# Schauder Hats for the 2-variable Fragment of BL

Stefano Aguzzoli D.S.I., Università di Milano Milano, Italy Email: aguzzoli@dsi.unimi.it Simone Bova Department of Mathematics, Vanderbilt University Nashville TN, USA Email: simone.bova@vanderbilt.edu

Abstract—The theory of Schauder hats is a beautiful and powerful tool for investigating, under several respects, the algebraic semantics of Łukasiewicz infinite-valued logic [CDM99], [MMM07], [Mun94], [P95]. As a notably application of the theory, the elements of the free *n*-generated MV-algebra, that constitutes the algebraic semantics of the *n*-variate fragment of Łukasiewicz logic, are obtained as (*t*-conorm) monoidal combination of finitely many hats, which are in turn obtained through finitely many applications of an operation called *starring*, starting from a finite family of *primitive* hats.

The aim of this paper is to extend this portion of the Schauder hats theory to the two-variable fragment of Hájek's Basic logic. This step represents a non-trivial generalization of the onevariable case studied in [AG05], [Mon00], and provides sufficient insight to capture the behaviour of the *n*-variable case for  $n \ge 1$ .

# I. INTRODUCTION

For background notions and facts on Łukasiewicz and Basic logic (in short, BL), and their algebraic semantics, respectively the varieties of MV-algebras and BL-algebras, we refer the reader to [CDM99], [Háj98], [CEGT00], [AM03]. We only mention that the free BL-algebra over *n*-many generators, in symbols  $\mathbb{BL}_n$ , is the subalgebra of the BL-algebra of all functions from  $((n+1)[0,1])^n$  to (n+1)[0,1] generated by the projections, where (n+1)[0,1] is the ordinal sum of n+1many copies of the generic MV-algebra [0,1]. The generic MV-algebra [0, 1] is (term equivalent to) the algebra given by the interval [0, 1], equipped with the constant  $\perp = 0$ , and the operations  $x \odot y = \max\{0, x + y - 1\}$  and  $x \to y =$  $\min\{1, 1 - x + y\}$ . We define  $\neg x = x \rightarrow \bot$ ,  $\top = \neg \bot$ ,  $x \oplus y = \neg x \to y, x \oplus y = x \odot \neg y, x \land y = x \odot (x \to y), \text{ and}$  $x \lor y = ((x \to y) \to y) \land ((y \to x) \to x)$ . Moreover, for any integer m > 0, we denote  $m\varphi$  and  $\varphi^m$  the  $\oplus$ -disjunction and the  $\odot$ -conjunction, respectively, of *m* occurrences of  $\varphi$ .

We shall develop a notion of *BL-Schauder hat* (for short, *BL-hat*) such that the following two facts hold: (*i*) each element of  $\mathbb{BL}_n$  is a *t*-norm monoidal combination of finitely many BL-hats. (*ii*) each BL-hat in the above combination is constructed, as a BL-formula, via a *refinement* procedure consisting in a BL-combination of a finite set of *primitive* BL-hats.

The key ingredients of the construction are presented in the general case  $n \ge 1$  in [AB09], [Bov08], where the free *n*-generated BL-algebra is characterized as a BL-algebra of geometric-combinatorial objects called *encodings*. In this paper, in the interest of intuition and readability, we avoid the technicalities involved in the general case, and we study directly the two-variable case. Indeed, the two-variable case is complex enough to enlighten the construction in the general case, and allows for a neat geometrical intuition of the behaviour of BL-hats in the refinement procedure.

## II. FREE MV-ALGEBRAS AND FREE WAJSBERG HOOPS

We collect from the literaure the following representations of the free *n*-generated MV-algebra,  $\mathbb{MV}_n$ , and the free *n*-generated Wajsberg hoop,  $\mathbb{WH}_n$ , in terms of *n*-ary McNaughton functions. Recall that a Wajsberg hoop is the  $\{\odot, \rightarrow, \top\}$ -subreduct of an MV-algebra, and a continuous function  $f : [0, 1]^n \rightarrow [0, 1]$  is a McNaughton function if and only if there are finitely many linear polynomials with integer coefficients,  $p_1, \ldots, p_k$ , such that, for every  $\mathbf{x} \in [0, 1]^n$ , there is  $j \in \{1, \ldots, k\}$  such that  $f(\mathbf{x}) = p_j(\mathbf{x})$ .

**Theorem 1** ([McN51], [AP02]).  $\mathbb{MV}_n$  is (isomorphic to) the algebra of n-ary McNaughton functions, where  $\perp$  is realized by the constant 0, and  $\odot$  and  $\rightarrow$  are realized by the operations pointwise defined by the corresponding operations of the generic MV-algebra [0, 1].

 $\mathbb{WH}_n$  is (isomorphic to) the algebra of n-ary McNaughton functions f such that f(1, 1, ..., 1) = 1, where  $\odot$ ,  $\rightarrow$  and  $\top$  are realized by the operations pointwise defined by the corresponding operations of the generic MV-algebra [0, 1].

### III. THE FREE 2-GENERATED BL-ALGEBRA

In this section, we introduce the notion of (*binary*) encoding, and we describe the free 2-generated BL-algebra,  $\mathbb{BL}_2$ , in terms of (binary) encodings, as in [AB09].

Given a subset  $K = \{j_1, j_2, \ldots, j_k\}$  of  $\{1, \ldots, n\}$  we denote  $\pi_K$  the *projection* over K, that is,  $\pi_K(t_1, \ldots, t_n) = (t_{j_1}, \ldots, t_{j_k})$ .

By a *(rational) prism* we mean a set  $P \subseteq [0,1]^2$  either of the form  $[0,1] \times Q$  or of the form  $Q \times [0,1]$  for  $Q \subseteq [0,1)$  being either (a singleton containing) a rational point or an open interval with rational endpoints. The set Q is called the *base* of P and is denoted B(P).

**Definition 1.** Let  $K \subseteq \{1, 2\}$ . A function f is essentially *K*-ary prismwise Wajsberg if the following holds.

Case  $K = \emptyset$ : In this case,  $f = \emptyset$ , the empty function (the only function with empty domain).

Case  $K = \{1\}$  or  $K = \{2\}$ : In this case, the following holds. (i) dom(f) is the union of as set  $\Delta$  of finitely many

prisms  $P \subseteq [0,1]^2$ , of the first form if K ={1}, or of the second if  $K = \{2\}$ . (ii) For each  $P \in \Delta$  there is  $g \in \mathbb{WH}_1$  such that  $f(x_1, x_2) = g(\pi_K(x_1, x_2))$  for all  $(x_1, x_2) \in P$ .

Let Q = B(P). We denote the restriction of f to P by g|Q. If dom $(f) = \{P\}$ , then we denote f simply by g|Q. If  $\bigcup_{P \in \Delta} B(P) = [0, 1)$  then we say f is *total*.

Case  $K = \{1, 2\}$ : In this case,  $f \in \mathbb{WH}_2$ .

