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Abstract—The theory of Schauder hats is a beautiful and
powerful tool for investigating, under several respects, the al-
gebraic semantics of Lukasiewicz infinite-valued logic [CDM99],
[MMMO07], [Mun94], [P95]. As a notably application of the
theory, the elements of the free n-generated MV-algebra, that
constitutes the algebraic semantics of the n-variate fragment of
Lukasiewicz logic, are obtained as (¢-conorm) monoidal combi-
nation of finitely many hats, which are in turn obtained through
finitely many applications of an operation called starring, starting
from a finite family of primitive hats.

The aim of this paper is to extend this portion of the Schauder
hats theory to the two-variable fragment of Hajek’s Basic logic.
This step represents a non-trivial generalization of the one-
variable case studied in [AG05], [Mon00], and provides sufficient
insight to capture the behaviour of the n-variable case for n > 1.

I. INTRODUCTION

For background notions and facts on Lukasiewicz and Basic
logic (in short, BL), and their algebraic semantics, respectively
the varieties of MV-algebras and BL-algebras, we refer the
reader to [CDM99], [H4j98], [CEGT00], [AMO03]. We only
mention that the free BL-algebra over m-many generators,
in symbols BL,, is the subalgebra of the BL-algebra of all
functions from ((n + 1)[0,1])™ to (n + 1)[0,1] generated by
the projections, where (n+1)[0, 1] is the ordinal sum of n+ 1
many copies of the generic MV-algebra [0, 1]. The generic
MV-algebra [0, 1] is (term equivalent to) the algebra given by
the interval [0, 1], equipped with the constant | = 0, and
the operations * ® y = max{0,z +y — 1} and x — y =
min{l,1 — z + y}. We define -z = =z — L, T = -1,
z@y=-r—y0y=c0y, zANy=z0(x —y), and
xVy=((z—y)—y) A((y — x) — x). Moreover, for any
integer m > 0, we denote my and ¢™ the @-disjunction and
the ®-conjunction, respectively, of m occurrences of .

We shall develop a notion of BL-Schauder hat (for short,
BL-hat) such that the following two facts hold: (i) each
element of BL,, is a -norm monoidal combination of finitely
many BL-hats. (i) each BL-hat in the above combination
is constructed, as a BL-formula, via a refinement procedure
consisting in a BL-combination of a finite set of primitive
BL-hats.

The key ingredients of the construction are presented in
the general case n > 1 in [AB09], [Bov08], where the
free n-generated BL-algebra is characterized as a BL-algebra
of geometric-combinatorial objects called encodings. In this
paper, in the interest of intuition and readability, we avoid
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the technicalities involved in the general case, and we study
directly the two-variable case. Indeed, the two-variable case is
complex enough to enlighten the construction in the general
case, and allows for a neat geometrical intuition of the
behaviour of BL-hats in the refinement procedure.

II. FREE MV-ALGEBRAS AND FREE WAJSBERG HOOPS

We collect from the literaure the following representa-
tions of the free n-generated MV-algebra, MV,,, and the
free n-generated Wajsberg hoop, WH,,, in terms of n-ary
McNaughton functions. Recall that a Wajsberg hoop is the
{®, —, T }-subreduct of an MV-algebra, and a continuous
function f : [0,1]™ — [0, 1] is a McNaughton function if and
only if there are finitely many linear polynomials with integer
coefficients, p, ..., pk, such that, for every x € [0,1]", there
is j € {1,...,k} such that f(x) = p,(x).

Theorem 1 ([McN51], [AP02]). MV, is (isomorphic to) the
algebra of n-ary McNaughton functions, where 1 is realized
by the constant 0, and © and — are realized by the operations
pointwise defined by the corresponding operations of the
generic MV-algebra [0, 1].

WHL, is (isomorphic to) the algebra of n-ary McNaughton
functions f such that f(1,1,...,1) = 1, where ®, — and
T are realized by the operations pointwise defined by the
corresponding operations of the generic MV-algebra [0, 1].

III. THE FREE 2-GENERATED BL-ALGEBRA

In this section, we introduce the notion of (binary) encoding,
and we describe the free 2-generated BL-algebra, BL,, in
terms of (binary) encodings, as in [AB09].

