Schauder Hats for the 2-variable Fragment of BL

Stefano Aguzzoli
D.S.I., Università di Milano Milano, Italy
Email: aguzzoli@dsi.unimi.it

Simone Bova
Department of Mathematics, Vanderbilt University
Nashville TN, USA
Email: simone.bova@vanderbilt.edu

Abstract

The theory of Schauder hats is a beautiful and powerful tool for investigating, under several respects, the algebraic semantics of Lukasiewicz infinite-valued logic [CDM99], [MMM07], [Mun94], [P95]. As a notably application of the theory, the elements of the free n-generated MV-algebra, that constitutes the algebraic semantics of the n-variate fragment of Lukasiewicz logic, are obtained as (t-conorm) monoidal combination of finitely many hats, which are in turn obtained through finitely many applications of an operation called starring, starting from a finite family of primitive hats.

The aim of this paper is to extend this portion of the Schauder hats theory to the two-variable fragment of Hájek's Basic logic. This step represents a non-trivial generalization of the onevariable case studied in [AG05], [Mon00], and provides sufficient insight to capture the behaviour of the n-variable case for $n \geq 1$.

I. Introduction

For background notions and facts on Łukasiewicz and Basic logic (in short, BL), and their algebraic semantics, respectively the varieties of MV-algebras and BL-algebras, we refer the reader to [CDM99], [Háj98], [CEGT00], [AM03]. We only mention that the free BL-algebra over n-many generators, in symbols $\mathbb{B L}_{n}$, is the subalgebra of the BL-algebra of all functions from $((n+1)[0,1])^{n}$ to $(n+1)[0,1]$ generated by the projections, where $(n+1)[0,1]$ is the ordinal sum of $n+1$ many copies of the generic MV-algebra $[0,1]$. The generic MV -algebra $[0,1]$ is (term equivalent to) the algebra given by the interval $[0,1]$, equipped with the constant $\perp=0$, and the operations $x \odot y=\max \{0, x+y-1\}$ and $x \rightarrow y=$ $\min \{1,1-x+y\}$. We define $\neg x=x \rightarrow \perp, \top=\neg \perp$, $x \oplus y=\neg x \rightarrow y, x \ominus y=x \odot \neg y, x \wedge y=x \odot(x \rightarrow y)$, and $x \vee y=((x \rightarrow y) \rightarrow y) \wedge((y \rightarrow x) \rightarrow x)$. Moreover, for any integer $m>0$, we denote $m \varphi$ and φ^{m} the \oplus-disjunction and the \odot-conjunction, respectively, of m occurrences of φ.

We shall develop a notion of BL-Schauder hat (for short, $B L$-hat) such that the following two facts hold: (i) each element of $\mathbb{B L}_{n}$ is a t-norm monoidal combination of finitely many BL-hats. (ii) each BL-hat in the above combination is constructed, as a BL-formula, via a refinement procedure consisting in a BL-combination of a finite set of primitive BL-hats.
The key ingredients of the construction are presented in the general case $n \geq 1$ in [AB09], [Bov08], where the free n-generated BL-algebra is characterized as a BL-algebra of geometric-combinatorial objects called encodings. In this paper, in the interest of intuition and readability, we avoid
the technicalities involved in the general case, and we study directly the two-variable case. Indeed, the two-variable case is complex enough to enlighten the construction in the general case, and allows for a neat geometrical intuition of the behaviour of BL-hats in the refinement procedure.

II. Free MV-algebras and free Wajsberg hoops

We collect from the literaure the following representations of the free n-generated MV-algebra, $\mathbb{M} \mathbb{V}_{n}$, and the free n-generated Wajsberg hoop, $\mathbb{W H}_{n}$, in terms of n-ary McNaughton functions. Recall that a Wajsberg hoop is the $\{\odot, \rightarrow, \top\}$-subreduct of an MV-algebra, and a continuous function $f:[0,1]^{n} \rightarrow[0,1]$ is a McNaughton function if and only if there are finitely many linear polynomials with integer coefficients, p_{1}, \ldots, p_{k}, such that, for every $\mathbf{x} \in[0,1]^{n}$, there is $j \in\{1, \ldots, k\}$ such that $f(\mathbf{x})=p_{j}(\mathbf{x})$.
Theorem 1 ([McN51], [AP02]). $\mathbb{M} \mathbb{V}_{n}$ is (isomorphic to) the algebra of n-ary McNaughton functions, where \perp is realized by the constant 0 , and \odot and \rightarrow are realized by the operations pointwise defined by the corresponding operations of the generic MV-algebra $[0,1]$.
$\mathbb{W}_{\mathbb{H}}^{n} n$ is (isomorphic to) the algebra of n-ary McNaughton functions f such that $f(1,1, \ldots, 1)=1$, where \odot, \rightarrow and \top are realized by the operations pointwise defined by the corresponding operations of the generic MV-algebra $[0,1]$.

III. The Free 2-Generated BL-Algebra

In this section, we introduce the notion of (binary) encoding, and we describe the free 2 -generated BL-algebra, $\mathbb{B L}_{2}$, in terms of (binary) encodings, as in [AB09].

Given a subset $K=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ of $\{1, \ldots, n\}$ we denote π_{K} the projection over K, that is, $\pi_{K}\left(t_{1}, \ldots, t_{n}\right)=$ $\left(t_{j_{1}}, \ldots, t_{j_{k}}\right)$.

By a (rational) prism we mean a set $P \subseteq[0,1]^{2}$ either of the form $[0,1] \times Q$ or of the form $Q \times[0,1]$ for $Q \subseteq[0,1)$ being either (a singleton containing) a rational point or an open interval with rational endpoints. The set Q is called the base of P and is denoted $B(P)$.
Definition 1. Let $K \subseteq\{1,2\}$. A function f is essentially K-ary prismwise Wajsberg if the following holds.

Case $K=\emptyset$: In this case, $f=\emptyset$, the empty function (the only function with empty domain).

Case $K=\{1\}$ or $K=\{2\}$: In this case, the following holds. (i) $\operatorname{dom}(f)$ is the union of as set Δ of finitely many
prisms $P \subseteq[0,1]^{2}$, of the first form if $\mathrm{K}=\{1\}$, or of the second if $K=\{2\}$. (ii) For each $P \in \Delta$ there is $g \in \mathbb{W H}_{1}$ such that $f\left(x_{1}, x_{2}\right)=g\left(\pi_{K}\left(x_{1}, x_{2}\right)\right)$ for all $\left(x_{1}, x_{2}\right) \in P$.

Let $Q=B(P)$. We denote the restriction of f to P by $g \mid Q$. If $\operatorname{dom}(f)=\{P\}$, then we denote f simply by $g \mid Q$. If $\bigcup_{P \in \Delta} B(P)=[0,1)$ then we say f is total.

Case $K=\{1,2\}$: In this case, $f \in \mathbb{W}_{H_{2}}$.
We let $\mathbb{P W} W_{2}$ denote the set of all essentially K-ary prismwise Wajsberg functions, for all $K \in 2^{\{1,2\}}$.

For each function $f:[0,1]^{2} \rightarrow[0,1]$, each $b \in\{0,1\}$ and each $i \in\{1,2\}$, we let $\mathbf{b}_{i}(f)=\pi_{\{1,2\} \backslash\{i\}}\left(f^{-1}(b) \cap\left\{\left(x_{1}, x_{2}\right) \mid\right.\right.$ $\left.\left.\pi_{\{i\}}\left(x_{1}, x_{2}\right)=1\right\}\right) \backslash\{1\}$.