We let  $\mathbb{PW}_2$  denote the set of all essentially K-ary prismwise Wajsberg functions, for all  $K \in 2^{\{1,2\}}$ .

For each function  $f: [0,1]^2 \to [0,1]$ , each  $b \in \{0,1\}$  and each  $i \in \{1,2\}$ , we let  $\mathbf{b}_i(f) = \pi_{\{1,2\}\setminus\{i\}}(f^{-1}(b) \cap \{(x_1,x_2) \mid \pi_{\{i\}}(x_1,x_2) = 1\}) \setminus \{1\}.$ 

**Definition 2** ((Binary) Encoding). A (*binary*) *encoding* is a 6-tuple,

$$f = \langle f_{00}, f_{01}, f_{02}, f_{10}, f_{11}, f_{12} \rangle,$$

satisfying the following properties:

- 1)  $f_{ij} \in \mathbb{PW}_2$  for all  $(i, j) \in \{0, 1\} \times \{0, 1, 2\}$ .
- 2)  $f_{00} \in \mathbb{WH}_2$ , and, either  $f_{10} \in \mathbb{WH}_2$  or  $f_{10} = \emptyset$ .
- 3) Let  $b \in \{0, 1\}$  such that b = 0 if and only if  $f_{10} = \emptyset$ , let  $i \in \{0, 1\}$ , and let  $j \in \{1, 2\}$ . Then,

$$dom(f_{ij}) = \{(x_1, x_2) \mid x_{3-j} \in \mathbf{b}_j(f_{i0})\}.$$

We let  $A_2$  denote the set of all binary encodings.

It follows that  $f_{10} = \emptyset$  implies  $f_{11} = f_{12} = \emptyset$ .

For any pair (f,g) where f is an encoding and g either an encoding or an encoding component, we set  $\nu_f(g) = g$  if  $f_{10} \neq \emptyset$ ,  $\nu_f(g) = \neg g$  if  $f_{10} = \emptyset$ .

**Theorem 2.** The free 2-generated BL-algebra,  $\mathbb{BL}_2$ , is (isomorphic to) the BL-algebra,

$$\mathbb{BL}_2 = \langle A_2, \odot, \rightarrow, \bot \rangle,$$

obtained by equipping the binary encodings with the following constant and operations. Let  $f, g \in A_2$ . Then,

- $\bot = \langle \top, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle.$
- $f \odot g = e$ , where  $e \in A_2$  is defined as follows.  $\operatorname{dom}(e_{ij}) = \operatorname{dom}(f_{ij}) \cap \operatorname{dom}(g_{ij})$ , for each  $(i, j) \in \{0, 1\} \times \{0, 1, 2\}$ ; for all  $(x_1, x_2) \in \operatorname{dom}(e_{ij})$ , if  $(i, j) \in (\{0, 1\} \times \{0, 1, 2\}) \setminus \{(0, 0)\}$  then  $e_{ij}(x_1, x_2) = f_{ij}(x_1, x_2) \odot g_{ij}(x_1, x_2)$ , while

$$e_{00} = \begin{cases} f_{00} \oplus g_{00} & \text{if } f_{10} = \emptyset \text{ and } g_{10} = \emptyset, \\ g_{00} \to f_{00} & \text{if } f_{10} = \emptyset \text{ and } g_{10} \neq \emptyset, \\ f_{00} \to g_{00} & \text{if } f_{10} \neq \emptyset \text{ and } g_{10} = \emptyset, \\ f_{00} \odot g_{00} & \text{if } f_{10} \neq \emptyset \text{ and } g_{10} \neq \emptyset. \end{cases}$$

•  $f \rightarrow g = e$ , where  $e \in A_2$  is defined as follows.

$$e_{00} = \begin{cases} g_{00} \to f_{00} & \text{if } f_{10} = \emptyset \text{ and } g_{10} = \emptyset, \\ f_{00} \oplus g_{00} & \text{if } f_{10} = \emptyset \text{ and } g_{10} \neq \emptyset, \\ f_{00} \odot g_{00} & \text{if } f_{10} \neq \emptyset \text{ and } g_{10} = \emptyset, \\ f_{00} \to g_{00} & \text{if } f_{10} \neq \emptyset \text{ and } g_{10} \neq \emptyset. \end{cases}$$

If  $f_{10} \neq \emptyset$  then  $e_{10} = f_{10} \rightarrow g_{10}$  and for each  $(i, j) \in \{0, 1\} \times \{1, 2\}, \text{ dom}(e_{ij}) = \text{ dom}(g_{ij}) \cup \{(x_1, x_2) \mid i \in \{0, 1\}\}$ 

 $\nu_f(f_{ij}(y_1, y_2)) \leq \nu_g(g_{ij}(y_1, y_2)), y_j = 1, y_{3-j} = x_{3-j} \}$ and  $e_{ij}(x_1, x_2) = (f_{ij} \rightarrow g_{ij})(x_1, x_2)$  if  $(x_1, x_2) \in$ dom $(f_{ij}) \cap$  dom $(g_{ij}), e_{ij}(x_1, x_2) = 1$  otherwise. If  $f_{10} =$  $\emptyset$  then  $e_{0j}$  is defined as above for each  $j \in \{1, 2\}$ , while  $e_{1j}$  is total and coinciding with  $\top$  for all  $j \in \{0, 1, 2\}$ .

The two generators are  $x_1^{\mathbb{BL}_2} = \langle x_1, x_1, \emptyset, x_1, x_1, \emptyset \rangle$ , and  $x_2^{\mathbb{BL}_2} = \langle x_2, \emptyset, x_2, x_2, \emptyset, x_2 \rangle$ .

The interpretation  $\varphi^{\mathbb{B}\mathbb{L}_2}$  of a formula  $\varphi$  in the two-variable fragment of BL is the image  $\iota(\varphi)$  of  $\varphi$  under the  $\{\odot, \rightarrow, \bot\}$ -homomorphism  $\iota$  from the algebra of all two-variable formulas of BL to  $\mathbb{B}\mathbb{L}_2$ , uniquely determined by  $\iota(x_i) = x_i^{\mathbb{B}\mathbb{L}_2}$ .

# IV. CONVEX GEOMETRY BACKGROUND

To recall the notion of Schauder hat and define  $\mathbb{BL}_2$ -hats we need to introduce some notions of convex geometry (see [Ewa96], for further background).

An *n*-simplex  $S \subseteq \mathbb{R}^m$  (for  $m \ge n$ ) is the convex hull of n + 1 many affinely independent points of  $\mathbb{R}^m$ , called the *vertices* of S. That is, a 0-simplex is a (set containing exactly one) point, a 1-simplex is a line segment, a 2-simplex is a triangle, etc. By *rational n*-simplex in  $\mathbb{R}^m$  we mean an *n*-simplex S whose vertices  $\mathbf{v}_1, \ldots, \mathbf{v}_{n+1}$  are rational points in  $[0, 1]^m$ , that is each component of each  $\mathbf{v}_i$  is a rational number  $\delta, 0 \le \delta \le 1$ . In the following we shall consider only rational *n*-simplices, which we will call simply "*n*-simplices", or even "simplices" when the dimension does not need to be specified. A *k*-dimensional *face* of a *n*-simplex S, for  $-1 \le k \le n$  is the convex hull of k+1 vertices of S. An *open* simplex is the relative interior of a simplex (note that vertices, that is, 0-faces of simplices, are both 0-simplices and open 0-simplices; the empty set is the only (-1)-dimensional face of any simplex).