Given a subset K = {j1,72,...,4k} of {1,...,n} we
denote wx the projection over K, that is, g (t1,...,t,) =
(Ejrs- - r )

By a (rational) prism we mean a set P C [0,1]? either of
the form [0, 1] x @ or of the form @ x [0,1] for @ C [0,1)
being either (a singleton containing) a rational point or an open
interval with rational endpoints. The set () is called the base
of P and is denoted B(P).

Definition 1. Let K C {1,2}. A function f is essentially
K-ary prismwise Wajsberg if the following holds.

Case K = (): In this case, f = (), the empty function (the
only function with empty domain).

Case K = {1} or K = {2}: In this case, the following
holds. (i) dom(f) is the union of as set A of finitely many



prisms P C [0,1]2, of the first form if K ={1}, or of the
second if K = {2}. (ii) For each P € A there is g € WH]
such that f(z1,22) = g(mk (21, x2)) for all (z1,x2) € P.

Let Q = B(P). We denote the restriction of f to P by
g|Q. If dom(f) = {P}, then we denote f simply by g|Q. If
Upea B(P) = [0,1) then we say f is total.

Case K = {1,2}: In this case, f € WHj.

We let PW, denote the set of all essentially K -ary prism-
wise Wajsberg functions, for all K € 2.2},

For each function f: [0,1]2 — [0,1], each b € {0,1} and
eachi € {1, 2}, we let bl(f) = {123\ {i} (ffl(b)ﬂ{(xl, :,CQ) |
Ty (@1, w2) = 1}) \ {1}.

Definition 2 ((Binary) Encoding). A (binary) encoding is a
6-tuple,
[ = (foo, fo1, foz, f10, f11, f12),

satisfying the following properties:
1) fi; € PW, for all (¢,5) € {0,1} x {0,1,2}.
2) foo € WH, and, either f10 € WH; or flO = 0.
3) Let b € {0,1} such that b = 0 if and only if f1p = 0,
let i € {0,1}, and let j € {1,2}. Then,

dom(fij) = {(z1,22) [ x3-; € bj(fio)}-
We let A, denote the set of all binary encodings.

It follows that fio = () implies fi; = fi2 = 0.
For any pair (f,g) where f is an encoding and ¢ either
an encoding or an encoding component, we set v;(g) = g if

Jio # 0, vy(g) = ~g if fio = 0.

Theorem 2. The free 2-generated BL-algebra, Blo, is (iso-
morphic to) the BL-algebra,

IB]L2 = <A2a ®7 7 J~>)

obtained by equipping the binary encodings with the following
constant and operations. Let f, g € As. Then,
b J_ = <—|—7 0’ ®’ ®7®7 ®>
e fOg = e where e € As is defined as follows.
dom(e;;) = dom(f;;) N dom(gs;), for each (i,j) €
{0,1} x {0,1,2}; for all (z1,22) € dom(e;;), if
(1,5) € ({0,1} x {0,1,2}) \ {(0,0)} then e;;(x1,x2) =
fij(xl,$2) ® gij(:z:l,xg), while

Joo® goo  if fro =0 and gi1o =0,

~ ) 900 — foo if fro =0 and gio # 0,
ego = _

foo — goo if fio # 0 and g1o =0,

foo ©goo i fi0 # 0 and g10 # 0.

o f— g=e where e € Ay is defined as follows.

goo — foo if fio =0 and gio =0,
co0 = foo @ goo  if fio =0 and g9 # 0,
foo ®goo i fro # 0 and gio =0,
foo = goo  if fio # 0 and gig # 0.

If fio # 0 then e1g = fi10 — g10 and for each (i,j) €
{0,1} x {1,2}, dom(e;;) = dom(gi;) U {(z1,22) |

vi(fij(y1,v2)) < vg(9i(y1,92)), yj = 1, ys—j = 35}
and e;j(v1,22) = (fij — gij)(w1,22) if (v1,72) €
dom( fi;)Ndom(gs;), €;j(x1, x2) = 1 otherwise. If f19 =
() then eq; is defined as above for each j € {1,2}, while
e1; is total and coinciding with T for all j € {0,1,2}.

The two generators are :L']lB]Lz = <$1,$1,@,x1,x1,®>, and
BL:
Ty * = <x27®7x27$2,®,$2>.

