BL-Functions and Free BL-Algebra

Ph.D. Thesis by Simone Bova
Department of Mathematics and Computer Science
University of Siena (Italy)
Supervised by Prof. Franco Montagna
Department of Mathematics and Computer Science
University of Siena (Italy)

(C) October 7, 2008

Abstract

Fuzzy logics are designed to support logical inferences on vague or uncertain premises, and they are useful in several theoretical and applicative areas of computer science. A central paradigm in mathematical fuzzy logic, popularized by Hájek [Háj98], is based on the idea of weakening Boolean logic starting from a suitable generalization of Boolean conjunction, namely, a class of $[0,1]$-valued binary functions known as (continuous) triangular norms. Any continuous triangular norm gives raise to a propositional logic, and Hájek's Basic fuzzy logic (for short, Basic logic) is the intersecting common fragment of all these logics. Despite the intensive research efforts devoted to Basic logic in the last decade, this logic still resists to a complete understanding, as it appears from the lack of a satisfactory proof theory [MOG].

The algebraic counterpart of Basic logic is given by a very natural subvariety of residuated bounded lattices, namely commutative, divisible and prelinear residuated lattices, or BL-algebras. A representation result of Aglianó and Montagna [AM03] establishes that the variety generated by all the n-generated BL-algebras is singly generated by the BL-chain $(n+1)[0,1]$, given by the ordinal sum of $n+1$ copies of the generic MV-chain $[0,1]$. As a consequence, validity problems in Basic logic turn out to have the same computational complexity of their Boolean counterparts [BHMV02, BM08]. This fact provides further motivation for the investigation of Basic logic in the computer science setting.

The aforementioned result of Aglianó and Montagna is the starting point of this thesis. By universal algebra, it gives an implicit functional representation of the free n-generated BL-algebra: the free n-generated BL-algebra is isomorphic to the clone of n-ary term operations of $(n+$

1) $[0,1]$, with the basic operations defined pointwise. Hence, to provide an explicit functional representation of the free n-generated BL-algebra, it is sufficient to describe exactly the subset of n-ary functions over the domain of $(n+1)[0,1]$ that contains all projections and is closed under the basic operations of $(n+1)[0,1]$: we call these functions, n-ary BLfunctions. By algebraic logic, the Lindenbaum-Tarski algebra of the n variate fragment of Basic logic is isomorphic to the free BL-algebra over n generators, thus n-ary BL-functions coincide with the truthfunctions of the n-variate fragment of Basic logic.

The main contribution of this thesis is the explicit representation of the free n-generated BL-algebra in terms of n-ary BL-functions. Our result accounts as the BL-algebraic counterpart of Mundici's constructive version of the McNaughton theorem for MV-algebras [Mun94], and improves the previous knowledge on the subject, that was limited to the case of one generator settled by Montagna [Mon00] and Aguzzoli and Gerla [AG05].

Acknowledgments

First, I wish to thank my advisor Franco Montagna for his patient effort in guiding me throughout the three years of my Ph.D. program.

I also wish to thank Stefano Aguzzoli and Vincenzo Marra for hosting me at the Department of Computer Science of the University of Milan, where I had the fortune to work in a conductive and enjoyable research environment.

I take the opportunity to thank people I am variously indebted with: Andrea Sorbi, for tolerating several technical inquiries about the Ph.D. program; Daniele Mundici, for orienting me in embarking on a research program; Pietro Codara, Francesca De Carli, Tommaso Flaminio, and Jan van Klinken for helping me to survive in Siena and Milan; Nicola Galesi, for introducing me to circuit and proof complexity, and for hosting me at the Department of Computer Science of the University of Rome; Hubie Chen, for introducing me to constraint satisfaction problems, and for hosting me at the Department of Computer Science of the University Pompeu Fabra in Barcelona; Agata Ciabattoni, Hubie Chen, Anatolij Dvurečenskij, Enrico Marchioni, George Metcalfe, and Norbert Preining for advising me on PostDoc programs.

Finally, I thank my wife Giada for her continuous encouragement, and various typographical hints that improved the layout of this thesis.