Definition 2 ((Binary) Encoding). A (binary) encoding is a 6-tuple,

$$
f=\left\langle f_{00}, f_{01}, f_{02}, f_{10}, f_{11}, f_{12}\right\rangle
$$

satisfying the following properties:

1) $f_{i j} \in \mathbb{P} \mathbb{W}_{2}$ for all $(i, j) \in\{0,1\} \times\{0,1,2\}$.
2) $f_{00} \in \mathbb{W H}_{2}$, and, either $f_{10} \in \mathbb{W} \mathbb{H}_{2}$ or $f_{10}=\emptyset$.
3) Let $b \in\{0,1\}$ such that $b=0$ if and only if $f_{10}=\emptyset$, let $i \in\{0,1\}$, and let $j \in\{1,2\}$. Then,

$$
\operatorname{dom}\left(f_{i j}\right)=\left\{\left(x_{1}, x_{2}\right) \mid x_{3-j} \in \mathbf{b}_{j}\left(f_{i 0}\right)\right\}
$$

We let A_{2} denote the set of all binary encodings.
It follows that $f_{10}=\emptyset$ implies $f_{11}=f_{12}=\emptyset$.
For any pair (f, g) where f is an encoding and g either an encoding or an encoding component, we set $\nu_{f}(g)=g$ if $f_{10} \neq \emptyset, \nu_{f}(g)=\neg g$ if $f_{10}=\emptyset$.
Theorem 2. The free 2-generated BL-algebra, $\mathbb{B L}_{2}$, is (isomorphic to) the BL-algebra,

$$
\mathbb{B L}_{2}=\left\langle A_{2}, \odot, \rightarrow, \perp\right\rangle
$$

obtained by equipping the binary encodings with the following constant and operations. Let $f, g \in A_{2}$. Then,

- $\perp=\langle\top, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset\rangle$.
- $f \odot g=e$, where $e \in A_{2}$ is defined as follows. $\operatorname{dom}\left(e_{i j}\right)=\operatorname{dom}\left(f_{i j}\right) \cap \operatorname{dom}\left(g_{i j}\right)$, for each $(i, j) \in$ $\{0,1\} \times\{0,1,2\} ;$ for all $\left(x_{1}, x_{2}\right) \in \operatorname{dom}\left(e_{i j}\right)$, if $(i, j) \in(\{0,1\} \times\{0,1,2\}) \backslash\{(0,0)\}$ then $e_{i j}\left(x_{1}, x_{2}\right)=$ $f_{i j}\left(x_{1}, x_{2}\right) \odot g_{i j}\left(x_{1}, x_{2}\right)$, while

$$
e_{00}= \begin{cases}f_{00} \oplus g_{00} & \text { if } f_{10}=\emptyset \text { and } g_{10}=\emptyset \\ g_{00} \rightarrow f_{00} & \text { if } f_{10}=\emptyset \text { and } g_{10} \neq \emptyset \\ f_{00} \rightarrow g_{00} & \text { if } f_{10} \neq \emptyset \text { and } g_{10}=\emptyset \\ f_{00} \odot g_{00} & \text { if } f_{10} \neq \emptyset \text { and } g_{10} \neq \emptyset\end{cases}
$$

- $f \rightarrow g=e$, where $e \in A_{2}$ is defined as follows.

$$
e_{00}= \begin{cases}g_{00} \rightarrow f_{00} & \text { if } f_{10}=\emptyset \text { and } g_{10}=\emptyset \\ f_{00} \oplus g_{00} & \text { if } f_{10}=\emptyset \text { and } g_{10} \neq \emptyset \\ f_{00} \odot g_{00} & \text { if } f_{10} \neq \emptyset \text { and } g_{10}=\emptyset \\ f_{00} \rightarrow g_{00} & \text { if } f_{10} \neq \emptyset \text { and } g_{10} \neq \emptyset\end{cases}
$$

If $f_{10} \neq \emptyset$ then $e_{10}=f_{10} \rightarrow g_{10}$ and for each $(i, j) \in$ $\{0,1\} \times\{1,2\}, \operatorname{dom}\left(e_{i j}\right)=\operatorname{dom}\left(g_{i j}\right) \cup\left\{\left(x_{1}, x_{2}\right) \mid\right.$
$\left.\nu_{f}\left(f_{i j}\left(y_{1}, y_{2}\right)\right) \leq \nu_{g}\left(g_{i j}\left(y_{1}, y_{2}\right)\right), y_{j}=1, y_{3-j}=x_{3-j}\right\}$ and $e_{i j}\left(x_{1}, x_{2}\right)=\left(f_{i j} \rightarrow g_{i j}\right)\left(x_{1}, x_{2}\right)$ if $\left(x_{1}, x_{2}\right) \in$ $\operatorname{dom}\left(f_{i j}\right) \cap \operatorname{dom}\left(g_{i j}\right), e_{i j}\left(x_{1}, x_{2}\right)=1$ otherwise. If $f_{10}=$ \emptyset then $e_{0 j}$ is defined as above for each $j \in\{1,2\}$, while $e_{1 j}$ is total and coinciding with \top for all $j \in\{0,1,2\}$.
The two generators are $x_{1}^{\mathbb{B L}_{2}}=\left\langle x_{1}, x_{1}, \emptyset, x_{1}, x_{1}, \emptyset\right\rangle$, and $x_{2}^{\mathbb{B L}_{2}}=\left\langle x_{2}, \emptyset, x_{2}, x_{2}, \emptyset, x_{2}\right\rangle$.

The interpretation $\varphi^{\mathbb{B L}_{2}}$ of a formula φ in the two-variable fragment of BL is the image $\iota(\varphi)$ of φ under the $\{\odot, \rightarrow, \perp\}$ homomorphism ι from the algebra of all two-variable formulas of BL to $\mathbb{B L}_{2}$, uniquely determined by $\iota\left(x_{i}\right)=x_{i}^{\mathbb{B L}_{2}}$.

IV. Convex Geometry Background

To recall the notion of Schauder hat and define $\mathbb{B L}_{2}$-hats we need to introduce some notions of convex geometry (see [Ewa96], for further background).

An n-simplex $S \subseteq \mathbb{R}^{m}$ (for $m \geq n$) is the convex hull of $n+1$ many affinely independent points of \mathbb{R}^{m}, called the vertices of S. That is, a 0 -simplex is a (set containing exactly one) point, a 1 -simplex is a line segment, a 2 -simplex is a triangle, etc. By rational n-simplex in \mathbb{R}^{m} we mean an n simplex S whose vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n+1}$ are rational points in $[0,1]^{m}$, that is each component of each \mathbf{v}_{i} is a rational number $\delta, 0 \leq \delta \leq 1$. In the following we shall consider only rational n-simplices, which we will call simply " n-simplices", or even "simplices" when the dimension does not need to be specified. A k-dimensional face of a n-simplex S, for $-1 \leq k \leq n$ is the convex hull of $k+1$ vertices of S. An open simplex is the relative interior of a simplex (note that vertices, that is, 0 -faces of simplices, are both 0 -simplices and open 0 -simplices; the empty set is the only (-1)-dimensional face of any simplex).