The interpretation @2 of a formula ¢ in the two-variable
fragment of BL is the image ¢(p) of ¢ under the {®, —, L }-
homomorphism ¢ from the algebra of all two-variable formulas
of BL to BLy, uniquely determined by ¢(z;) = 22

PR
IV. CONVEX GEOMETRY BACKGROUND

To recall the notion of Schauder hat and define BIL,-hats
we need to introduce some notions of convex geometry (see
[Ewa96], for further background).

An n-simplex S C R™ (for m > n) is the convex hull of
n + 1 many affinely independent points of R™ , called the
vertices of S. That is, a O-simplex is a (set containing exactly
one) point, a 1-simplex is a line segment, a 2-simplex is a
triangle, etc. By rational n-simplex in R™ we mean an n-
simplex S whose vertices v1,...,V,41 are rational points in
[0, 1]™, that is each component of each v; is a rational number
4, 0 < 6§ < 1. In the following we shall consider only rational
n-simplices, which we will call simply “n-simplices”, or even
“simplices” when the dimension does not need to be specified.
A k-dimensional face of a n-simplex S, for —1 < k < n is
the convex hull of £+ 1 vertices of S. An open simplex is the
relative interior of a simplex (note that vertices, that is, O-faces
of simplices, are both 0-simplices and open O-simplices; the
empty set is the only (—1)-dimensional face of any simplex).

The denominator den(v) of a rational point v € ([0,1] N
Q)™ is the least common denominator den(v) of the
coordinates of v. The homogeneous expression of v is
den(v)(v,1) € Z™T!. The Farey mediant of a finite set
of rational points {v;};e; C ([0,1] N @)™ is the point
(Xjesden(v;)v;)/ (3 c s den(vy)). A rational m-simplex
S C R™ is unimodular if 1 is the absolute value of the
determinant of the matrix whose rows are the homogeneous
expressions of the vertices of S. A rational n-simplex F' C
R™, with n < m is unimodular if it is a face of a unimodular
m-simplex. Note that a rational 0-simplex (a vertex) is always
unimodular.

A unimodular triangulation of [0,1]™ is a finite collection
U of n-simplices, for all —1 < n < m, such that |J{S €
U} = [0,1]™, the intersection of any two members Sp, Sa of
U is a common face of both S; and Sy, and U is closed under
taking faces. We say that an open simplex S belongs to U (in
symbols, S € U) if there is T' € U such that S is the relative
interior of 7.

V. SCHAUDER HATS

In this section we collect basic notions and results about
Schauder hats that we shall be using in the paper (see
[CDM99], [Mun9%4], [P95]).



Definition 3. Let U be a unimodular triangulation of [0, 1]”
and let S be a k-simplex of U. Then the starring of U at S,
in symbols U * S, is the set of simplices obtained as follows.

1) Putin U % S all simplices of U not containing S.

2) Display vi,...,vy the vertices of S. Then, for each
d € {1,...,k — 1} and each d-dimensional face T
of S, displaying {wi,..., w411} the vertices of T,
replace each simplex 7" C R € U with the collection
{R1,...,Ray1}, where R; is the simplex whose vertices
are those of R with w; replaced by the Farey mediant

vg of vi,..., V.

Note that Ux.S is again a unimodular triangulation of [0, 1]™.
If S is a 1-simplex, the starring U .S is called an edge starring.

Definition 4. Given a unimodular triangulation U of [0, 1]"
and a vertex (0-simplex) v of U, the Schauder hat with apex
v in U is the continuous function hy y: [0,1]" — [0, 1]
determined by the following conditions:

1) hyu(v)=1/den(v).

2) hy,u(u) =0 for all vertices u # v of U.

3) hy,u is linear over each simplex of U.

The star of v in U is the set of all simplices of U having v
among their vertices. The Schauder set Hyy associated with a
unimodular triangulation U is the set of all hats of the form
hy v for v a vertex of U.

Let vy, ... vy be the vertices of a simplex S € U. Then the
star refinement Hyy S of Hy at S is obtained as follows:
Let h; be the hat in Hy with apex v;, and let hg = /\;1:1 h;.
Then put in Hy % S the function hg together with all hats of
Hys distinct from any h; and replace h; by h; © hg, for each
jed{l,... .k}

Lemma 1. Hy xS is a Schauder set. In particular Hyy xS =
Hy.s and the apex of hg is the Farey mediant of the vertices
of S.