The denominator den(**v**) of a rational point  $\mathbf{v} \in ([0,1] \cap \mathbb{Q})^m$  is the least common denominator den(**v**) of the coordinates of **v**. The homogeneous expression of **v** is den(**v**)(**v**,1)  $\in \mathbb{Z}^{m+1}$ . The Farey mediant of a finite set of rational points  $\{\mathbf{v}_j\}_{j\in J} \subset ([0,1] \cap \mathbb{Q})^m$  is the point  $(\sum_{j\in J} \operatorname{den}(\mathbf{v}_j)\mathbf{v}_j)/(\sum_{j\in J} \operatorname{den}(\mathbf{v}_j))$ . A rational m-simplex  $S \subseteq \mathbb{R}^m$  is unimodular if 1 is the absolute value of the determinant of the matrix whose rows are the homogeneous expressions of the vertices of S. A rational n-simplex  $F \subseteq \mathbb{R}^m$ , with  $n \leq m$  is unimodular if it is a face of a unimodular m-simplex. Note that a rational 0-simplex (a vertex) is always unimodular.

A unimodular triangulation of  $[0,1]^m$  is a finite collection U of *n*-simplices, for all  $-1 \leq n \leq m$ , such that  $\bigcup \{S \in U\} = [0,1]^m$ , the intersection of any two members  $S_1, S_2$  of U is a common face of both  $S_1$  and  $S_2$ , and U is closed under taking faces. We say that an open simplex S belongs to U (in symbols,  $S \in U$ ) if there is  $T \in U$  such that S is the relative interior of T.

## V. SCHAUDER HATS

In this section we collect basic notions and results about Schauder hats that we shall be using in the paper (see [CDM99], [Mun94], [P95]). **Definition 3.** Let U be a unimodular triangulation of  $[0,1]^n$ and let S be a k-simplex of U. Then the *starring* of U at S, in symbols U \* S, is the set of simplices obtained as follows.

- 1) Put in U \* S all simplices of U not containing S.
- 2) Display  $\mathbf{v}_1, \ldots, \mathbf{v}_k$  the vertices of S. Then, for each  $d \in \{1, \ldots, k-1\}$  and each d-dimensional face T of S, displaying  $\{\mathbf{w}_1, \ldots, \mathbf{w}_{d+1}\}$  the vertices of T, replace each simplex  $T \subseteq R \in U$  with the collection  $\{R_1, \ldots, R_{d+1}\}$ , where  $R_i$  is the simplex whose vertices are those of R with  $\mathbf{w}_i$  replaced by the Farey mediant  $\mathbf{v}_S$  of  $\mathbf{v}_1, \ldots, \mathbf{v}_k$ .

Note that U\*S is again a unimodular triangulation of  $[0, 1]^n$ . If S is a 1-simplex, the starring U\*S is called an *edge* starring.

**Definition 4.** Given a unimodular triangulation U of  $[0,1]^n$ and a vertex (0-simplex)  $\mathbf{v}$  of U, the Schauder hat with apex  $\mathbf{v}$  in U is the continuous function  $h_{\mathbf{v},U}: [0,1]^n \to [0,1]$ determined by the following conditions:

- 1)  $h_{\mathbf{v},U}(\mathbf{v}) = 1/\text{den}(\mathbf{v}).$
- 2)  $h_{\mathbf{v},U}(\mathbf{u}) = 0$  for all vertices  $\mathbf{u} \neq \mathbf{v}$  of U.
- 3)  $h_{\mathbf{v},U}$  is linear over each simplex of U.

The *star* of **v** in U is the set of all simplices of U having **v** among their vertices. The *Schauder set*  $H_U$  associated with a unimodular triangulation U is the set of all hats of the form  $h_{\mathbf{v},U}$  for **v** a vertex of U.

Let  $\mathbf{v}_1, \ldots, \mathbf{v}_k$  be the vertices of a simplex  $S \in U$ . Then the star refinement  $H_U * S$  of  $H_U$  at S is obtained as follows: Let  $h_i$  be the hat in  $H_U$  with apex  $\mathbf{v}_i$ , and let  $h_S = \bigwedge_{i=1}^q h_i$ . Then put in  $H_U * S$  the function  $h_S$  together with all hats of  $H_U$  distinct from any  $h_i$  and replace  $h_j$  by  $h_j \ominus h_S$ , for each  $j \in \{1, \ldots, k\}$ .

**Lemma 1.**  $H_U * S$  is a Schauder set. In particular  $H_U * S = H_{U*S}$  and the apex of  $h_S$  is the Farey mediant of the vertices of S.

**Definition 5.** Let T be the n-simplex whose set of vertices is  $\{\mathbf{v}_j\}_{j=0}^n$ , for  $\pi_{\{i\}}(\mathbf{v}_j) = 0$  if  $i + j \leq n$ ,  $\pi_{\{i\}}(\mathbf{v}_j) = 1$ , otherwise. Let  $\operatorname{Sym}_n$  be the group of all permutations of the set  $\{1, 2, \ldots, n\}$ . For each  $\sigma \in \operatorname{Sym}_n$  let  $T_{\sigma}$  be the simplex whose *i*th vertex is such that its *j*th component is  $\pi_{\{\sigma(j)\}}(\mathbf{v}_i)$ . Let  $F_{\sigma}$  be the set of all faces of  $T_{\sigma}$ . Then

$$U_0^n = \bigcup_{\sigma \in \operatorname{Sym}_n} F_{\sigma}$$

is a unimodular triangulation of  $[0, 1]^n$ , called the *fundamental* partition of  $[0, 1]^n$ .

**Example 1.**  $U_0^1 = \{\{0\}, [0, 1], \{1\}\}$ , and  $H_{U_0^1} = \{x_1, \neg x_1\}$ . The 2-simplices of  $U_0^2$  are  $\{(t_1, t_2) \mid 0 \le t_1 \le t_2 \le 1\}$  and  $\{(t_1, t_2) \mid 0 \le t_2 \le t_1 \le 1\}$ . Moreover,  $H_{U_0^2} = \{x_1 \land x_2, x_1 \ominus x_2, x_2 \ominus x_1, \neg x_1 \land \neg x_2\}$ .

Before stating the normal form theorem for  $\mathbb{MV}_n$  we collect for later use a fundamental technical result on unimodular triangulations. **Lemma 2.** Let S be either a rational 0-simplex or a 1simplex lying on an edge of the hypercube  $[0,1]^n$ . Then there is a unimodular triangulation U of  $[0,1]^n$  such that  $S \in U$ . Moreover, U is obtained via finitely many edge starrings from  $U_0^n$ .