The denominator $\operatorname{den}(\mathbf{v})$ of a rational point $\mathbf{v} \in([0,1] \cap$ $\mathbb{Q})^{m}$ is the least common denominator $\operatorname{den}(\mathbf{v})$ of the coordinates of \mathbf{v}. The homogeneous expression of \mathbf{v} is $\operatorname{den}(\mathbf{v})(\mathbf{v}, 1) \in \mathbb{Z}^{m+1}$. The Farey mediant of a finite set of rational points $\left\{\mathbf{v}_{j}\right\}_{j \in J} \subset([0,1] \cap \mathbb{Q})^{m}$ is the point $\left(\sum_{j \in J} \operatorname{den}\left(\mathbf{v}_{j}\right) \mathbf{v}_{j}\right) /\left(\sum_{j \in J} \operatorname{den}\left(\mathbf{v}_{j}\right)\right)$. A rational m-simplex $S \subseteq \mathbb{R}^{m}$ is unimodular if 1 is the absolute value of the determinant of the matrix whose rows are the homogeneous expressions of the vertices of S. A rational n-simplex $F \subseteq$ \mathbb{R}^{m}, with $n \leq m$ is unimodular if it is a face of a unimodular m-simplex. Note that a rational 0 -simplex (a vertex) is always unimodular.

A unimodular triangulation of $[0,1]^{m}$ is a finite collection U of n-simplices, for all $-1 \leq n \leq m$, such that $\bigcup\{S \in$ $U\}=[0,1]^{m}$, the intersection of any two members S_{1}, S_{2} of U is a common face of both S_{1} and S_{2}, and U is closed under taking faces. We say that an open simplex S belongs to U (in symbols, $S \in U$) if there is $T \in U$ such that S is the relative interior of T.

V. Schauder Hats

In this section we collect basic notions and results about Schauder hats that we shall be using in the paper (see [CDM99], [Mun94], [P95]).

Definition 3. Let U be a unimodular triangulation of $[0,1]^{n}$ and let S be a k-simplex of U. Then the starring of U at S, in symbols $U * S$, is the set of simplices obtained as follows.

1) Put in $U * S$ all simplices of U not containing S.
2) Display $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ the vertices of S. Then, for each $d \in\{1, \ldots, k-1\}$ and each d-dimensional face T of S, displaying $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{d+1}\right\}$ the vertices of T, replace each simplex $T \subseteq R \in U$ with the collection $\left\{R_{1}, \ldots, R_{d+1}\right\}$, where R_{i} is the simplex whose vertices are those of R with \mathbf{w}_{i} replaced by the Farey mediant \mathbf{v}_{S} of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.

Note that $U * S$ is again a unimodular triangulation of $[0,1]^{n}$. If S is a 1 -simplex, the starring $U * S$ is called an edge starring.

Definition 4. Given a unimodular triangulation U of $[0,1]^{n}$ and a vertex (0 -simplex) v of U, the Schauder hat with apex \mathbf{v} in U is the continuous function $h_{\mathbf{v}, U}:[0,1]^{n} \rightarrow[0,1]$ determined by the following conditions:

1) $h_{\mathbf{v}, U}(\mathbf{v})=1 / \operatorname{den}(\mathbf{v})$.
2) $h_{\mathbf{v}, U}(\mathbf{u})=0$ for all vertices $\mathbf{u} \neq \mathbf{v}$ of U.
3) $h_{\mathbf{v}, U}$ is linear over each simplex of U.

The star of \mathbf{v} in U is the set of all simplices of U having \mathbf{v} among their vertices. The Schauder set H_{U} associated with a unimodular triangulation U is the set of all hats of the form $h_{\mathbf{v}, U}$ for \mathbf{v} a vertex of U.

Let $\mathbf{v}_{1}, \ldots \mathbf{v}_{k}$ be the vertices of a simplex $S \in U$. Then the star refinement $H_{U} * S$ of H_{U} at S is obtained as follows: Let h_{i} be the hat in H_{U} with apex \mathbf{v}_{i}, and let $h_{S}=\bigwedge_{i=1}^{q} h_{i}$. Then put in $H_{U} * S$ the function h_{S} together with all hats of H_{U} distinct from any h_{i} and replace h_{j} by $h_{j} \ominus h_{S}$, for each $j \in\{1, \ldots, k\}$.

Lemma 1. $H_{U} * S$ is a Schauder set. In particular $H_{U} * S=$ $H_{U * S}$ and the apex of h_{S} is the Farey mediant of the vertices of S.
Definition 5. Let T be the n-simplex whose set of vertices is $\left\{\mathbf{v}_{j}\right\}_{j=0}^{n}$, for $\pi_{\{i\}}\left(\mathbf{v}_{j}\right)=0$ if $i+j \leq n, \pi_{\{i\}}\left(\mathbf{v}_{j}\right)=1$, otherwise. Let Sym_{n} be the group of all permutations of the set $\{1,2, \ldots, n\}$. For each $\sigma \in \operatorname{Sym}_{n}$ let T_{σ} be the simplex whose i th vertex is such that its j th component is $\pi_{\{\sigma(j)\}}\left(\mathbf{v}_{i}\right)$. Let F_{σ} be the set of all faces of T_{σ}. Then

$$
U_{0}^{n}=\bigcup_{\sigma \in \operatorname{Sym}_{\mathrm{n}}} F_{\sigma}
$$

is a unimodular triangulation of $[0,1]^{n}$, called the fundamental partition of $[0,1]^{n}$.
Example 1. $U_{0}^{1}=\{\{0\},[0,1],\{1\}\}$, and $H_{U_{0}^{1}}=\left\{x_{1}, \neg x_{1}\right\}$. The 2-simplices of U_{0}^{2} are $\left\{\left(t_{1}, t_{2}\right) \mid 0 \leq t_{1} \leq t_{2} \leq 1\right\}$ and $\left\{\left(t_{1}, t_{2}\right) \mid 0 \leq t_{2} \leq t_{1} \leq 1\right\}$. Moreover, $H_{U_{0}^{2}}=\left\{x_{1} \wedge x_{2}, x_{1} \ominus\right.$ $\left.x_{2}, x_{2} \ominus x_{1}, \neg x_{1} \wedge \neg x_{2}\right\}$.

Before stating the normal form theorem for $\mathbb{M} \mathbb{V}_{n}$ we collect for later use a fundamental technical result on unimodular triangulations.

Lemma 2. Let S be either a rational 0-simplex or a 1simplex lying on an edge of the hypercube $[0,1]^{n}$. Then there is a unimodular triangulation U of $[0,1]^{n}$ such that $S \in U$. Moreover, U is obtained via finitely many edge starrings from U_{0}^{n}.
Lemma 3. For each McNaughton function $f:[0,1]^{n} \rightarrow[0,1]$ there is a unimodular triangulation U_{f} of $[0,1]^{n}$ such that f is linear over each simplex $S \in U_{f}$. Moreover, U_{f} is obtained via finitely many edge starrings from U_{0}^{n}.

Proof: This is one of the main arguments in Panti's geometric proof of the completeness of Łukasiewicz infinitevalued logic, see [P95, Lemma 2.2].

Theorem 3. For each element $f \in \mathbb{M} \mathbb{V}_{n}$ there is a Schauder set $H_{f}=\left\{h_{i}\right\}_{i \in I}$ and nonnegative integers $\left\{m_{i}\right\}_{i \in I}$ such that

$$
f=\bigoplus_{i \in I} m_{i} h_{i}
$$

Proof: One takes $H_{f}=H_{U_{f}}$, and $m_{i}=f\left(\mathbf{v}_{i}\right) \operatorname{den}\left(\mathbf{v}_{i}\right)$, for \mathbf{v}_{i} the apex of h_{i}, for each $i \in I$.