Contents

1 Introduction 1
1.1 Basic Logic 1
1.1.1 Vague Notions 1
1.1.2 Triangular Norms 8
1.2 Outline and Contribution 16
1.3 Terminology and Notation 17
2 BL-Functions and Free BL-Algebra 21
2.1 Previous Work 24
2.2 McNaughton Functions and Free MV-algebra 27
2.3 BL-Functions 33
2.3.1 Definition 33
2.3.2 Unary Case 37
2.3.3 Binary Case 47
2.3.4 General Case 65
2.4 Free BL-Algebra 80
3 Conclusion 83
3.1 Summary 83
3.1.1 BL-Functions 83
3.1.2 SBL-Functions 89
3.2 Future Work 93
3.2.1 Locally Finite Subvarieties 94
3.2.2 Tight Countermodels 102
3.2.3 Deductive Interpolation 107
Appendix 115

References 125
Index 131

1 Introduction

We present the object of study of this thesis, a propositional fuzzy logic, called Basic fuzzy logic (for short, Basic logic). The introduction is divided into three parts. In Section 1.1, we describe a natural motivation for investigating fuzzy logics: the phenomenon of vagueness. We adopt the general mathematical framework introduced by Hájek, based on the notion of (continuous) triangular norm [Háj98]. In this framework, Basic logic has a prominent importance, being the logic of all (continuous) triangular norms and their residua. Section 1.2 is devoted to the outline of the overall structure of this thesis, focusing on its main contribution. Section 1.3 collects the terminology and notation used throughout the thesis.

1.1 Basic Logic

In this section, we discuss a natural motivation for investigating fuzzy logics, the phenomenon of vagueness, and we introduce Hájek's mathematical framework for the study of fuzzy logics [Háj98]. In this framework, Basic logic is a fundamental object.

1.1.1 Vague Notions

We discuss a logical approach to the phenomenon of vagueness, as it appears in natural languages and reasonings, starting with an experiment.

We are asked to axiomatize the informal notion of heap (of grains of sand). Let us start by examining our idea of heap. The first intuition we can isolate is that a collection of zero grains does not form a heap, but in contrast, for a sufficiently large number $N \geq 1$, a collection of N grains
forms a heap. The second, coarse, intuition is that removing a single grain from a heap does not make any difference, that is, if a collection of i grains forms a heap, then a collection of $i-1$ grains forms a heap.

We settle a symbolic notation to write the above intuitions, using a language over the propositional variables X_{0}, \ldots, X_{N}, and the logical connectives of implication, \rightarrow, and negation, \neg. It is intended that X_{i} is the symbolic counterpart of the natural statement,

$$
\begin{equation*}
\text { "A collection of } i \text { grains forms a heap.", } \tag{1.1}
\end{equation*}
$$

the implication, $A \rightarrow B$, is the symbolic counterpart of the idea that if the statement A holds, then the statement B holds, and the negation, $\neg A$, is the formal counterpart of the idea that the statement A does not hold. Now we can present the above intuitions symbolically:

$$
\begin{gather*}
\neg X_{0} \tag{H1}\\
X_{N} \tag{H2}\\
X_{1} \rightarrow X_{0} \tag{H3.0}\\
\vdots \tag{H3.N-1}\\
X_{N} \rightarrow X_{N-1}
\end{gather*}
$$

Let us pretend that the above list of sentences captures the intuition we have about heaps, and let us adopt the previous list as our theory of heaps.

As we shall see below, the interpretation of propositional variables, X_{0}, \ldots, X_{N}, and logical connectives, \rightarrow and \neg, is not uniquely determined, rather, there are alternative and competitive interpretations. However, independently of the chosen interpretation, we admit certain manipulations of statements inside natural reasonings, which can be tentatively described in terms of resources, as follows. Imagine to record a natural reasoning as a sequence of statements, written in a symbolic notation. Along the sequence, the occurrence of the expression A captures the intuition that the resource A is available; the occurrence of the expression $A \rightarrow B$ captures the intuition that, upon availability of the resource A, also the resource B becomes available; the occurrence of the expression $\neg A$ captures the intuition that the resource A is unavailable.