**Lemma 3.** For each McNaughton function  $f: [0,1]^n \to [0,1]$ there is a unimodular triangulation  $U_f$  of  $[0,1]^n$  such that fis linear over each simplex  $S \in U_f$ . Moreover,  $U_f$  is obtained via finitely many edge starrings from  $U_0^n$ .

*Proof:* This is one of the main arguments in Panti's geometric proof of the completeness of Łukasiewicz infinite-valued logic, see [P95, Lemma 2.2].

**Theorem 3.** For each element  $f \in \mathbb{MV}_n$  there is a Schauder set  $H_f = \{h_i\}_{i \in I}$  and nonnegative integers  $\{m_i\}_{i \in I}$  such that

$$f = \bigoplus_{i \in I} m_i h_i \, .$$

*Proof:* One takes  $H_f = H_{U_f}$ , and  $m_i = f(\mathbf{v}_i) \operatorname{den}(\mathbf{v}_i)$ , for  $\mathbf{v}_i$  the apex of  $h_i$ , for each  $i \in I$ .

I. 
$$\mathbb{BL}_2$$
-Hats

As is well known, each MV-algebra  $A = \langle A, \oplus, \neg, 0 \rangle$  is isomorphic to its order-dual  $A^{\partial} = \langle A, \odot, \neg, 1 \rangle$  via the map  $\cdot^{\partial} : a \mapsto \neg a$ . Note that  $(a \ominus b)^{\partial} = b^{\partial} \rightarrow a^{\partial}$ , and clearly,  $(a \lor b)^{\partial} = a^{\partial} \land b^{\partial}$  and  $(a \land b)^{\partial} = a^{\partial} \lor b^{\partial}$ . We call *Schauder co-hat* any function of the form  $h^{\partial}$  for h a Schauder hat. Let U be a unimodular triangulation of  $[0, 1]^n$ , for some n. The apex and the star of a co-hat  $k^{\partial}$  in U are the apex and the star of the hat k in U, respectively. The co-Schauder set associated with U is the set of all co-hats of the Schauder set of U. The star refinement of the co-Schauder set  $H_U$  at a simplex  $S \in U$ is defined as for Schauder sets, replacing by duality  $\bigwedge h_i$  with  $\bigvee h_i^{\partial}$  and  $h_j \ominus h_S$  with  $h_S^{2} \rightarrow h_i^{\partial}$ .

**Definition 6.** A Schauder co-hat  $k: [0,1]^n \rightarrow [0,1]$  is *virtual* iff its apex is  $(1,1,\ldots,1)$ ; k is *actual* iff it is not virtual.

Note that a Schauder co-hat  $h: [0,1]^n \to [0,1]$  is an element of  $\mathbb{WH}_n$  iff it is actual.

**Theorem 4.** For each element  $f \in W\mathbb{H}_n$  there is a co-Schauder set  $H_f = \{h_i\}_{i \in I}$  and nonnegative integers  $\{m_i\}_{i \in I}$ such that

$$f = \bigotimes_{i \in I} h_i^{m_i} \,,$$

where  $m_i = 0$  if  $h_i$  is virtual.

*Proof:* Immediate from Theorem 1 and Theorem 3. A *primitive* Schauder co-hat is a function  $h^{\partial}$  for  $h \in H_{U_n^n}$ .

**Example 2.** The set of primitive Schauder co-hats for  $\mathbb{MV}_1$ is  $H_0^1 = \{x_1, \neg x_1\}$ . The set of primitive Schauder co-hats for  $\mathbb{MV}_2$  is  $H_0^2 = \{x_1 \lor x_2, x_2 \to x_1, x_1 \to x_2, \neg x_1 \lor \neg x_2\}$ .

**Definition 7.** A  $\mathbb{BL}_2$ -hat is a 6-tuple of functions  $h = \langle h_{00}, h_{01}, h_{02}, h_{10}, h_{11}, h_{12} \rangle$  belonging to one of the following kinds:

- k1: Either  $h = \langle k, \top | \mathbf{1}_1(k), \top | \mathbf{1}_2(k), \top, \top, \top \rangle$  or  $h = p_1 \langle \top, \top, \top, k, \top | \mathbf{1}_1(k), \top | \mathbf{1}_2(k) \rangle$ , and k is a Schauder co- $\hat{p}_1$  hat.
- k2: There is a pair  $(i, j) \in \{0, 1\} \times \{1, 2\}$ , a unimodular  $\hat{p}_{02}$ triangulation U of [0, 1] and an open unimodular simplex  $p_{11}$  $Q \in U$  such that  $h_{i'j'} = \top$  for all  $(i', j') \in (\{0, 1\} \times \hat{p}_{11}$  $\{0, 1, 2\}) \setminus \{(i, j)\}$ , and  $h_{ij} = \top |Q'$  for every open  $p_{12}$ simplex  $Q' \neq Q$  in U, while  $h_{ij} = k |Q$  for k a Schauder  $\hat{p}_{12}$ co-hat in one variable.

We say k is the Schauder co-hat associated with h. The star and the apex of a  $\mathbb{BL}_2$ -hat h are the star and the apex of the associated Schauder co-hat. A  $\mathbb{BL}_2$ -hat h is actual (resp. virtual) if so is its associated Schauder co-hat. A  $\mathbb{BL}_2$ -hat h is total if it belongs to kind k1 or  $Q \in \{\{0\}, (0, 1)\}$ .

**Lemma 4.** Let h be a  $\mathbb{BL}_2$ -hat. Then  $h \in \mathbb{BL}_2$  iff h is actual.

### VII. REFINEMENT PROCESS

Let U be a unimodular triangulation of  $[0,1]^2$ . Then a relevant face of U is an open k-simplex F of U, for  $k \in \{0,1\}$ , such that  $F \subseteq \{1\} \times [0,1)$  or  $F \subseteq [0,1) \times \{1\}$ . We denote  $F_U^1$  the set of relevant faces of U of the first form, and  $F_U^2$  the set of relevant faces of U of the second form.

**Definition 8.** A  $\mathbb{BL}_2$ -triangulation is a 6-tuple  $\langle U_{00}, U_{01}, U_{02}, U_{10}, U_{11}, U_{12} \rangle$  such that  $U_{j0}$  is a unimodular triangulation of  $[0, 1]^2$  for each  $j \in \{0, 1\}$ , and  $U_{ji}$  is a map that associates with each relevant face in  $F_{U_{j0}}^i$  a unimodular triangulation of [0, 1], for each  $j \in \{0, 1\}$  and each  $i \in \{1, 2\}$ .

We say that a k-simplex S is a simplex of U if either  $S \in U_{i0}$  for some  $i \in \{0,1\}$  or there is  $(i,j) \in \{0,1\} \times \{1,2\}$ , and a simplex  $R \in \text{dom}(U_{ij})$  such that  $S \in U_{ij}(R)$ .