VI. $\mathbb{B L}_{2}$-Hats

As is well known, each MV-algebra $A=\langle A, \oplus, \neg, 0\rangle$ is isomorphic to its order-dual $A^{\partial}=\langle A, \odot, \neg, 1\rangle$ via the map $.^{\partial}: a \mapsto \neg a$. Note that $(a \ominus b)^{\partial}=b^{\partial} \rightarrow a^{\partial}$, and clearly, $(a \vee b)^{\partial}=a^{\partial} \wedge b^{\partial}$ and $(a \wedge b)^{\partial}=a^{\partial} \vee b^{\partial}$. We call Schauder co-hat any function of the form h^{∂} for h a Schauder hat. Let U be a unimodular triangulation of $[0,1]^{n}$, for some n. The apex and the star of a co-hat k^{∂} in U are the apex and the star of the hat k in U, respectively. The co-Schauder set associated with U is the set of all co-hats of the Schauder set of U. The star refinement of the co-Schauder set H_{U} at a simplex $S \in U$ is defined as for Schauder sets, replacing by duality $\bigwedge h_{i}$ with $\bigvee h_{i}^{\partial}$ and $h_{j} \ominus h_{S}$ with $h_{S}^{\partial} \rightarrow h_{j}^{\partial}$.
Definition 6. A Schauder co-hat $k:[0,1]^{n} \rightarrow[0,1]$ is virtual iff its apex is $(1,1, \ldots, 1) ; k$ is actual iff it is not virtual.

Note that a Schauder co-hat $h:[0,1]^{n} \rightarrow[0,1]$ is an element of $\mathbb{W H}_{n}$ iff it is actual.

Theorem 4. For each element $f \in \mathbb{W}_{H_{n}}$ there is a coSchauder set $H_{f}=\left\{h_{i}\right\}_{i \in I}$ and nonnegative integers $\left\{m_{i}\right\}_{i \in I}$ such that

$$
f=\bigodot_{i \in I} h_{i}^{m_{i}}
$$

where $m_{i}=0$ if h_{i} is virtual.
Proof: Immediate from Theorem 1 and Theorem 3.
A primitive Schauder co-hat is a function h^{∂} for $h \in H_{U_{0}^{n}}$.
Example 2. The set of primitive Schauder co-hats for $\mathbb{M} \mathbb{V}_{1}$ is $H_{0}^{1}=\left\{x_{1}, \neg x_{1}\right\}$. The set of primitive Schauder co-hats for $\mathbb{M V}_{2}$ is $H_{0}^{2}=\left\{x_{1} \vee x_{2}, x_{2} \rightarrow x_{1}, x_{1} \rightarrow x_{2}, \neg x_{1} \vee \neg x_{2}\right\}$.

Definition 7. A $\mathbb{B L}_{2}$-hat is a 6 -tuple of functions $h=$ $\left\langle h_{00}, h_{01}, h_{02}, h_{10}, h_{11}, h_{12}\right\rangle$ belonging to one of the following kinds:
k1: Either $h=\langle k, \top| \mathbf{1}_{1}(k), \top\left|\mathbf{1}_{2}(k), \top, \top, \top\right\rangle$ or $h=$ $\langle\top, \top, \top, k, \top| \mathbf{1}_{1}(k), \top\left|\mathbf{1}_{2}(k)\right\rangle$, and k is a Schauder cohat.
k2: There is a pair $(i, j) \in\{0,1\} \times\{1,2\}$, a unimodular triangulation U of $[0,1]$ and an open unimodular simplex $Q \in U$ such that $h_{i^{\prime} j^{\prime}}=\top$ for all $\left(i^{\prime}, j^{\prime}\right) \in(\{0,1\} \times$ $\{0,1,2\}) \backslash\{(i, j)\}$, and $h_{i j}=\top \mid Q^{\prime}$ for every open simplex $Q^{\prime} \neq Q$ in U, while $h_{i j}=k \mid Q$ for k a Schauder co-hat in one variable.

We say k is the Schauder co-hat associated with h. The star and the apex of a $\mathbb{B L}_{2}$-hat h are the star and the apex of the associated Schauder co-hat. $\mathrm{A} \mathbb{B L}_{2}$-hat h is actual (resp. virtual) if so is its associated Schauder co-hat. $\mathrm{A} \mathbb{B L}_{2}$-hat h is total if it belongs to kind k 1 or $Q \in\{\{0\},(0,1)\}$.

Lemma 4. Let h be a $\mathbb{B L}_{2}$-hat. Then $h \in \mathbb{B L}_{2}$ iff h is actual.

VII. Refinement Process

Let U be a unimodular triangulation of $[0,1]^{2}$. Then a relevant face of U is an open k-simplex F of U, for $k \in\{0,1\}$, such that $F \subseteq\{1\} \times[0,1)$ or $F \subseteq[0,1) \times\{1\}$. We denote F_{U}^{1} the set of relevant faces of U of the first form, and F_{U}^{2} the set of relevant faces of U of the second form.

Definition 8. A $\mathbb{B L}_{2}$-triangulation is a 6-tuple $\left\langle U_{00}, U_{01}, U_{02}, U_{10}, U_{11}, U_{12}\right\rangle$ such that $U_{j 0}$ is a unimodular triangulation of $[0,1]^{2}$ for each $j \in\{0,1\}$, and $U_{j i}$ is a map that associates with each relevant face in $F_{U_{j 0}}^{i}$ a unimodular triangulation of $[0,1]$, for each $j \in\{0,1\}$ and each $i \in\{1,2\}$.

We say that a k-simplex S is a simplex of U if either $S \in$ $U_{i 0}$ for some $i \in\{0,1\}$ or there is $(i, j) \in\{0,1\} \times\{1,2\}$, and a simplex $R \in \operatorname{dom}\left(U_{i j}\right)$ such that $S \in U_{i j}(R)$.

The $\mathbb{B L}_{2}$-fundamental partition is

$$
B=\left\langle U_{0}^{2}, V, V, U_{0}^{2}, V, V\right\rangle
$$

where V is the following map: $\{0\} \mapsto U_{0}^{1},(0,1) \mapsto U_{0}^{1}$ (recall from Definition 5 that U_{0}^{n} is the fundamental partition of $\left.[0,1]^{n}\right)$.

The $\mathbb{B L}_{2}$-set H_{U} associated with a $\mathbb{B L}_{2}$-triangulation U is a 6 -tuple $\left\langle H_{00}, H_{01}, H_{02}, H_{10}, H_{11}, H_{12}\right\rangle$ such that, for each $i \in$ $\{0,1\}, H_{i 0}$ is the set of $\mathrm{k} 1 \mathbb{B L}_{2}$-hats such that their associated co-hats form the co-Schauder set for $U_{i 0}$; for each $j \in\{1,2\}$, $H_{i j}$ is the map with the same domain as $U_{i j}$ defined as follows. For each $S \in \operatorname{dom}\left(H_{i j}\right), H_{i j}(S)$ is the set of total k2 $\mathbb{B L}_{2^{-}}$ hats such that their associated co-hats form the co-Schauder set for $U_{i j}(S)$.

