
k,1)n−i . (8)

By Lemma 6 along with the definition of M i
k, from (8) we deduce

(M1
k + T 1

k,1)n ∼=
n∑

i=0

(
n

i

) ∑

d|k−1

β(i, d)PdT
n−i
k,1 . (9)

As by Lemma 6.(2), PdT
n−i
k,1

∼= Tn−i
k,d , the lemma follows from (9) at once.

Example 3. Figure 3 displays the weighted forest F 2
3 .



1 2 2 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 2 2 1 2 1 2

1 2 1 2 1 2 1 2

Fig. 3. F 2
3 = (F 1

3 )2.

6 The Cardinality of Free Algebras in BLk

In this final section, we use Theorems 1 and 2 to obtain the cardinality of Freen,k.
We shall write t(k, n, d) for the cardinality of the BL-algebra Sub Tn

k,d, where
k ≥ 2, d ∈ N, and n ≥ 0 an integer.

Lemma 7. Fix k ≥ 2, and an integer n ≥ 0. Then t(k, 0, d) = d + 1, and

t(k, n, d) = d +
n∏

i=1

∏

e|k−1

t(k, n− i, e)(
n
i)β(i,e) .

Proof. Follows immediately from Lemma 6.(4).

Theorem 3. Fix k ≥ 2, and an integer n ≥ 0. Then:

|Freen,k| =
n∏

i=0

∏

d|k−1

t(k, n− i, d)(
n
i)β(i,d) .

Proof. Follows immediately from Theorem 2.

To conclude, in the following table we report the cardinalities of Freen,k for
some values of n and k, computed using Theorem 3. Approximations are from
below.

n = 1 n = 2 n = 3
k = 2 6 342 137186159382
k = 3 42 28677559680 ∼ 2.255534588 · 1091

k = 4 1056 ∼ 4.587963634 · 1028 ∼ 1.230577614 · 10373

k = 5 22650 ∼ 1.525862962 · 1055 ∼ 4.141165490 · 10957

k = 6 6721056 ∼ 1.738126059 · 10106 ∼ 2.246803010 · 102299
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