The  $\mathbb{BL}_2$ -fundamental partition is

$$B = \left\langle U_0^2, V, V, U_0^2, V, V \right\rangle,$$

where V is the following map:  $\{0\} \mapsto U_0^1$ ,  $(0,1) \mapsto U_0^1$ (recall from Definition 5 that  $U_0^n$  is the fundamental partition of  $[0,1]^n$ ).

The  $\mathbb{BL}_2$ -set  $H_U$  associated with a  $\mathbb{BL}_2$ -triangulation U is a 6-tuple  $\langle H_{00}, H_{01}, H_{02}, H_{10}, H_{11}, H_{12} \rangle$  such that, for each  $i \in \{0, 1\}$ ,  $H_{i0}$  is the set of k1  $\mathbb{BL}_2$ -hats such that their associated co-hats form the co-Schauder set for  $U_{i0}$ ; for each  $j \in \{1, 2\}$ ,  $H_{ij}$  is the map with the same domain as  $U_{ij}$  defined as follows. For each  $S \in \text{dom}(H_{ij})$ ,  $H_{ij}(S)$  is the set of total k2  $\mathbb{BL}_2$ -hats such that their associated co-hats form the co-Schauder set for  $U_{ij}(S)$ .

Note that each hat of  $H_U$  is linear over each simplex of U.

## **Definition 9.** Let

 $\begin{array}{lll} p_{00}^0 = & \langle x_1 \lor x_2, \top, \top, \top, \top, \top, \top \rangle, \\ p_{10}^1 = & \langle x_1 \to x_2, \emptyset, \top, \top, \top, \top, \top \rangle, \\ p_{00}^2 = & \langle x_2 \to x_1, \top, \emptyset, \top, \top, \top, \top \rangle, \\ \hat{p}_{00} = & \langle \neg x_1 \lor \neg x_2, \top | \{0\}, \top | \{0\}, \top, \top, \top \rangle, \\ p_{10}^1 = & \langle \top, \top, \top, x_1 \lor x_2, \top, \top \rangle, \\ p_{10}^1 = & \langle \top, \top, \top, x_1 \to x_2, \emptyset, \top \rangle, \\ p_{10}^2 = & \langle \top, \top, \top, x_2 \to x_1, \top, \emptyset \rangle, \\ \hat{p}_{10} = & \langle \top, \top, \top, \neg x_1 \lor \neg x_2, \top | \{0\}, \top | \{0\} \rangle, \end{array}$ 

Let further, for  $j \neq 0$ ,  $p_{ij}^0 = (p_{i0}^j \to (p_{i0}^j \odot p_{i0}^j)) \to p_{ij}$ ,  $p_{ij}^1 = p_{ij}^0 \to p_{ij}$ , and  $\hat{p}_{ij}^0 = (p_{i0}^j \to (p_{i0}^j \odot p_{i0}^j)) \to \hat{p}_{ij}$ ,  $\hat{p}_{ij}^1 = \hat{p}_{ij}^0 \to \hat{p}_{ij}$ . Then the set P of *primitive*  $\mathbb{BL}_2$ -hats is the 6-tuple  $P = \langle P_{00}, P_{01}, P_{02}, P_{10}, P_{11}, P_{12} \rangle$ , where  $P_{i0} = \{p_{i0}^0, p_{i0}^1, p_{i0}^2, \hat{p}_{i0}\}$  for  $i \in \{0, 1\}$ ,  $P_{ij}$  is the map  $\{0\} \mapsto \{p_{ij}^0, \hat{p}_{ij}^0\}$ ,  $(0, 1) \mapsto \{p_{ij}^1, \hat{p}_{ij}^1\}$ , for  $(i, j) \in \{0, 1\} \times \{1, 2\}$ . Note that the hats of the form  $\hat{p}_{ij}$ ,  $\hat{p}_{ij}^b$  are virtual, and all other hats are actual.

**Proposition 1.** *P* is the  $\mathbb{BL}_2$ -set associated with the  $\mathbb{BL}_2$ -fundamental partition *B*.

We now adapt the definition of starring of triangulations (Def. 3) and star refinements of Schauder sets (Def. 4) to our current  $\mathbb{BL}_2$  setting.

Let U be a  $\mathbb{BL}_2$ -triangulation, and let S be a 1-simplex of U. Let  $\mathbf{v}_S$  be the Farey mediant of the vertices  $\mathbf{v}_1$  and  $\mathbf{v}_2$  of S, and let  $S_1, S_2$  be the 1-simplices obtained by replacing  $\mathbf{v}_1$  and  $\mathbf{v}_2$  by  $\mathbf{v}_S$ , respectively. Let  $S_3 = {\mathbf{v}_S}$ . Then the *starring* of U at S, in symbols U \* S is the 6-tuple  $\langle U'_{00}, U'_{01}, U'_{02}, U'_{10}, U'_{11}, U'_{12} \rangle$  defined as follows:

- If  $S \in U_{i0}$  for some  $i \in \{0, 1\}$  then:
  - $U'_{i'j'} = U_{i'j'}$  for i' = 1 i and  $j' \in \{0, 1, 2\}$ ; -  $U'_{i0} = U_{i0} * S$ ;
  - If  $S \subseteq F_{U_{i0}}^{j}$ , for one  $j \in \{1, 2\}$ , then the map  $U'_{ij}$ has domain  $(\operatorname{dom}(U_{ij}) \setminus \{S\}) \cup \{S_1, S_2, S_3\}$ , and  $U'_{ij}(S_k) = U_{ij}(S)$  for each  $k \in \{1, 2, 3\}$ ; otherwise  $U'_{ij} = U_{ij}$ .
- If there is (i, j) and R such that  $S \in U_{ij}(R)$ , then:
  - $U_{i'j'} = U_{ij}$  for all  $i \in \{0, 1\}$  and  $j \neq j' \in \{0, 1, 2\}$ ; -  $\operatorname{dom}(U'_{ij}) = \operatorname{dom}(U_{ij})$  and  $U'_{ij}(R') = U_{ij}(R')$  for all  $R \neq R' \in \operatorname{dom}(U_{ij})$ , while  $U'_{ij}(R) = (U_{ij}(R) \setminus \{S\}) \cup \{S_1, S_2, S_3\}$ .