Note that each hat of H_{U} is linear over each simplex of U.
Definition 9. Let
$p_{00}^{0}=\left\langle x_{1} \vee x_{2}, \top, \top, \top, \top, \top\right\rangle$,
$p_{00}^{1}=\left\langle x_{1} \rightarrow x_{2}, \emptyset, \top, \top, \top, \top\right\rangle$,
$p_{00}^{2}=\left\langle x_{2} \rightarrow x_{1}, \top, \emptyset, \top, \top, \top\right\rangle$,
$\hat{p}_{00}=\left\langle\neg x_{1} \vee \neg x_{2}, \top\right|\{0\}, \top|\{0\}, \top, \top, \top\rangle$,
$p_{10}^{0}=\left\langle\top, \top, \top, x_{1} \vee x_{2}, \top, \top\right\rangle$,
$p_{10}^{1}=\left\langle\top, \top, \top, x_{1} \rightarrow x_{2}, \emptyset, \top\right\rangle$,
$p_{10}^{2}=\left\langle\top, \top, \top, x_{2} \rightarrow x_{1}, \top, \emptyset\right\rangle$,
$\hat{p}_{10}=\left\langle\top, \top, \top, \neg x_{1} \vee \neg x_{2}, \top\right|\{0\}, \top|\{0\}\rangle$,
$p_{01}=\left\langle\top, x_{1}, \top, \top, \top, \top\right\rangle$,
$\hat{p}_{01}=\left\langle\top, \neg x_{1}, \top, \top, \top, \top\right\rangle$,
$p_{02}=\left\langle\top, \top, x_{2}, \top, \top, \top\right\rangle$,
$\hat{p}_{02}=\left\langle\top, \top, \neg x_{2}, \top, \top, \top\right\rangle$,
$p_{11}=\left\langle\top, \top, \top, \top, x_{1}, \top\right\rangle$,
$\hat{p}_{11}=\left\langle\top, \top, \top, \top, \neg x_{1}, \top\right\rangle$,
$p_{12}=\left\langle\top, \top, \top, \top, \top, x_{2}\right\rangle$,
$\hat{p}_{12}=\left\langle\top, \top, \top, \top, \top, \neg x_{2}\right\rangle$.
Let further, for $j \neq 0, p_{i j}^{0}=\left(p_{i 0}^{j} \rightarrow\left(p_{i 0}^{j} \odot p_{i 0}^{j}\right)\right) \rightarrow p_{i j}, p_{i j}^{1}=$ $p_{i j}^{0} \rightarrow p_{i j}$, and $\hat{p}_{i j}^{0}=\left(p_{i 0}^{j} \rightarrow\left(p_{i 0}^{j} \odot p_{i 0}^{j}\right)\right) \rightarrow \hat{p}_{i j}, \hat{p}_{i j}^{1}=\hat{p}_{i j}^{0} \rightarrow$ $\hat{p}_{i j}$. Then the set P of primitive $\mathbb{B L}_{2}$-hats is the 6 -tuple $P=$ $\left\langle P_{00}, P_{01}, P_{02}, P_{10}, P_{11}, P_{12}\right\rangle$, where $P_{i 0}=\left\{p_{i 0}^{0}, p_{i 0}^{1}, p_{i 0}^{2}, \hat{p}_{i 0}\right\}$ for $i \in\{0,1\}, P_{i j}$ is the map $\{0\} \mapsto\left\{p_{i j}^{0}, \hat{p}_{i j}^{0}\right\},(0,1) \mapsto$ $\left\{p_{i j}^{1}, \hat{p}_{i j}^{1}\right\}$, for $(i, j) \in\{0,1\} \times\{1,2\}$. Note that the hats of the form $\hat{p}_{i j}, \hat{p}_{i j}^{b}$ are virtual, and all other hats are actual.

Proposition 1. P is the $\mathbb{B L}_{2}$-set associated with the $\mathbb{B L}_{2}$ fundamental partition B.

We now adapt the definition of starring of triangulations (Def. 3) and star refinements of Schauder sets (Def. 4) to our current $\mathbb{B L}_{2}$ setting.

Let U be a $\mathbb{B L}_{2}$-triangulation, and let S be a 1 -simplex of U. Let \mathbf{v}_{S} be the Farey mediant of the vertices \mathbf{v}_{1} and \mathbf{v}_{2} of S, and let S_{1}, S_{2} be the 1 -simplices obtained by replacing \mathbf{v}_{1} and \mathbf{v}_{2} by \mathbf{v}_{S}, respectively. Let $S_{3}=\left\{\mathbf{v}_{S}\right\}$. Then the starring of U at S, in symbols $U * S$ is the 6 -tuple $\left\langle U_{00}^{\prime}, U_{01}^{\prime}, U_{02}^{\prime}, U_{10}^{\prime}, U_{11}^{\prime}, U_{12}^{\prime}\right\rangle$ defined as follows:

- If $S \in U_{i 0}$ for some $i \in\{0,1\}$ then:
- $U_{i^{\prime} j^{\prime}}^{\prime}=U_{i^{\prime} j^{\prime}}$ for $i^{\prime}=1-i$ and $j^{\prime} \in\{0,1,2\}$;
- $U_{i 0}^{\prime}=U_{i 0} * S$;
- If $S \subseteq F_{U_{i 0}}^{j}$, for one $j \in\{1,2\}$, then the map $U_{i j}^{\prime}$ has domain $\left(\operatorname{dom}\left(U_{i j}\right) \backslash\{S\}\right) \cup\left\{S_{1}, S_{2}, S_{3}\right\}$, and $U_{i j}^{\prime}\left(S_{k}\right)=U_{i j}(S)$ for each $k \in\{1,2,3\}$; otherwise $U_{i j}^{\prime}=U_{i j}$.
- If there is (i, j) and R such that $S \in U_{i j}(R)$, then:
- $U_{i^{\prime} j^{\prime}}=U_{i j}$ for all $i \in\{0,1\}$ and $j \neq j^{\prime} \in\{0,1,2\}$;
- $\operatorname{dom}\left(U_{i j}^{\prime}\right)=\operatorname{dom}\left(U_{i j}\right)$ and $U_{i j}^{\prime}\left(R^{\prime}\right)=U_{i j}\left(R^{\prime}\right)$ for all $R \neq R^{\prime} \in \operatorname{dom}\left(U_{i j}\right)$, while $U_{i j}^{\prime}(R)=\left(U_{i j}(R) \backslash\right.$ $\{S\}) \cup\left\{S_{1}, S_{2}, S_{3}\right\}$.
Let U be a $\mathbb{B L}_{2}$-triangulation, and let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{S}$ be the vertices of a 1 -simplex S of U and their Farey mediant, respectively. Then the star refinement $H_{U} * S$ of H_{U} at S is the 6 -tuple K obtained by one of the following processes:
k1 -refinement: $S \in U_{i 0}$ for some $i \in\{0,1\}$. Then let h_{i} be the $\mathbb{B L}_{2}$-hat with apex \mathbf{v}_{i} and let $h_{S}=h_{1} \vee h_{2}$. Set $K_{i 0}=\left(\left(H_{U}\right)_{i 0} \backslash\left\{h_{1}, h_{2}\right\}\right) \cup\left\{h_{S}, h_{S} \rightarrow h_{1}, h_{S} \rightarrow\right.$ $\left.h_{2}\right\}$; moreover, if $S \in F_{U_{i 0}}^{j}$ for one $j \in\{1,2\}$, then $\operatorname{dom}\left(K_{i j}\right)=\left(\operatorname{dom}\left(\left(H_{U}\right)_{i j}\right) \backslash\{S\}\right) \cup\left\{S_{1}, S_{2}, S_{3}\right\}$, for S_{1}, S_{2} being the 1 -simplices obtained by starring S at $\mathbf{v}_{S}, S_{3}=\left\{\mathbf{v}_{S}\right\}$, and $K_{i j}\left(S_{k}\right)=\left(H_{U}\right)_{i j}(S)$ for all $k \in$ $\{1,2,3\}$, while for all other $R \in \operatorname{dom}\left(K_{i j}\right), K_{i j}(R)=$ $\left(H_{U}\right)_{i j}(R)$. If $S \notin F_{U_{i 1}}^{j} \cup F_{U_{i 2}}^{j}$, set $K_{i j}=\left(H_{U}\right)_{i j}$ for all $j \in\{1,2\}$. Set $K_{i^{\prime} j^{\prime}}=\left(H_{U}\right)_{i^{\prime} j^{\prime}}$ for $i^{\prime}=1-i$ and $j \in\{0,1,2\}$.
k2 -refinement: There is (i, j) and R such that $S \in U_{i j}(R)$. Then let h_{i} be the $\mathbb{B L}_{2}$-hat with apex \mathbf{v}_{i} and let $h_{S}=h_{1} \vee h_{2}$. Set $K_{i j}(R)=\left(\left(H_{U}\right)_{i j}(R) \backslash\left\{h_{1}, h_{2}\right\}\right) \cup$ $\left\{h_{S}, h_{S} \rightarrow h_{1}, h_{S} \rightarrow h_{2}\right\}$. Set $K_{i j}\left(R^{\prime}\right)=\left(H_{U}\right)_{i j}\left(R^{\prime}\right)$ for all $R \neq R^{\prime} \in \operatorname{dom}\left(\left(H_{U}\right)_{i j}\right)$. Set $K_{i^{\prime}, j^{\prime}}=\left(H_{U}\right)_{i^{\prime} j^{\prime}}$ for all $\left(i^{\prime}, j^{\prime}\right) \in(\{0,1\} \times\{0,1,2\}) \backslash\{(i, j)\}$.
Proposition 2. $H_{U} * S$ is the $\mathbb{B L}_{2}$-set associated with $U * S$.
We now single out some families of functions in $\mathbb{B}_{L_{2}}$. Each function in $\mathbb{B L}_{2}$ will turn out to be a combination of suitably chosen functions in these special families. In turn, we shall represent any function belonging to one of these families as a combination of $\mathbb{B L}_{2}$-hats in the same family.