Definition 5. Let T be the n-simplex whose set of vertices
is {v;}1_q, for mgiy(vy) = 0if i +j < n, mg(vy) = 1,
otherwise. Let Sym,, be the group of all permutations of the
set {1,2,...,n}. For each 0 € Sym,, let T,, be the simplex
whose ith vertex is such that its jth component is 7, ()1 (V3).
Let F,, be the set of all faces of T,. Then

= | F,

oE€Symy,

is a unimodular triangulation of [0, 1]™, called the fundamental
partition of [0, 1]™.

Example 1. U} = {{0},[0,1],{1}}, and Hyy = {z1,—a1}.
The 2-simplices of U3 are {(t1,t2) | 0 < t; <ty < 1} and
{(t1,t2) | 0 <ty <ty < 1}. Moreover; Hyz = {z1 N29, 216
To,To O X1, T N ﬁmg}.

Before stating the normal form theorem for MV,, we collect
for later use a fundamental technical result on unimodular
triangulations.

Lemma 2. Let S be either a rational O-simplex or a 1-
simplex lying on an edge of the hypercube [0,1]™. Then there
is a unimodular triangulation U of [0,1]™ such that S € U.
Moreover, U is obtained via finitely many edge starrings from
Ug.

Lemma 3. For each McNaughton function f: [0,1]™ — [0, 1]
there is a unimodular triangulation Uy of [0,1]™ such that f
is linear over each simplex S € Uy. Moreover, Uy is obtained
via finitely many edge starrings from Ug'.

Proof: This is one of the main arguments in Panti’s
geometric proof of the completeness of Lukasiewicz infinite-
valued logic, see [P95, Lemma 2.2]. |

Theorem 3. For each element f € MV, there is a Schauder
set Hy = {h; }ier and nonnegative integers {m; }icr such that

i€l

Proof: One takes Hy = Hy,, and m; = f(v;)den(v;),

for v; the apex of h;, for each i € 1. [ |
VI. BLL,-HATS

As is well known, each MV-algebra A = (A, @,—,0) is
isomorphic to its order-dual A? = (A,®,—,1) via the map
9. a + —a. Note that (a ©b)? = b? — a2, and clearly,
(aVvb)? =a® Ab? and (a Ab)? = a? v b9. We call Schauder
co-hat any function of the form h? for h a Schauder hat. Let
U be a unimodular triangulation of [0, 1]", for some n. The
apex and the star of a co-hat k% in U are the apex and the star
of the hat k in U, respectively. The co-Schauder set associated
with U is the set of all co-hats of the Schauder set of U. The
star refinement of the co-Schauder set Hy at a simplex S € U
is defined as for Schauder sets, replacing by duality A h; with
Vb and h; © hg with hg — h?.

Definition 6. A Schauder co-hat k: [0,1]™ — [0, 1] is virtual
iff its apex is (1,1,...,1); k is actual iff it is not virtual.

Note that a Schauder co-hat ~: [0,1]™ — [0, 1] is an element
of WH,, iff it is actual.

Theorem 4. For each element f € WH,, there is a co-
Schauder set Hy = {h;};c and nonnegative integers {m; }icr

such that
f=Qn,
i€l
where m; = 0 if h; is virtual.
Proof: Immediate from Theorem 1 and Theorem 3. H
A primitive Schauder co-hat is a function h? for h € Hyyp.

Example 2. The set of primitive Schauder co-hats for MV,
is H} = {x1,~x1}. The set of primitive Schauder co-hats for
MVQ is Hg = {$1 \Y T2, Ty — X1,T1 — T2, L1 \Y _|$2}.

Definition 7. A BLo-hat is a 6-tuple of functions h =
(hoo, ko1, ho2, h10, h11, h12) belonging to one of the following
kinds:



kl: Either A (k, T|11(k), T|12(k), T, T,T) or h
(T,T,T,k, T|11(k), T|12(k)), and k is a Schauder co-
hat.

There is a pair (¢,j) € {0,1} x {1,2}, a unimodular
triangulation U of [0, 1] and an open unimodular simplex
Q € U such that h;j = T for all (¢/,5") € ({0,1} x
{0,1,2}) \ {(4,7)}, and h;; = T|Q’ for every open
simplex Q" # Q in U, while h;; = k|Q for k a Schauder
co-hat in one variable.

k2:

We say k is the Schauder co-hat associated with h. The star
and the apex of a BL,-hat h are the star and the apex of
the associated Schauder co-hat. A BlL,-hat h is actual (resp.
virtual) if so is its associated Schauder co-hat. A BlLy-hat A
is total if it belongs to kind k1 or @ € {{0},(0,1)}.