As reasoning practitioners, we are confident that at the i th step of a reasoning inside a certain theory (for instance, the theory specified above), we are legitimate to infer an axiom A of the theory, because axioms are available resources; in symbols,

\vdots	\vdots	\vdots
i	A	axiom
\vdots	\vdots	\vdots

Similarly, we are confident that within a reasoning, if A has been inferred at the i th step, and $A \rightarrow B$ has been inferred at the j th step, with $i, j<k$, then we can safely infer B at the k th step, in symbols (if e.g. $i<j$),

\vdots	\vdots	\vdots
i	A	\ldots
\vdots	\vdots	\vdots
j	$A \rightarrow B$	\ldots
\vdots	\vdots	\vdots
k	B	i, j
\vdots	\vdots	\vdots

Now consider the reasoning of $2 N+2$ steps, inside the theory of heaps given by axioms (H1)-(H3.N-1), displayed below in the adopted symbolic notation:

1	X_{N}	$(\mathrm{H} 2)$
2	$X_{N} \rightarrow X_{N-1}$	$(\mathrm{H} 3 . N-1)$
3	X_{N-1}	1,2
4	$X_{N-1} \rightarrow X_{N-2}$	$(\mathrm{H} 3 . N-2)$
5	X_{N-2}	3,4
\vdots	\vdots	\vdots
$2 N-1$	X_{1}	$2 N-3,2 N-2$
$2 N$	$X_{1} \rightarrow X_{0}$	$(\mathrm{H} 3.0)$
$2 N+1$	X_{0}	$2 N-1,2 N$
$2 N+2$	$\neg X_{0}$	$(\mathrm{H} 1)$

In our prelogical setting, based on the notion of resource, the statements X_{0} and $\neg X_{0}$, occurring in lines $2 N+1$ and $2 N+2$, form a critical pair, because they witness simultaneously the availability and the unavailability of the resource X_{0}.

However, both our initial assumptions and our reasoning schema seem to be substantially defensible, thus we want to somehow admit the sequence above. Our next task is then to identify a logical setting, that is an interpretation of propositions, implication, and negation that supports the above reasoning. As we already mentioned, interpretations are not unique, and are competitive: in a given situation, an obvious criterion for preferring a certain interpretation over another is the ability of the former interpretation to capture a natural reasoning in the given situation, in contrast with the inability of the latter to achieve the same goal.

Now consider how Boolean logic behaves in the malicious scenario we settled. Interpret the propositional variables X_{1}, \ldots, X_{N} as Boolean variables, that is, taking values in $\{0,1\}$. This is the formal counterpart of the intuition that a natural statement of the form (1.1) either holds with truthvalue 1 , or else holds with truthvalue 0 , that is, it is either absolutely true, or else absolutely false. Suppose also to interpret the negation, \neg, over the familiar Boolean negation, that is, $\neg a$ equals 0 if and only if a equals 1 , and to interpret the implication, \rightarrow, over the familiar Boolean implication, that is, $a \rightarrow b$ equals 0 if and only if a equals 1 and $b=0$. But then, there not exists an assignment of the variables X_{0}, \ldots, X_{N} in $\{0,1\}$ making all the axioms (H1), (H2), (H3.0), \ldots. (H3.N -1) true. ${ }^{1}$ Hence, the theory has no Boolean models, in contrast with our tangible experience of heaps.

There are three possibilities to fix the problem. The first possibility is to avoid axiom (H1), but in this case the unique model of the theory says that all the X_{i} 's are true, in particular says that X_{0} is true, and this

[^0]conflicts with our intuition. The second possibility is to avoid axiom (H2), but in this case the unique model of the theory says that all the X_{i} 's are false, in particular says that X_{N} is false, and again this conflicts with our intuition (we chosen N large enough to verify the statement X_{N}). The third possibility is to fix a threshold i between 0 and $N-1$ and then negate axiom (H3.i),
\[

$$
\begin{array}{cr}
X_{i} \rightarrow X_{i-1} & (\mathrm{H} 3 . i-1) \\
\neg\left(X_{i+1} \rightarrow X_{i}\right) & \left(\mathrm{H} 3 . i^{\prime}\right) \\
X_{i+2} \rightarrow X_{i+1} & (\mathrm{H} 3 . i+1)
\end{array}
$$
\]

In this case, the unique model of the theory says that X_{0}, \ldots, X_{i} are false, and that X_{i+1}, \ldots, X_{N} are true, that is, the $(i+1)$ th grain makes the difference; but again, this conflicts with our intuition.