Lemma 5. Let $f \in \mathbb{B L}_{2}$ be either of the form $\langle g, \top| \mathbf{1}_{1}(g), \top\left|\mathbf{1}_{2}(g), \top, \top, \top\right\rangle$, or of the form $\langle\top, \top, \top, g, \top| \mathbf{1}_{1}(g), \top\left|\mathbf{1}_{2}(g)\right\rangle$. Then f is a finite \odot combination of actual $\mathbb{B L}_{2}$-hats obtained by finitely many k 1 -refinements from the set of primitive hats P_{00}, or the set P_{10}, respectively.

Proof: Consider first $f=\langle g, \top| \mathbf{1}_{1}(g), \top\left|\mathbf{1}_{2}(g), \top, \top, \top\right\rangle$. Since $g \in W H_{2}$, by Lemma 3, $g=\bigodot_{i \in I} k_{i}^{m_{i}}$ for suitable integers $\left\{m_{i}\right\}_{i \in I}$ and a finite set of actual Schauder co-hats $\left\{k_{i}\right\}_{i \in I}$ obtained from U_{0}^{2} by finitely many edge star refinements. That is $\left\{k_{i}\right\}_{i \in I}=H_{U_{u}}$ for a unimodular triangulation U_{u} of $[0,1]^{2}$, and there exist 1 -simplices $S_{1}, S_{2}, \ldots, S_{u} \subseteq[0,1]^{2}$ such that $U_{u}=U_{0}^{2} * S_{1} * S_{2} * \cdots * S_{u}$. As each S_{i} is either a simplex of the fundamental partition of $[0,1]^{2}$ or it is obtained by a finite sequence of edge starrings from the fundamental partition, then we can form the $\mathbb{B L}_{2^{-}}$ triangulation $B_{u}=B * S_{1} * \cdots * S_{u}$. By Proposition 1 and Proposition 2, $P_{u}=P * S_{1} * \cdots * S_{u}$ is the $\mathbb{B L}_{2}$-set of B_{u}. In particular $\left(P_{u}\right)_{00}=\left\{h_{i}\right\}_{i \in I}$, where each h_{i} is a $\mathbb{B L}_{2}$-hat of kind k1 whose associated Schauder co-hat is k_{i}. Since $\top \vee \top=\top \rightarrow \top=\top \odot \top=\top$, then for each $(j, l) \in(\{0,1\} \times\{0,1,2\}) \backslash\{0,0\}$, it holds that $\left(\bigodot_{i \in I} h_{i}^{m_{i}}\right)_{j l}$ is constantly \top over its domain. Then

$$
\bigodot_{i \in I} h_{i}^{m_{i}}=\langle g, \top| \mathbf{1}_{1}(g), \top\left|\mathbf{1}_{2}(g), \top, \top, \top\right\rangle .
$$

The case $f=\langle\top, \top, \top, g, \top| \mathbf{1}_{1}(g), \top\left|\mathbf{1}_{2}(g)\right\rangle$ is dealt with analogously.

Lemma 6. Let $f \in \mathbb{B L}_{2}$ be of the form $\langle g, \top| \mathbf{0}_{1}(g), \top\left|\mathbf{0}_{2}(g), \emptyset, \emptyset, \emptyset\right\rangle$, Then f is the negation of a finite \odot-combination of actual $\mathbb{B L}_{2}$-hats obtained by finitely many k1-refinements from the set of primitive hats P_{00}.

Proof: By Theorem 2, f is such that $f=\neg \neg f$. Now, $\neg f=\langle g, \top| \mathbf{1}_{1}(g), \top\left|\mathbf{1}_{2}(g), \top, \top, \top\right\rangle$, and by Lemma 5, there is a finite set $\left\{h_{i}\right\}_{i \in I}$ of actual $\mathbb{B L}_{2}$-hats obtained by finitely many k1-refinements from the set of primitive hats P_{00} and suitable positive integers $\left\{m_{i}\right\}_{i \in I}$ such that $\neg f=\bigodot_{i \in I} h_{i}^{m_{i}}$. Hence $f=\neg \neg f=\neg \bigodot_{i \in I} h_{i}^{m_{i}}$.

Lemma 7. Each total $\mathbb{B L}_{2}$-hat h belonging to kind k 2 is obtained by finitely many k 2 -refinements from the set of primitive hats $P_{i j}(\{0\})$ or $P_{i j}((0,1))$, for some $(i, j) \in\{0,1\} \times\{1,2\}$.

Proof: Each Schauder co-hat k in one variable is obtained by finitely many star refinements from the set of primitive cohats $\left\{x_{1}, \neg x_{1}\right\}$. Since $T \vee \top=\top \rightarrow T=T$, we immediately conclude that h is obtained by finitely many k2-refinements from the set $P_{i j}(\{0\})$ or $P_{i j}((0,1))$.