Let U be a  $\mathbb{BL}_2$ -triangulation, and let  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_S$  be the vertices of a 1-simplex S of U and their Farey mediant, respectively. Then the *star refinement*  $H_U * S$  of  $H_U$  at S is the 6-tuple K obtained by one of the following processes:

k1 -refinement:  $S \in U_{i0}$  for some  $i \in \{0,1\}$ . Then let  $h_i$ be the  $\mathbb{BL}_2$ -hat with apex  $\mathbf{v}_i$  and let  $h_S = h_1 \lor h_2$ . Set  $K_{i0} = ((H_U)_{i0} \setminus \{h_1, h_2\}) \cup \{h_S, h_S \to h_1, h_S \to h_2\}$ ; moreover, if  $S \in F_{U_{i0}}^j$  for one  $j \in \{1,2\}$ , then dom $(K_{ij}) = (\text{dom}((H_U)_{ij}) \setminus \{S\}) \cup \{S_1, S_2, S_3\}$ , for  $S_1, S_2$  being the 1-simplices obtained by starring S at  $\mathbf{v}_S, S_3 = \{\mathbf{v}_S\}$ , and  $K_{ij}(S_k) = (H_U)_{ij}(S)$  for all  $k \in \{1, 2, 3\}$ , while for all other  $R \in \text{dom}(K_{ij}), K_{ij}(R) = (H_U)_{ij}(R)$ . If  $S \notin F_{U_{i1}}^j \cup F_{U_{i2}}^j$ , set  $K_{ij} = (H_U)_{ij}$  for all  $j \in \{1, 2\}$ . k2 -refinement: There is (i, j) and R such that  $S \in U_{ij}(R)$ . Then let  $h_i$  be the  $\mathbb{BL}_2$ -hat with apex  $\mathbf{v}_i$  and let  $h_S = h_1 \lor h_2$ . Set  $K_{ij}(R) = ((H_U)_{ij}(R) \setminus \{h_1, h_2\}) \cup$   $\{h_S, h_S \to h_1, h_S \to h_2\}$ . Set  $K_{ij}(R') = (H_U)_{ij}(R')$ for all  $R \neq R' \in \operatorname{dom}((H_U)_{ij})$ . Set  $K_{i',j'} = (H_U)_{i'j'}$ for all  $(i', j') \in (\{0, 1\} \times \{0, 1, 2\}) \setminus \{(i, j)\}$ .

**Proposition 2.**  $H_U * S$  is the  $\mathbb{BL}_2$ -set associated with U \* S.

We now single out some families of functions in  $\mathbb{BL}_2$ . Each function in  $\mathbb{BL}_2$  will turn out to be a combination of suitably chosen functions in these special families. In turn, we shall represent any function belonging to one of these families as a combination of  $\mathbb{BL}_2$ -hats in the same family.

**Lemma 5.** Let  $f \in \mathbb{BL}_2$  be either of the form  $\langle g, \top | \mathbf{1}_1(g), \top | \mathbf{1}_2(g), \top, \top, \top, \rangle$ , or of the form  $\langle \top, \top, \top, g, \top | \mathbf{1}_1(g), \top | \mathbf{1}_2(g) \rangle$ . Then f is a finite  $\odot$ -combination of actual  $\mathbb{BL}_2$ -hats obtained by finitely many k1-refinements from the set of primitive hats  $P_{00}$ , or the set  $P_{10}$ , respectively.

*Proof:* Consider first  $f = \langle g, \top | \mathbf{1}_1(g), \top | \mathbf{1}_2(g), \top, \top, \top \rangle$ . Since  $g \in WH_2$ , by Lemma 3,  $g = \bigoplus_{i \in I} k_i^{m_i}$  for suitable integers  $\{m_i\}_{i \in I}$  and a finite set of actual Schauder co-hats  $\{k_i\}_{i \in I}$  obtained from  $U_0^2$  by finitely many edge star refinements. That is  $\{k_i\}_{i\in I} = H_{U_u}$  for a unimodular triangulation  $U_u$  of  $[0,1]^2$ , and there exist 1-simplices  $S_1, S_2, \ldots, S_u \subseteq [0, 1]^2$  such that  $U_u = U_0^2 * S_1 * S_2 * \cdots * S_u$ . As each  $S_i$  is either a simplex of the fundamental partition of  $[0,1]^2$  or it is obtained by a finite sequence of edge starrings from the fundamental partition, then we can form the  $\mathbb{BL}_2$ triangulation  $B_u = B * S_1 * \cdots * S_u$ . By Proposition 1 and Proposition 2,  $P_u = P * S_1 * \cdots * S_u$  is the  $\mathbb{BL}_2$ -set of  $B_u$ . In particular  $(P_u)_{00} = \{h_i\}_{i \in I}$ , where each  $h_i$  is a  $\mathbb{BL}_2$ -hat of kind k1 whose associated Schauder co-hat is  $k_i$ . Since  $\top \lor \top = \top \rightarrow \top = \top \odot \top = \top$ , then for each  $(j,l) \in (\{0,1\} \times \{0,1,2\}) \setminus \{0,0\}$ , it holds that  $(\bigcirc_{i \in I} h_i^{m_i})_{jl}$ is constantly  $\top$  over its domain. Then

$$\bigodot_{i\in I} h_i^{m_i} = \langle g, \top | \mathbf{1}_1(g), \top | \mathbf{1}_2(g), \top, \top, \top \rangle \,.$$

The case  $f = \langle \top, \top, \top, g, \top | \mathbf{1}_1(g), \top | \mathbf{1}_2(g) \rangle$  is dealt with analogously.

**Lemma 6.** Let  $f \in \mathbb{BL}_2$  be of the form  $\langle g, \top | \mathbf{0}_1(g), \top | \mathbf{0}_2(g), \emptyset, \emptyset, \emptyset \rangle$ , Then f is the negation of a finite  $\odot$ -combination of actual  $\mathbb{BL}_2$ -hats obtained by finitely many k1-refinements from the set of primitive hats  $P_{00}$ .

*Proof:* By Theorem 2, f is such that  $f = \neg \neg f$ . Now,  $\neg f = \langle g, \top | \mathbf{1}_1(g), \top | \mathbf{1}_2(g), \top, \top, \top, \top \rangle$ , and by Lemma 5, there is a finite set  $\{h_i\}_{i \in I}$  of actual  $\mathbb{BL}_2$ -hats obtained by finitely many k1-refinements from the set of primitive hats  $P_{00}$  and suitable positive integers  $\{m_i\}_{i \in I}$  such that  $\neg f = \bigoplus_{i \in I} h_i^{m_i}$ . Hence  $f = \neg \neg f = \neg \bigoplus_{i \in I} h_i^{m_i}$ .

**Lemma 7.** Each total  $\mathbb{BL}_2$ -hat h belonging to kind k2 is obtained by finitely many k2-refinements from the set of primitive hats  $P_{ij}(\{0\})$  or  $P_{ij}((0,1))$ , for some  $(i,j) \in \{0,1\} \times \{1,2\}$ . *Proof:* Each Schauder co-hat k in one variable is obtained by finitely many star refinements from the set of primitive cohats  $\{x_1, \neg x_1\}$ . Since  $\top \lor \top = \top \to \top = \top$ , we immediately conclude that h is obtained by finitely many k2-refinements from the set  $P_{ij}(\{0\})$  or  $P_{ij}((0,1))$ .

There remains to deal with  $\mathbb{BL}_2$ -hats that are not total.