Hence, Boolean logic does not support the reasoning scenario we settled, since our theory either has no Boolean models, or else has unsatisfactory Boolean models.

The problem seems to be that the bivalence of the underlying logic conflicts with the intrinsic vagueness of the axiomatized notion. If Boolean logic was the only admissible logic, then we would be forced to conclude that the phenomenon of vagueness does not admit a logical treatment. In this diagnosis, however, the uniqueness of Boolean logic acts as an assumption. An alternative strategy, avoiding this serious assumption, is to admit the failure of Boolean logic in this context, and to look for a conservative repair of the situation, that is, a solution to the problem inside a generalization of Boolean logic. ${ }^{2}$

Let us backtrack and refine our initial intuition regarding the notion of heap. We are confortable in recognizing that X_{0} is false (that is, X_{0} holds with truthvalue 0), and that X_{N} is true (that is, X_{N} holds with truthvalue 1). However, it is reasonable that if X_{i+1} holds with a certain truthvalue, a_{i+1}, then X_{i} holds with a truthvalue, a_{i}, that is smaller than a_{i+1}. Moreover, it is reasonable to admit that the truthvalues of the

[^1]X_{i} 's decrease uniformly, as i decreases from N to 0 . Hence, adopting this refined intuition, we are interested in a logical framework where we can formalize a theory that is virtually identical, at the linguistic level, to our initial theory, and having as a model an assignments of the propositional variables X_{0}, \ldots, X_{N} over the truthvalues,
$$
D=\{0,1 / N, 2 / N, \ldots, 1\},
$$
such that the truthvalue of X_{i} is exactly i / N. It is intended that D is ordered by $0<1 / N<\cdots<1$, meaning that X_{j} is less true than X_{k} for every $0 \leq j<k \leq N$. Thus, we abjured the bivalence of Boolean logic in favor of a many-valued setting.

Together with bivalence, the other distinctive property of Boolean logic is truthfunctionality, which we do not seem to be forced to abjure. Therefore, since the propositional variables range over D, we choose a pair of functions over D as interpretations for implication and negation; namely, we interpret implication over the binary function $a \rightarrow b=\min (1, b+1-a)$ over D (this operation is traditionally known as Łukasiewicz implication), and negation over the unary function $\neg a=1-a$ over D (that is, Łukasiewicz negation). Although it appears arbitrary, the choice of the previous interpretations is defensible under several respects, as we shall see in the next section; for instance, the restrictions of the adopted interpretations of \rightarrow and \neg to $\{0,1\}$ act as Boolean implication and negation.

In Boolean logic, a common practice is that of enriching the language with propositional constants C_{0} and C_{1}, standing respectively for the conventionally true and false statements, say, " $0=0$." and " $0 \neq 0$.". Mimicking this practice in our generalized setting, we enrich the language with the propositional constants $C_{0}, \ldots, C_{N-1}, C_{N}$, where C_{i} stands for the statement that conventionally holds with truthvalue i / N, for $i=0, \ldots, N$. Now by our interpretations of the connectives, $C_{i} \rightarrow A$ holds with truthvalue 1 if and only if A holds with truthvalue $\geq i$, and $A \rightarrow C_{i}$ holds with truthvalue 1 if and only if A holds with truthvalue $\leq i$. With this machinery at hand, let us slightly revise our
initial theory by putting,