Lemma 4. Let h be a BlLo-hat. Then h € B, iff h is actual.

VII. REFINEMENT PROCESS

Let U be a unimodular triangulation of [0,1]%. Then a
relevant face of U is an open k-simplex F of U, for k € {0, 1},
such that F' C {1} x [0,1) or F' C [0,1) x {1}. We denote
Fl} the set of relevant faces of U of the first form, and F5
the set of relevant faces of U of the second form.

Definition 8. A  BlL-triangulation is a  G6-tuple
<U()(), Uo1,Up2, Uro, Ur1, U12> such that Ujo is a unimodular
triangulation of [0, 1]? for each j € {0,1}, and Uj; is a map
that associates with each relevant face in Fl a unimodular
triangulation of [0, 1], for each j € {0,1} and ‘each i € {1,2}.

We say that a k-simplex S is a simplex of U if either S €
Uip for some i € {0,1} or there is (4,5) € {0,1} x {1,2},
and a simplex R € dom(U;;) such that S € U;;(R).

The BLo-fundamental partition is

= (U3, V,V,U3,V,V),

where V is the following map: {0} — U3, (0,1) — U}
(recall from Definition 5 that Uj is the fundamental partition
of [0, 1]™).

The BLLo-set Hy; associated with a BlLo-triangulation U is a
6-tuple <]{007 Hy1, Hoo, Hio, Hi1, H12> such that, for each i €
{0,1}, H;p is the set of k1 BlLy-hats such that their associated
co-hats form the co-Schauder set for U;g; for each j € {1,2},
H;; is the map with the same domain as U;; defined as follows.
For each S € dom(H;;), H;;(S) is the set of total k2 BLo-
hats such that their associated co-hats form the co-Schauder
set for U;;(9).

Note that each hat of Hy is linear over each simplex of U.

Definition 9. Let

pgo— <.’E1\/IL’2,T TTT,T>
pho = (w1 — 22,0, T, T, T, T),
ng: <x2—>x17—|—@—|——|——r>
Poo = (mw1 V-, TI{0}, T{0}, T, T, T),
p?o = <—|—7—|— T a:l\/xg,'l' T>
pio= (T, T, T,21 — 22,0, T),
p%O = <T,T,T To — .’El,T (Z))
pro= (T, T, T,~x1 V-, THO}, T{O0}),

Pbo1 = <T X1, Ta Ta T7 T)

por = (T,—x, T,T,T,T)

po2 = (T, T,zo, T, T, T),

]502 = <T, T, X2, T, T, T)

pi1= (T, T, T, T,z1, T)

ﬁll = <T7 T7 Ta Ta -y, T>

P12 = <T7 T Ta Tv T71'2>

pro= (T, T,T,T,T,~axs).
Let further, for j ;é 0, pw (plo (pgo Oply)) = Pijs Pij =
pw — Ppij» and ng = (pjp — (sz O i) — Dijs ﬁ}j = ﬁ?j -

Dij. Then the set P of primitive BlLy-hats is the 6-tuple P =
(Poo, Por, Poz, Pro, Pr1, Pr2), where Pig = {pl, pio; Po» io}
for i € {0,1}, P;; is the map {0} — {p(;,p%;}. (0,1) —
{pl;, pi;}, for (',j) € {0,1} x {1,2}. Note that the hats of
the form p;;, pl ,; are virtual, and all other hats are actual.

Proposition 1. P is the BlLy-set associated with the BlLo-
fundamental partition B.

We now adapt the definition of starring of triangulations
(Def. 3) and star refinements of Schauder sets (Def. 4) to our
current BIL, setting.