**Definition 10.** Let U be a  $\mathbb{BL}_2$ -triangulation. Fix  $(i, j) \in \{0, 1\} \times \{1, 2\}$ , and let  $\hat{h}$  be the only virtual  $\mathbb{BL}_2$ -hat in  $(H_U)_{i0}$ . Pick  $k \in (H_U)_{ij}(S)$  (then k is a total k2-hat). Let further h', h'' be actual k1-hats in  $(H_U)_{i0}$ . Denote  $H^\circ = (H_U)_{i0} \setminus \{h', h'', \hat{h}\}, H(h') = H^\circ \cup \{h''\}$  and  $H(h'') = H^\circ \cup \{h'\}$ . Then the function

$$\Uparrow (h',k) = (\bigcup_{h \in H(h')} h) \to k$$

is the *vertical refinement* of the pair (h', k). The function

$$\Uparrow (h', h'', k) = (\Uparrow (h', k) \odot \Uparrow (h'', k)) \to ((\bigcup_{h \in H^{\circ}} h) \to k)$$

is the vertical refinement of the triple (h', h'', k).

**Lemma 8.** Each non-total  $\mathbb{BL}_2$ -hat h belonging to kind k2 is obtained by vertical refinement from a set of hats obtained by finitely many steps of k1-k2-refinement from P.

*Proof:* Consider a non-total k2  $\mathbb{BL}_2$ -hat h, and let  $h_{ij} =$ k|Q as in Definition 7, for some  $(i, j) \in \{0, 1\} \times \{1, 2\}$ . Let g be the total hat of kind k2 such that  $g_{ij} = k | (0,1)$ . By Lemma 7, g is obtained by k2-refinement from P. Consider first the case (i, j) = (0, 1) and suppose  $Q = \{v\}$  for some  $v \in (0,1) \cap \mathbb{Q}$ . Then let U be any  $\mathbb{BL}_2$ -triangulation, obtained via finitely many starrings from B, such that  $\mathbf{w} \in U$  for the point defined by  $\pi_1(\mathbf{w}) = v$  and  $\pi_2(\mathbf{w}) = 1$ . Such U exists by Lemma 2. Let  $K = H_U$ . Then  $K_{00}$  contains an actual  $\mathbb{BL}_2$ -hat f with apex w. Let  $K' = K_{00} \setminus \{f, \hat{e}\}$ , for  $\hat{e}$  the unique virtual hat of  $K_{00}$ . Then  $\bigcirc_{e \in K'} e$  is an element of  $\mathbb{BL}_2$  of the form  $\langle f', \top | \{v\}, \top, \top, \top, \top \rangle$  for some  $f' \in \mathbb{WH}_2$ . Direct computation using the operations defined in Theorem 2 shows the vertical refinement  $\uparrow (f, g)$  is h. Now suppose  $Q = (v_1, v_2) \subset (0, 1)$  is an open unimodular segment with rational endpoints. Let U be any  $\mathbb{BL}_2$ -triangulation, obtained via finitely many starrings from B, such that  $[\mathbf{w}_1, \mathbf{w}_2] \in U$ for points  $\mathbf{w}_l$  defined by  $\pi_1(\mathbf{w}_l) = v_l$  and  $\pi_2(\mathbf{w}_l) = 1$ , for  $l \in$  $\{1, 2\}$ . The existence of such U is granted by Lemma 2, again. Let  $f_1, f_2$  be  $\mathbb{BL}_2$ -hats with apices  $\mathbf{w}_1, \mathbf{w}_2$  in  $K_{00}$ . Direct computation now shows  $\bigcirc_{e \in K_{00} \setminus \{f_1, f_2, \hat{e}\}} e$  is the function  $\langle f', \top | [v_1, v_2], \top, \top, \top, \top \rangle$  for some  $f' \in W\mathbb{H}_2$ , and hence  $\uparrow (f_1, f_2, g) = h$ . The cases  $(i, j) \in (\{0, 1\} \times \{1, 2\}) \setminus \{(0, 1)\}$ are dealt with analogously.

**Theorem 5** (Normal Form). *Each*  $f \in \mathbb{BL}_2$  *can be expressed as* 

$$f = \nu_f(\bigcup_{j \in J_0} h_{0,j}^{m_{0,j}}) \odot \bigcup_{j \in J_1} h_{1,j}^{m_{1,j}},$$

where  $J_0$  and  $J_1$  are finite index sets, and for each  $i \in \{0, 1\}$ , and  $j \in J_i$ , the exponent  $m_{i,j}$  is a nonnegative integer and

# $h_{i,j}$ is an actual $\mathbb{BL}_2$ -hat obtained by a finite process of k1, k2, vertical refinements from the set of primitive hats P.

*Proof:* If  $f_{10} = \emptyset$  then we use Lemma 6 to obtain a finite family of  $\mathbb{BL}_2$ -hats  $\{h_{0,j}\}_{j \in J_0}$  and integers  $\{m_{0,j}\}_{j \in J_0}$  such that, setting  $g^{00} = \neg \bigodot_{j \in J_0} h_{0,j}^{m_{0,j}}$ , we have  $g^{00} = \langle f_{00}, \top \mid \mathbf{0}_1(f_{00}), \top \mid \mathbf{0}_2(f_{00}), \emptyset, \emptyset, \emptyset \rangle$ . Let U be a  $\mathbb{BL}_2$ -triangulation such that f is linear over each simplex of U. Such U exists by Definition 8 and Lemma 3. Note that for each open simplex  $S \in F_U^j$ ,  $j \in \{1, 2\}$ , either  $f_{0j}$  is not defined over  $[0, 1] \times \pi_{3-j}(S)$  (if j = 1) or  $\pi_{3-j}(S) \times [0, 1]$  (if j = 2), or, in the notation of Definition 2,  $f_{0j} = g|\pi_{3-j}(S)$  for some  $g \in \mathbb{WH}_1$ . In the latter case, use Theorem 4 to express g as  $\bigcirc_{i \in J_S} h_i^{m_i}$  for some finite set  $J_S$ , and then use Lemma 8 to build  $\bigcirc_{i \in J_S} h(k_i)^{m_i}$ , where  $h(k_i)$  is the k2 non-total hat such that  $(h(k_i))_{0j} = k_i|\pi_{3-j}(S)$ . Then  $\bigcirc_{i \in J_S} h(k_i)^{m_i}$  is  $\top$  everywhere but on  $[0, 1] \times \pi_{3-j}(S)$  (if j = 1) or  $\pi_{3-j}(S) \times [0, 1]$  (if j = 2) where it coincides with  $f_{0j}$ . Let  $J_1$  be the disjoint union of all sets  $J_S$  such that  $S \in F_U^1 \cup F_U^2$  and  $f_{01} = g|\pi_{3-j}(S)$  for some  $g \in \mathbb{WH}_1$ . Then  $g^{00} \odot \bigcirc_{i \in J_1} h(k_i)^{m_i}$  is the desired normal form for f.

In case  $f_{10} \neq \emptyset$  we reason analogously, using Lemma 5 instead of Lemma 6, to obtain functions  $g^{00}$  and  $g^{10}$  such that  $g_{00}^{00} = f_{00}$  and  $g_{10}^{10} = f_{10}$ . We then use Lemma 8 as before to obtain all non-total k2  $\mathbb{BL}_2$ -hats needed.