$$
\begin{gather*}
\neg X_{0} \tag{H1}\\
X_{N} \tag{H2}\\
C_{N-1} \rightarrow\left(X_{1} \rightarrow X_{0}\right) \\
\left(X_{1} \rightarrow X_{0}\right) \rightarrow C_{N-1} \tag{H3.0"}\\
\vdots \\
\left(X_{N} \rightarrow X_{N-1}\right) \rightarrow\left(X_{N} \rightarrow X_{N-1}\right) \tag{H3.N-1"}
\end{gather*}
$$

where, for $i=0, \ldots, N$, axioms $C_{N-1} \rightarrow\left(X_{i+1} \rightarrow X_{i}\right)$ and $\left(X_{i+1} \rightarrow\right.$ $\left.X_{i}\right) \rightarrow C_{N-1}$ say that $X_{i+1} \rightarrow X_{i}$ holds with a truthvalue equal to $(N-1) / N$. In words, we are assuming that the statement $X_{i+1} \rightarrow$ X_{i} is almost true, but not absolutely true, fitting the fine intuition that removing a grain from a heap makes a difference, even though just a small one.

It is not difficult to check that an assignment a of X_{0}, \ldots, X_{N} in D models the revised theory if and only if X_{0} holds with truthvalue 0 under a, X_{N} holds with truthvalue 1 under a, and, for all $0<i<N$, X_{i} holds with truthvalue i / N under a. ${ }^{3}$

As regards to the recovery of our natural reasoning on the heap, it is possible to prove ${ }^{4}$ that, in the adopted logical framework, the revised theory allows to infer all the lower bounds $C_{i} \rightarrow X_{i}$ and upper bounds $X_{i} \rightarrow C_{i}$ for $0 \leq i \leq N$, that is, it allows to infer that the statement X_{i} holds with truthvalue i / N for $0 \leq i \leq N$. It is also possible to prove that the theory allows to infer $C_{N} \rightarrow \neg X_{0}$, but the pair $X_{0} \rightarrow C_{0}$ and $C_{N} \rightarrow \neg X_{0}$ is not critical in this setting, because it simply says that X_{0} is absolutely false, and $\neg X_{0}$ is absolutely true.

In summary, we found a generalization of the Boolean logic framework, where propositional variables take values in a linearly ordered

[^2]set D, such that $\{0,1\} \subseteq D \subseteq[0,1]$, and implication and negation are functions over D. Adopting this framework, we have been able to write a theory that isolates the expected model and allows for the expected inferences.

Not surprisingly, due to the pervasive presence of vagueness in natural phenomena, fuzzy logics candidate as a suitable kernel of applications such as fuzzy control systems [GH99]. In addition to a robust treatment of vagueness, fuzzy logics may provide a rigorous foundation to the logical treatment of uncertain informations, the prominent applications here being Rényi-Ulam game with lies and error correcting codes [CDM99], the investigation of the probability of fuzzy events [Mon06, KM07, AGM], and satisfiability problems such as MAX-SAT [Mun99, LHdG08].

In the next section, we shall formalize a general mathematical framework, capturing a large family of fuzzy logics, including the logic depicted in this section.

1.1.2 Triangular Norms

In this section, we present a mathematical framework for the study of fuzzy propositional logics, based on the notion of (continuous) triangular norm. This framework has been popularized by Hájek [Háj98]. We refer the reader to Section 1.3 for terminology and notation (language, interpretation, calculus, etc.).

Let L be a language, built upon the propositional variables X_{1}, X_{2}, \ldots, the propositional constant \perp, and the logical connectives \odot and \rightarrow. An additional abstraction effort, directed by the introductory discussion on the problem of vagueness, leads us to a family of interpretations of L, satisfying the following four requirements:

Fuzziness: The propositional variables, X_{1}, X_{2}, \ldots, take values over the real unit interval $[0,1]$, equipped with the usual ordering, \leq. Intuitively, 0 and 1 act as Boolean falsity and truth respectively, the values strictly between 0 and 1 act as truth degrees, and the ordering implements the idea that truth degrees are pairwise comparable.