There remains to deal with $\mathbb{B L}_{2}$-hats that are not total.
Definition 10. Let U be a $\mathbb{B L}_{2}$-triangulation. Fix $(i, j) \in$ $\{0,1\} \times\{1,2\}$, and let \hat{h} be the only virtual $\mathbb{B L}_{2}$-hat in $\left(H_{U}\right)_{i 0}$. Pick $k \in\left(H_{U}\right)_{i j}(S)$ (then k is a total k2-hat). Let further $h^{\prime}, h^{\prime \prime}$ be actual k1-hats in $\left(H_{U}\right)_{i 0}$. Denote $H^{\circ}=\left(H_{U}\right)_{i 0} \backslash$ $\left\{h^{\prime}, h^{\prime \prime}, \hat{h}\right\}, H\left(h^{\prime}\right)=H^{\circ} \cup\left\{h^{\prime \prime}\right\}$ and $H\left(h^{\prime \prime}\right)=H^{\circ} \cup\left\{h^{\prime}\right\}$. Then the function

$$
\Uparrow\left(h^{\prime}, k\right)=\left(\bigodot_{h \in H\left(h^{\prime}\right)} h\right) \rightarrow k
$$

is the vertical refinement of the pair $\left(h^{\prime}, k\right)$. The function

$$
\Uparrow\left(h^{\prime}, h^{\prime \prime}, k\right)=\left(\Uparrow\left(h^{\prime}, k\right) \odot \Uparrow\left(h^{\prime \prime}, k\right)\right) \rightarrow\left(\left(\bigodot_{h \in H^{\circ}} h\right) \rightarrow k\right)
$$

is the vertical refinement of the triple $\left(h^{\prime}, h^{\prime \prime}, k\right)$.
Lemma 8. Each non-total $\mathbb{B L}_{2}$-hat h belonging to kind k 2 is obtained by vertical refinement from a set of hats obtained by finitely many steps of $\mathrm{k} 1-\mathrm{k} 2-$ refinement from P.

Proof: Consider a non-total $\mathrm{k} 2 \mathbb{B L}_{2}$-hat h, and let $h_{i j}=$ $k \mid Q$ as in Definition 7, for some $(i, j) \in\{0,1\} \times\{1,2\}$. Let g be the total hat of kind k2 such that $g_{i j}=k \mid(0,1)$. By Lemma 7, g is obtained by k2-refinement from P. Consider first the case $(i, j)=(0,1)$ and suppose $Q=\{v\}$ for some $v \in(0,1) \cap \mathbb{Q}$. Then let U be any $\mathbb{B L}_{2}$-triangulation, obtained via finitely many starrings from B, such that $\mathbf{w} \in U$ for the point defined by $\pi_{1}(\mathbf{w})=v$ and $\pi_{2}(\mathbf{w})=1$. Such U exists by Lemma 2 . Let $K=H_{U}$. Then K_{00} contains an actual $\mathbb{B L}_{2}$-hat f with apex \mathbf{w}. Let $K^{\prime}=K_{00} \backslash\{f, \hat{e}\}$, for \hat{e} the unique virtual hat of K_{00}. Then $\bigodot_{e \in K^{\prime}} e$ is an element of $\mathbb{B L}_{2}$ of the form $\left\langle f^{\prime}, \top \mid\{v\}, \top, \top, \top, \top\right\rangle$ for some $f^{\prime} \in \mathbb{W H}_{2}$. Direct computation using the operations defined in Theorem 2 shows the vertical refinement $\Uparrow(f, g)$ is h. Now suppose $Q=\left(v_{1}, v_{2}\right) \subset(0,1)$ is an open unimodular segment with rational endpoints. Let U be any $\mathbb{B L}_{2}$-triangulation, obtained via finitely many starrings from B, such that $\left[\mathbf{w}_{1}, \mathbf{w}_{2}\right] \in U$ for points \mathbf{w}_{l} defined by $\pi_{1}\left(\mathbf{w}_{l}\right)=v_{l}$ and $\pi_{2}\left(\mathbf{w}_{l}\right)=1$, for $l \in$ $\{1,2\}$. The existence of such U is granted by Lemma 2, again. Let f_{1}, f_{2} be $\mathbb{B L}_{2}$-hats with apices $\mathbf{w}_{1}, \mathbf{w}_{2}$ in K_{00}. Direct computation now shows $\bigodot_{e \in K_{00} \backslash\left\{f_{1}, f_{2}, \hat{e}\right\}} e$ is the function $\left\langle f^{\prime}, \top \mid\left[v_{1}, v_{2}\right], \top, \top, \top, \top\right\rangle$ for some $f^{\prime} \in \mathbb{W} \mathbb{H}_{2}$, and hence $\Uparrow\left(f_{1}, f_{2}, g\right)=h$. The cases $(i, j) \in(\{0,1\} \times\{1,2\}) \backslash\{(0,1)\}$ are dealt with analogously.
Theorem 5 (Normal Form). Each $f \in \mathbb{B L}_{2}$ can be expressed as

$$
f=\nu_{f}\left(\bigodot_{j \in J_{0}} h_{0, j}^{m_{0, j}}\right) \odot \bigodot_{j \in J_{1}} h_{1, j}^{m_{1, j}}
$$

where J_{0} and J_{1} are finite index sets, and for each $i \in\{0,1\}$, and $j \in J_{i}$, the exponent $m_{i, j}$ is a nonnegative integer and
$h_{i, j}$ is an actual $\mathbb{B L}_{2}$-hat obtained by a finite process of k 1 , k 2 , vertical refinements from the set of primitive hats P.

Proof: If $f_{10}=\emptyset$ then we use Lemma 6 to obtain a finite family of $\mathbb{B L}_{2}$-hats $\left\{h_{0, j}\right\}_{j \in J_{0}}$ and integers $\left\{m_{0, j}\right\}_{j \in J_{0}}$ such that, setting $g^{00}=\neg \bigodot_{j \in J_{0}} h_{0, j}^{m_{0, j}}$, we have $g^{00}=$ $\left\langle f_{00}, \top\right| \mathbf{0}_{1}\left(f_{00}\right), \top\left|\mathbf{0}_{2}\left(f_{00}\right), \emptyset, \emptyset, \emptyset\right\rangle$. Let U be a $\mathbb{B L}_{2^{-}}$ triangulation such that f is linear over each simplex of U. Such U exists by Definition 8 and Lemma 3. Note that for each open simplex $S \in F_{U}^{j}, j \in\{1,2\}$, either $f_{0 j}$ is not defined over $[0,1] \times \pi_{3-j}(S)$ (if $j=1$) or $\pi_{3-j}(S) \times[0,1]$ (if $j=2$), or, in the notation of Definition 2, $f_{0 j}=g \mid \pi_{3-j}(S)$ for some $g \in \mathbb{W H}_{1}$. In the latter case, use Theorem 4 to express g as $\bigodot_{i \in J_{S}} k_{i}^{m_{i}}$ for some finite set J_{S}, and then use Lemma 8 to build $\bigodot_{i \in J_{S}} h\left(k_{i}\right)^{m_{i}}$, where $h\left(k_{i}\right)$ is the k 2 non-total hat such that $\left(h\left(k_{i}\right)\right)_{0 j}=k_{i} \mid \pi_{3-j}(S)$. Then $\bigodot_{i \in J_{S}} h\left(k_{i}\right)^{m_{i}}$ is \top everywhere but on $[0,1] \times \pi_{3-j}(S)$ (if $j=1$) or $\pi_{3-j}(S) \times[0,1]$ (if $j=2$) where it coincides with $f_{0 j}$. Let J_{1} be the disjoint union of all sets J_{S} such that $S \in F_{U}^{1} \cup F_{U}^{2}$ and $f_{01}=g \mid \pi_{3-j}(S)$ for some $g \in \mathbb{W H}_{1}$. Then $g^{00} \odot \bigodot_{i \in J_{1}} h\left(k_{i}\right)^{m_{i}}$ is the desired normal form for f.