We remark that Theorem 5 cannot be strengthened by omitting virtual hats from P: the minimal set of *actual*  $\mathbb{BL}_2$ -hats allowing to express all elements of  $\mathbb{BL}_2$  with a finite normal form is not finite.

The refinement procedure provides an explicit construction of the BL-terms whose interpretation in  $\mathbb{BL}_2$  correspond to  $\mathbb{BL}_2$ -hats. First, we provide BL-terms whose interpretation in  $\mathbb{BL}_2$  correspond to the actual primitive  $\mathbb{BL}_2$ -hats. We define,

$$\begin{split} & x \triangleleft y = (x \rightarrow y) \odot ((y \rightarrow x) \rightarrow x), \\ & x \diamond y = ((x \triangleleft y) \rightarrow y) \land ((y \triangleleft x) \rightarrow x), \end{split}$$

and we prepare (i = 1, 2),

$$\begin{split} x_{i00} &= \left( (\bot \diamond x_i) \land (\bot \diamond x_{3-i}) \land (x_i \diamond x_{3-i}) \right) \to x_i, \\ x_{i01} &= \left( (\bot \diamond x_{3-i}) \land (x_{3-i} \diamond x_i) \right) \to x_i, \\ x_{i10} &= \left( (\bot \diamond x_i) \land (\bot \diamond x_{3-i}) \land (x_i \diamond x_{3-i}) \right) \to x_i, \\ x_{i11} &= \left( (\bot \diamond x_i) \land (\bot \diamond x_{3-i}) \land (x_{3-i} \diamond x_i) \right) \to x_i. \end{split}$$

**Proposition 3.** The following hold:

 $\begin{aligned} &(x_{100} \lor x_{200})^{\mathbb{B}\mathbb{L}_2} = p_{00}^0; \quad (x_{100} \to x_{200})^{\mathbb{B}\mathbb{L}_2} = p_{10}^0; \\ &(x_{200} \to x_{100})^{\mathbb{B}\mathbb{L}_2} = p_{20}^0; \quad (x_{110} \lor x_{210})^{\mathbb{B}\mathbb{L}_2} = p_{10}^0; \\ &(x_{110} \to x_{210})^{\mathbb{B}\mathbb{L}_2} = p_{10}^1; \quad (x_{210} \to x_{110})^{\mathbb{B}\mathbb{L}_2} = p_{21}^2; \\ &(x_{101})^{\mathbb{B}\mathbb{L}_2} = p_{01}; \quad (x_{202})^{\mathbb{B}\mathbb{L}_2} = p_{02}; \\ &(x_{111})^{\mathbb{B}\mathbb{L}_2} = p_{11}; \quad (x_{212})^{\mathbb{B}\mathbb{L}_2} = p_{12}. \end{aligned}$ 

Proof: Direct computation.

Given the BL-terms for primitive hats, it is possible to iterate through the refinement process to construct BL-terms for all the actual  $\mathbb{BL}_2$ -hats. We provide an example of such construction (compare Lemma 7, see also [AG05] for the virtual-hat elimination algorithm for the one-variable case).



Fig. 1. Sampling the functional representation of some primitive  $\mathbb{BL}_2$ -hats. In [AB09] we define an isomorphism of BL-algebras F from the BL-algebra of encodings  $\mathbb{BL}_n$  to the BL-algebra of real functions from  $[0, n + 1]^n$  to [0, n+1] generated by the projections  $x_i(t_1, \ldots, t_n) = t_i$  (see [AM03]). As an example of this functional representation in the 2-variable case, we depict here the graph of the functions corresponding to some primitive  $\mathbb{BL}_2$ -hats.

**Example 3.** We construct the BL-term whose interpretation in  $\mathbb{BL}_2$  corresponds to  $f = \langle \top, x_1 \lor \neg x_1, \top, \top, \top, \top, \top \rangle$ . The encoding f is obtained in a single step of k2-refinement from the set  $\{p_{01}, \hat{p}_{01}\}$ . The BL-term corresponding to f is obtained as follows: eliminate the negations from the Schauder cohat  $x_1 \lor \neg x_1$  (maintaining equivalence, compare [Bov08] for details), obtaining the term  $x_1 \rightarrow x_1^2$ . Then substitute  $x_1$  by  $x_{101}$ . We have  $(x_{101} \rightarrow x_{101}^2)^{\mathbb{BL}_2} = f$ . The total  $\mathbb{BL}_2$ -hat hsuch that  $h_{01} = (x_1 \lor \neg x_1) \{0\}$  and  $h_{01} = \top |(0, 1)$  is obtained from f by substituting  $x_{101}$  with  $(p_{00}^1 \rightarrow (p_{00}^1 \odot p_{00}^1)) \rightarrow x_{101}$ .

## REFERENCES

- [AB09] S. Aguzzoli and S. Bova. The Free n-Generated BL-Algebra. Submitted.
- [AG05] S. Aguzzoli and B. Gerla. Normal Forms for the One-Variable Fragment of Hájek's Basic Logic. In *Proceedings of ISMVL'05*, pages 284–289. IEEE Computer Society, 2005.
- [AM03] P. Aglianò and F. Montagna. Varieties of BL-Algebras I: General Properties. Journal of Pure and Applied Algebra, 181:105–129, 2003.
- [AP02] P. Aglianò and G. Panti. Geometrical methods in Wajsberg hoops. J. Algebra, 256(2):352–374, 2002.
- [Bov08] Simone Bova. BL-Functions and Free BL-Algebra. PhD thesis, University of Siena, Italy, 2008.
- [CDM99] R. L. O. Cignoli, I. M. L. D'Ottaviano, and D. Mundici. Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 1999.
- [CEGT00] R. Cignoli, F. Esteva, L. Godo, and A. Torrens. Basic Fuzzy Logic is the Logic of Continuous t-Norms and their Residua. *Soft Computing*, 4(2):106–112, 2000.
- [Ewa96] G. Ewald. Combinatorial convexity and algebraic geometry, volume 168 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1996.
- [Háj98] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.
  [McN51] R. McNaughton. A Theorem About Infinite-Valued Sentential
- Logic. The Journal of Symbolic Logic, 16:1–13, 1951.
- [MMM07] C. Manara, V. Marra, D. Mundici. Lattice-ordered abelian groups and Schauder bases of unimodular fans. *Transactions of the American Mathematical Society*, 359:1593–1604, 2007.
- [Mon00] F. Montagna. The Free BL-Algebra on One Generator. Neural Network World, 5:837–844, 2000.
- [Mun94] D. Mundici. A Constructive Proof of McNaughton's Theorem in Infinite-Valued Logics. *The Journal of Symbolic Logic*, 59:596–602, 1994.
- [P95] G. Panti. A Geometric Proof of the Completeness of the Lukasiewicz Calculus. *The Journal of Symbolic Logic*, 60(2):563–578, 1995.