Truthfunctionality: the symbol \perp, called falsum, is interpreted over 0 , and the symbols \odot and \rightarrow, called fuzzy conjunction and fuzzy implication, are interpreted over fixed binary operations $\odot^{[0,1]}$ and $\rightarrow{ }^{[0,1]}$ over $[0,1]$.

Connectives: Let $a, a_{1}, a_{2} \in[0,1]$. The operation $\odot^{[0,1]}$ is such that $1 \odot^{[0,1]} a=a$ and $0 \odot^{[0,1]} a=0$, so that the restriction of $\odot^{[0,1]}$ to $\{0,1\}^{2}$ behave like Boolean conjunction. Moreover, $\odot^{[0,1]}$ is associative, commutative, isotone in both arguments, and continuous. The operation $\rightarrow{ }^{[0,1]}$ is such that $a_{1} \rightarrow{ }^{[0,1]} a_{2}=1$ if and only if $a_{1} \leq a_{2}$, so that the restriction of $\rightarrow{ }^{[0,1]}$ to $\{0,1\}^{2}$ behave like Boolean implication. Moreover, $\rightarrow{ }^{[0,1]}$ is antitone in the first argument and isotone in the second argument.

Inference: The fuzzy modus ponens rule allows for the inference of s from the fuzzy conjunction of r and $r \rightarrow s$, that is, $r \odot(r \rightarrow s)$, for every $r, s \in L$. The operations $\odot^{[0,1]}$ and $\rightarrow \rightarrow^{[0,1]}$ are such that the fuzzy modus ponens is sound and powerful, in the following sense.

Let a_{1}, a_{2}, and a_{3} denote respectively the values of r, s, and $r \rightarrow s$ in $[0,1]$. On the one hand, a_{3} must satisfy,

$$
a_{1} \odot^{[0,1]} a_{3} \leq a_{2},
$$

to preserve the soundness of the inference: we want to exclude the case where the conclusion of the inference has a truth degree strictly lower than the truth degree of the fuzzy conjunction of the premises. On the other hand, a_{3} must be the maximal value that preserves soundness, to realize a powerful inference: we want to infer s from premises r and $r \rightarrow s$ with a value, a_{2}, as large as possible; so the value, a_{3}, of $r \rightarrow s$ is chosen to attain the largest possible lower bound on a_{2} (as a boundary case, for instance, we avoid the choice $a_{3}=0$, yielding the trivial lower bound $0 \leq a_{2}$).

The first, second, and third requirement are justified by the solution of the problem of vagueness proposed in the previous section: we want a logical framework that generalizes Boolean logic abjuring bivalence,
but maintaining truthfunctionality. The fourth requirement is necessary to implement natural inferences within our framework.

In an important and fruitful insight, Hájek observed that (continuous) triangular norms, or (continuous) t-norms, and their residua, provide suitable interpretations for fuzzy conjunction and implication, that is, interpretations that satisfy the aforementioned requirements. A continuous t-norm, $*$, is a continuous binary function on $[0,1]$ that is associative, commutative, isotone ($a_{1} \leq a_{2}$ implies $a_{1} * a_{3} \leq a_{2} * a_{3}, a_{1}, a_{2}, a_{3} \in$ $[0,1])$ and has 1 as unit $\left(a_{1} * 1=a_{1}\right)$. Given a continuous t-norm $*$, the corresponding residuum is the binary operation \rightarrow_{*} over $[0,1]$ uniquely determined by the residuation equivalence ($a_{1}, a_{2}, a_{3} \in[0,1]$),

$$
a_{1} * a_{3} \leq a_{2} \text { if and only if } a_{3} \leq a_{1} \rightarrow_{*} a_{2},
$$

which turns out to be given by,

$$
a_{1} \rightarrow_{*} a_{2}=\max \left\{a_{3} \in[0,1] \mid a_{1} * a_{3} \leq a_{2}\right\} .
$$

For every t-norm, $*$, the corresponding t-algebra,

$$
[0,1]_{*}=\left([0,1], *, \rightarrow_{*}, 0\right),
$$

is the algebra over the signature $(\odot, \rightarrow, \perp)$ of type $(2,2,0)$, having \odot realized by the t-norm $*, \rightarrow$ realized by its residuum \rightarrow_{*}, and \perp realized by 0 .