Let U be a BL,-triangulation, and let S be a 1-simplex
of U. Let vg be the Farey mediant of the vertices v; and
vy of S, and let Sp,S5; be the 1-simplices obtained by
replacing v and vy by vg, respectively. Let S3 = {vg}.
Then the starring of U at S, in symbols U * S is the 6-tuple
(Ubo Uby, Uda, Ui, Uiy, Uls) defined as follows:

o If S € Uy for some i € {0,1} then:

- Ui’,j/ = Ui/j/ fori/ =1—4and j/ € {0,1,2};

- 10 ZO * S

-IfscC FU , for one j € {1,2}, then the map Uj;
has domain (dom( Ui;) \ {S}) U {S1, 52,53}, and
U/;(Sk) = Ui;(S) for each k € {1,2,3}; otherwise
U’ = Uj;.

o If there is (i,j) and R such that S € U;;(R), then:

- Uyj =Uyj forall i € {0,1} and j # j' € {0,1,2};

- dOm(U7/J> = dOHl(U”) and U{J(R/) = Uij(R/) for
all R # R’ € dom(Uj;), while U/;(R) = (Us;(R) \
{SHu {51,852, 83}

Let U be a BL,-triangulation, and let vi,vsy,vg be the
vertices of a 1-simplex S of U and their Farey mediant,
respectively. Then the star refinement Hy x S of Hy at S
is the 6-tuple K obtained by one of the following processes:

kl -refinement: S € U for some 7 € {0,1}. Then let h;
be the BLy-hat with apex v; and let hg = hy V hs.
Set Kio = ((Huv)io \ {h1,h2}) U {hs,hs — hi,hs —
hs}; moreover, if S € FY, for one j € {1,2}, then
dom(K ) (dOHl((HU)”> \ {S}) U {51752, Sg} for
S1,S2 being the 1-simplices obtained by starring S at
vg, S3 = {Vs}, and Kij(Sk) = (HU)ij(S) for all k €
{1,2,3}, while for all other R € dom(Kj;), K;;(R)
(HU)”(R) If S Q F'(JL1 U Fljjﬁ, set K7J = (HU)U for
all j € {1,2}. Set Ky;y = (Hy)y; for i =1 — 14 and
j€{0,1,2}.



k2 -refinement: There is (4, ) and R such that S € U;;(R).
Then let h; be the BLo-hat with apex v; and let
hs = h1 V ha. Set Kij(R) = ((HU)”(R) \ {hl,hg}) U
{hs,hs — hi,hs — hg} Set Kij(Rl) = (HU)ij(R/)
for all R 75 R € dOIn((HU)ij). Set K¢/7j/ = (HU)i’j’
for all (i, 7') € (10,1} x {0, 1,21\ {(i,)}.

Proposition 2. Hy; + .S is the BlLo-set associated with U x S.

We now single out some families of functions in BLL,. Each
function in BLo will turn out to be a combination of suitably
chosen functions in these special families. In turn, we shall
represent any function belonging to one of these families as a
combination of BLs-hats in the same family.

Lemma 5. Let f € BLy be either of the form
(9, T111(9), T|12(g), T, T,T), or of the  form
(T,T,T,9, T|11(g9), T|12(g)). Then f is a finite ©-

combination of actual BlLy-hats obtained by finitely many
kl-refinements from the set of primitive hats Py, or the set
P, respectively.

Proof: Consider first f = (g, T|11(g), T|12(g), T, T, T).
Since g € WHa, by Lemma 3, g = (O, k" for suit-
able integers {m,;};c; and a finite set of actual Schauder
co-hats {k;};c; obtained from UZ by finitely many edge
star refinements. That is {k;},c; = Hy, for a unimodu-
lar triangulation U, of [0,1]%, and there exist 1-simplices
S1,82,...,8, C[0,1)? such that U, = U2 %Sy %Sy %---xS,,.
As each S is either a simplex of the fundamental partition of
[0,1]? or it is obtained by a finite sequence of edge starrings
from the fundamental partition, then we can form the BLo-
triangulation B, = B % Sy * --- % S,. By Proposition 1
and Proposition 2, P, = P % S7 % --- % S, is the BLy-set
of B,. In particular (P,)oo = {h;}icr, Where each h; is a
BIL,-hat of kind k1 whose associated Schauder co-hat is k;.
Since TVT =T — T = T@®T = T, then for each

(4,1) € ({0,1} x{0,1,2})\ {0, 0}, it holds that ((;c; ki )1
is constantly T over its domain. Then

@hml = g7T|11( T|12(g>7T7TaT>

icl
The case f = (T,T,T,g, T|11(g9), T|1l2(g)) is dealt with
analogously. ]
Lemma 6. Ler f € BLy be of the form

(g,T]01(g9), T|02(g),0,0,0), Then f is the negation of
a finite ©-combination of actual BlLo-hats obtained by finitely
many K1-refinements from the set of primitive hats Py.