In case $f_{10} \neq \emptyset$ we reason analogously, using Lemma 5 instead of Lemma 6, to obtain functions g^{00} and g^{10} such that $g_{00}^{00}=f_{00}$ and $g_{10}^{10}=f_{10}$. We then use Lemma 8 as before to obtain all non-total $\mathrm{k} 2 \mathbb{B L}_{2}$-hats needed.

We remark that Theorem 5 cannot be strengthened by omitting virtual hats from P : the minimal set of actual $\mathbb{B L}_{2^{-}}$ hats allowing to express all elements of $\mathbb{B L}_{2}$ with a finite normal form is not finite.

The refinement procedure provides an explicit construction of the BL-terms whose interpretation in $\mathbb{B L}_{2}$ correspond to $\mathbb{B L}_{2}$-hats. First, we provide BL-terms whose interpretation in $\mathbb{B L}_{2}$ correspond to the actual primitive $\mathbb{B L}_{2}$-hats. We define,

$$
\begin{aligned}
& x \triangleleft y=(x \rightarrow y) \odot((y \rightarrow x) \rightarrow x) \\
& x \diamond y=((x \triangleleft y) \rightarrow y) \wedge((y \triangleleft x) \rightarrow x)
\end{aligned}
$$

and we prepare $(i=1,2)$,

$$
\begin{aligned}
& x_{i 00}=\left(\left(\perp \diamond x_{i}\right) \wedge\left(\perp \diamond x_{3-i}\right) \wedge\left(x_{i} \diamond x_{3-i}\right)\right) \rightarrow x_{i} \\
& x_{i 01}=\left(\left(\perp \diamond x_{3-i}\right) \wedge\left(x_{3-i} \triangleleft x_{i}\right)\right) \rightarrow x_{i} \\
& x_{i 10}=\left(\left(\perp \triangleleft x_{i}\right) \wedge\left(\perp \triangleleft x_{3-i}\right) \wedge\left(x_{i} \diamond x_{3-i}\right)\right) \rightarrow x_{i} \\
& x_{i 11}=\left(\left(\perp \triangleleft x_{i}\right) \wedge\left(\perp \triangleleft x_{3-i}\right) \wedge\left(x_{3-i} \triangleleft x_{i}\right)\right) \rightarrow x_{i}
\end{aligned}
$$

Proposition 3. The following hold:
$\left(x_{100} \vee x_{200}\right)^{\mathbb{B L}_{2}}=p_{00}^{0} ; \quad\left(x_{100} \rightarrow x_{200}\right)^{\mathbb{B L}_{2}}=p_{00}^{1} ;$
$\left(x_{200} \rightarrow x_{100}\right)^{\mathbb{B L}_{2}}=p_{00}^{2} ; \quad\left(x_{110} \vee x_{210}\right)^{\mathbb{B L}_{2}}=p_{10}^{0} ;$
$\left(x_{110} \rightarrow x_{210}\right)^{\mathbb{B L}_{2}}=p_{10}^{1} ; \quad\left(x_{210} \rightarrow x_{110}\right)^{\mathbb{B L}_{2}}=p_{10}^{2} ;$
$\left(x_{101}\right)^{\mathbb{B L}_{2}}=p_{01} ; \quad\left(x_{202}\right)^{\mathbb{B L}_{2}}=p_{02} ;$
$\left(x_{111}\right)^{\mathbb{B L}_{2}}=p_{11} ; \quad\left(x_{212}\right)^{\mathbb{B L}_{2}}=p_{12}$.

Proof: Direct computation.

Given the BL-terms for primitive hats, it is possible to iterate through the refinement process to construct BL-terms for all the actual $\mathbb{B L}_{2}$-hats. We provide an example of such construction (compare Lemma 7, see also [AG05] for the virtual-hat elimination algorithm for the one-variable case).

Fig. 1. Sampling the functional representation of some primitive $\mathbb{B L}_{2}$-hats. In [AB09] we define an isomorphism of BL-algebras F from the BL-algebra of encodings $\mathbb{B L}_{n}$ to the BL-algebra of real functions from $[0, n+1]^{n}$ to $[0, n+1]$ generated by the projections $x_{i}\left(t_{1}, \ldots, t_{n}\right)=t_{i}$ (see [AM03]). As an example of this functional representation in the 2 -variable case, we depict here the graph of the functions corresponding to some primitive $\mathbb{B L}_{2}$-hats.

Example 3. We construct the BL-term whose interpretation in $\mathbb{B L}_{2}$ corresponds to $f=\left\langle\top, x_{1} \vee \neg x_{1}, \top, \top, \top, \top\right\rangle$. The encoding f is obtained in a single step of k 2 -refinement from the set $\left\{p_{01}, \hat{p}_{01}\right\}$. The BL-term corresponding to f is obtained as follows: eliminate the negations from the Schauder cohat $x_{1} \vee \neg x_{1}$ (maintaining equivalence, compare [Bov08] for details), obtaining the term $x_{1} \rightarrow x_{1}^{2}$. Then substitute x_{1} by x_{101}. We have $\left(x_{101} \rightarrow x_{101}^{2}\right)^{\mathbb{B L}_{2}}=f$. The total $\mathbb{B L}_{2}$-hat h such that $h_{01}=\left(x_{1} \vee \neg x_{1}\right) \mid\{0\}$ and $h_{01}=\top \mid(0,1)$ is obtained from f by substituting x_{101} with $\left(p_{00}^{1} \rightarrow\left(p_{00}^{1} \odot p_{00}^{1}\right)\right) \rightarrow x_{101}$.

REFERENCES

[AB09] S. Aguzzoli and S. Bova. The Free n-Generated BL-Algebra. Submitted.
[AG05] S. Aguzzoli and B. Gerla. Normal Forms for the One-Variable Fragment of Hájek's Basic Logic. In Proceedings of ISMVL'05, pages 284-289. IEEE Computer Society, 2005.
[AM03] P. Aglianò and F. Montagna. Varieties of BL-Algebras I: General Properties. Journal of Pure and Applied Algebra, 181:105-129, 2003.
[AP02] P. Aglianò and G. Panti. Geometrical methods in Wajsberg hoops. J. Algebra, 256(2):352-374, 2002.
[Bov08] Simone Bova. BL-Functions and Free BL-Algebra. PhD thesis, University of Siena, Italy, 2008.
[CDM99] R. L. O. Cignoli, I. M. L. D'Ottaviano, and D. Mundici. Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 1999.
[CEGT00] R. Cignoli, F. Esteva, L. Godo, and A. Torrens. Basic Fuzzy Logic is the Logic of Continuous t-Norms and their Residua. Soft Computing, 4(2):106-112, 2000.
[Ewa96] G. Ewald. Combinatorial convexity and algebraic geometry, volume 168 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1996.
[Háj98] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.
[McN51] R. McNaughton. A Theorem About Infinite-Valued Sentential Logic. The Journal of Symbolic Logic, 16:1-13, 1951.
[MMM07] C. Manara, V. Marra, D. Mundici. Lattice-ordered abelian groups and Schauder bases of unimodular fans. Transactions of the American Mathematical Society, 359:1593-1604, 2007.
[Mon00] F. Montagna. The Free BL-Algebra on One Generator. Neural Network World, 5:837-844, 2000.
[Mun94] D. Mundici. A Constructive Proof of McNaughton's Theorem in Infinite-Valued Logics. The Journal of Symbolic Logic, 59:596-602, 1994.
[P95] G. Panti. A Geometric Proof of the Completeness of the Lukasiewicz Calculus. The Journal of Symbolic Logic, 60(2):563-578, 1995.