It is immediate to check that the interpretation of the language L into $[0,1]_{*}$ satisfies the requirements listed above. This fact motivates the introduction of the fuzzy propositional logic based on the t-norm $*$ as the set of formulae,

$$
\left\{s \in L \mid[0,1]_{*} \models s=\top\right\} .
$$

In this setting, the most general fuzzy propositional logic is the logic of all continuous t-norms and their residua, that is,

$$
\begin{equation*}
\bigcap_{*}\left\{s \in L \mid[0,1]_{*} \models s=\mathrm{T}\right\}, \tag{1.2}
\end{equation*}
$$

where $*$ ranges over continuous t-norms. In [CEGT00], Cignoli, Esteva,

Godo, and Torrens proved that the following logical calculus is complete with respect to all continuous t-norms and their residua. ${ }^{5}$

Definition 1 (Basic Logic Calculus, $\vdash_{B L}$). The Basic logic calculus, in symbols $\vdash_{B L}$, is defined by the modus ponens inference rule and the axioms $(r, s, t \in L)$:
(BL1) $(r \rightarrow s) \rightarrow((s \rightarrow t) \rightarrow(r \rightarrow t))$
(BL2) $(r \odot s) \rightarrow r$
(BL3) $(r \odot(r \rightarrow s)) \rightarrow(s \odot(s \rightarrow r))$
(BL4) $(r \rightarrow(s \rightarrow t)) \rightarrow((r \odot s) \rightarrow t)$
(BL5) $((r \odot s) \rightarrow t) \rightarrow(r \rightarrow(s \rightarrow t))$
(BL6) $((r \rightarrow s) \rightarrow t) \rightarrow(((s \rightarrow r) \rightarrow t) \rightarrow t)$
(BL6) $\perp \rightarrow r$
It turns out that a formula s is provable from formulae r_{1}, \ldots, r_{i} in the Basic logic calculus if and only if, for every t-algebra $[0,1]_{*}$ and every assignment a, if r_{1}, \ldots, r_{i} are equal to 1 under a in $[0,1]_{*}$, then s is equal to 1 under a in $[0,1]_{*}$. Formally, noticing that for every finite set of terms $r_{1}, \ldots, r_{i}, s \in L$, there exists $n \geq 1$ such that $r_{1}, \ldots, r_{i}, s \in$ L_{n}, and recalling that \top abbreviates $\perp \rightarrow \perp$, we have the following completeness theorem.

Theorem 2 (Cignoli et al.; Aglianó and Montagna). Let r_{1}, \ldots, r_{i}, s be terms in L_{n}. Then, $r_{1}, \ldots, r_{i} \vdash_{B L} s$ if and only if, for every t-norm $*$ and every $\mathbf{a} \in[0,1]^{n}$,

$$
r_{1}^{[0,1]_{*}}(\mathbf{a})=\cdots=r_{i}^{[0,1]_{*}}(\mathbf{a})=\top^{[0,1]_{*}} \text { implies } s^{[0,1]_{*}}(\mathbf{a})=\top^{[0,1]_{*}} .
$$

In particular, $\vdash_{B L}$ s if and only if, for every t-norm $*$ and every $\mathbf{a} \in[0,1]^{n}$,

$$
s^{[0,1]_{*}}(\mathbf{a})=\top^{[0,1]_{*}} .
$$

[^3]Thus, Basic logic is the logic of all continuous t-norms and their residua. ${ }^{6}$ This result has a major benefit and a major weakness, which we now consider in turn.