Proof: By Theorem 2, f is such that f = ——f. Now,
-f ={g,T|11(g9), T|12(g), T, T, T), and by Lemma 5, there
is a finite set {h;};cs of actual BLy-hats obtained by finitely
many kl-refinements from the set of primitive hats Py, and
suitable positive integers {m;};c; such that ~f = (O, ™.
Hence [ = ——f = 2O, i [ |

Lemma 7. Each total BlLa-hat h belonging to kind k2 is ob-
tained by finitely many K2-refinements from the set of primitive
hats P;;({0}) or P;;((0,1)), for some (i, j) € {0,1} x{1,2}.

Proof: Each Schauder co-hat k£ in one variable is obtained
by finitely many star refinements from the set of primitive co-
hats {x1,-21}. Since TVT =T — T = T, we immediately
conclude that h is obtained by finitely many k2-refinements
from the set P;;({0}) or P;;((0,1)). |

There remains to deal with BlLs-hats that are not total.

Definition 10. Let U be a BlL-triangulation. Fix (i,j) €
{0,1}x{1,2}, and let /2 be the only virtual BLy-hat in (Hy);0.
Pick k € (Hy)i;(S) (then k is a total k2-hat). Let further
h' k" be actual kl-hats in (Hy ). Denote H® = (Hy)qo \
(W 0" b}y, H(h') = H° U {h"} and H(h") = H° U {I'}.
Then the function

() -k

hEH(h')
is the vertical refinement of the pair (h', k). The function

(I (W, K)o A (", k) = () h) = k)

heH°

T (7,07, k) =

is the vertical refinement of the triple (h',h", k).

Lemma 8. Each non-total BLa-hat h belonging to kind k2 is
obtained by vertical refinement from a set of hats obtained by
finitely many steps of k1-K2-refinement from P.

Proof: Consider a non-total k2 BlLo-hat h, and let h;; =
k|Q as in Definition 7, for some (i, ) € {0,1} x {1,2}. Let
g be the total hat of kind k2 such that g;; = k[(0,1). By
Lemma 7, g is obtained by k2-refinement from P. Consider
first the case (4,j) = (0,1) and suppose ) = {v} for some
v € (0,1)NQ. Then let U be any BL,-triangulation, obtained
via finitely many starrings from B, such that w € U for the
point defined by 7 (w) = v and mo(w) = 1. Such U exists
by Lemma 2. Let K = Hy. Then Ky contains an actual
BLo-hat f with apex w. Let K/ = Ko \ {f,é}, for é the
unique virtual hat of Kyy. Then @ee K € 1s an element of
BL, of the form (f’, T|{v}, T, T, T, T) for some f' € WH.
Direct computation using the operations defined in Theorem
2 shows the vertical refinement 1} (f, g) is h. Now suppose
Q@ = (v1,v2) C (0,1) is an open unimodular segment with
rational endpoints. Let U be any BL,-triangulation, obtained
via finitely many starrings from B, such that [wi,wy] € U
for points w; defined by 71 (w;) = v; and mo(w;) = 1, for [ €
{1,2}. The existence of such U is granted by Lemma 2, again.
Let fi1, fo be BLo-hats with apices wi,wy in Kyg. Direct
computation now shows (&) c€Koo\{ /1, L2, e € is the function
(f', Tlv1,v2], T, T, T, T) for some f' € WHp, and hence
) (1. f2r9) = h. The cases (i, ) € ({0, 1} x {1, 2})\{(0, 1)}

are dealt with analogously. [ ]
Theorem 5 (Normal Form). Each f € BlLy can be expressed
as

Q) o QR

j€Jo jeJ1

where Jo and Jy are finite index sets, and for each i € {0, 1},
and j € J;, the exponent m; ; is a nonnegative integer and



h;; is an actual BlLo-hat obtained by a finite process of k1,
k2, vertical refinements from the set of primitive hats P.

Proof: If fio = 0 then we use Lemma 6 to obtain a
finite family of BLo-hats {h¢ ;};ecs, and integers {mg_;};jcs,
such that, setting ¢%° = ~Oje ho 0’, we have ¢%° =
(foo,T ‘ Ol(fOO);T | Oz(f()o) @ (Z) (Z)) Let U be a BlLo-
triangulation such that f is linear over each simplex of U.
Such U exists by Definition 8 and Lemma 3. Note that for
each open simplex S € F},, j € {1,2}, either fy; is not
defined over [0, 1] x ws_;(S) (if j = 1) or m3_;(S) x [0,1] Gf
j = 2), or, in the notation of Definition 2, fo; = g|ms_;(.5)
for some g € WH. In the latter case, use Theorem 4 to
express g as (D ;. ki for some finite set Jg, and then
use Lemma 8 to build Oicys MEi)™, where h(k;) is the
k2 non-total hat such that (h(k ))o; = kilms—;(S). Then
Oiege Mki)™ is T everywhere but on [0,1] x m3_;(S) (if
j = 1) or mg_;(S) x [0,1] (if j = 2) where it coincides
with fo;. Let J; be the disjoint union of all sets Jg such that
S € FLUFZ and fo1 = g|ms—;(S) for some g € WH;. Then
9% © Oy, h(k;)™ is the desired normal form for f.

In case fip # 0 we reason analogously, using Lemma 5
instead of Lemma 6, to obtain functions g°° and ¢'° such that
990 = foo and gi9 = f19. We then use Lemma 8 as before to
obtain all non-total k2 BIL,-hats needed. [ |

We remark that Theorem 5 cannot be strengthened by
omitting virtual hats from P: the minimal set of actual BlLo-
hats allowing to express all elements of BL, with a finite
normal form is not finite.

The refinement procedure provides an explicit construction
of the BL-terms whose interpretation in BlLs correspond to
BlL-hats. First, we provide BL-terms whose interpretation in
BLs correspond to the actual primitive BLo-hats. We define,

zay=(r —y) O ((y - z) — ),
zoy=((xay) = y) A ((y2z) — ),
and we prepare (¢ = 1, 2),
zi00 = ((Lox;) A(Loxs—_i) A
zio1 = ((Lox3_i) A (x5 Q)
zi0 = ((Laz) A(Laxs_;) A
xi1 = ((L<ax) A(L<axz_i) A

T; 0 T3-5)) — Ty,
- ':l:'L’

T; 0 T3-)) — ¥,

—~ o~ —

T3—; 4 (El)) — Zj.

Proposition 3. The following hold:
(2100 V T200)%2 = Poo, (2100 — 200)%2 = plo;
(w200 — 2100)%2 = Py (z110 V @210)B2 = pYs
(2110 — w210)P2
(
(

=plos (@210 — T110)¥2 = pys
96‘101) L2 = poys ($202)BH“2 = Po2,
r111)B2 = p11; (2212)B2 = pra.
Proof: Direct computation. ]

Given the BL-terms for primitive hats, it is possible to
iterate through the refinement process to construct BL-terms
for all the actual BLL,-hats. We provide an example of such
construction (compare Lemma 7, see also [AGO5] for the
virtual-hat elimination algorithm for the one-variable case).

%
LRLLLLRTIALT
'-.-:~.~':$
2/

(c) F(p(ln)-

(d) F(ph).

Fig. 1. Sampling the functional representation of some primitive BLg-hats.
In [ABO9] we define an isomorphism of BL-algebras F' from the BL-algebra
of encodings BL,, to the BL-algebra of real functions from [0, + 1]™ to
[0, n+ 1] generated by the projections ;(¢1, . . .,tn) = t; (see [AMO3]). As
an example of this functional representation in the 2-variable case, we depict
here the graph of the functions corresponding to some primitive BLo-hats.

Example 3. We construct the BL-term whose interpretation
in BLy corresponds to f = (T,x1 V —x1, T, T, T,T). The
encoding f is obtained in a single step of k2-refinement from
the set {po1, po1}. The BL-term corresponding to f is obtained
as follows: eliminate the negations from the Schauder co-
hat x1 V —x1 (maintaining equivalence, compare [Bov08] for
details), obtaining the term x1 — x% Then substitute x1 by
T101. We have (w101 — 224,)B2 = f. The total BLLy-hat h
such that hoy = (x1V-z1)|{0} and hoy = T|(0,1) is obtained
from f by substituting x101 with (pby — (Do @ Do) — T101-
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