The benefit is that the completeness of Basic logic with respect to all continuous t-norms and their residua furnishes a satisfactory philosophical motivation for Basic logic. Indeed, Basic logic abstracts a number of properties of Boolean logic that are natural, or essential, and, upon requiring exclusively the satisfaction of these properties, extends Boolean logic from the domain $\{0,1\}$ to the domain $[0,1] .{ }^{7}$ Hence, as far as the distilled properties are regarded as the essential features of Boolean logic, Basic logic is the natural extension of Boolean logic from $\{0,1\}$ to $[0,1]$. From this viewpoint, Basic logic is easier to motivate as a fuzzy logic than a logic based on a fixed t-norm, because in the latter case there is a commitment on a specific t-norm that lacks in the former, and this specific asks for additional motivations such as, for instance, a domain of application. ${ }^{8}$ On the other hand, if some feature of Basic logic is considered as groundless or misleading, the same objection automatically applies to any of its concrete realizations.

The weakness is that Theorem 2 does not suggest an algorithm for solving the most natural logical problems related to Basic logic, such as the problem of deciding Basic logic tautologies or (finite) consequences, or the problem of representing Basic logic truthfunctions.

In the rest of this section we insist on the decision issue; we shall devote the central part of the thesis to the investigation of the representation issue.

Let us formalize the problem of deciding tautologies and conse-

[^4]quences in Basic logic. The (finite) consequence problem of Basic logic is the problem of deciding if, given a finite set of formulae $\left\{r_{1}, \ldots, r_{i}\right\}$, and a formula s, there exists a proof in Basic logic of s using r_{1}, \ldots, r_{i} as additional axioms, that is, whether the consequence relation,
\[

$$
\begin{equation*}
r_{1}, \ldots, r_{i} \vdash_{B L} s, \tag{1.3}
\end{equation*}
$$

\]

holds or not. Say that r_{1}, \ldots, r_{i}, s contain variables among X_{1}, \ldots, X_{n}. By Theorem 2, this problem is equivalent to decide the following statement: for every t-norm $*$ and every assignment $\mathbf{a} \in[0,1]^{n}$ of the variables, if $r_{1}^{[0,1]_{*}}(\mathbf{a})=\cdots=r_{i}^{[0,1]_{*}}(\mathbf{a})=1$, then it must also hold that $s^{[0,1] *}(\mathbf{a})=1$. The tautology problem of Basic logic reduces to the special case of deciding whether or not a given a formula s is a consequence of the empty set in Basic logic. Say that s contains variables among X_{1}, \ldots, X_{n}. By Theorem 2, this problem is equivalent to decide the following statement: for every t-norm $*$, and every assignment $\mathbf{a} \in[0,1]^{n}$ of the variables, $s^{[0,1] *}(\mathbf{a})=1$. ${ }^{9}$ But deciding the previous statements asks for an exhaustive nested search over two infinite spaces, since both the interpretations of the logical signature, and the assignments of the propositional variables, are infinitely many (in fact, uncountably many).

Hence, in the terms above, Theorem 2 does not provide a decision procedure for Basic logic. A stronger completeness result is needed, ideally, the completeness of Basic logic with respect to a single and manageable t-algebra. This algebra has been eventually described thanks to the effort of several resarchers [AM03, BHMV02, AFM07]. In this thesis, we freely follow the presentation of Aglianó and Montagna [AM03].

Definition 3. Let $n \geq 1$. The algebra $[0, n+1]=([0, n+1], \odot, \rightarrow, \perp)$ is the

[^5]algebra of type $(2,2,0)$, defined as follows ($a_{1}, a_{2} \in[0, n+1]$):
\[

$$
\begin{aligned}
a_{1} \odot a_{2} & = \begin{cases}\min \left(a_{1}, a_{2}\right) & \text { if }\left\lfloor a_{1}\right\rfloor \neq\left\lfloor a_{2}\right\rfloor \\
\max \left(\left\lfloor a_{1}\right\rfloor, a_{1}+a_{2}-\left\lfloor a_{1}\right\rfloor-1\right) & \text { otherwise }\end{cases} \\
a_{1} \rightarrow a_{2} & = \begin{cases}a_{2} & \text { if }\left\lfloor a_{2}\right\rfloor<\left\lfloor a_{1}\right\rfloor \\
a_{2}+\left\lfloor a_{1}\right\rfloor+1-a_{1} & \text { if }\left\lfloor a_{1}\right\rfloor=\left\lfloor a_{2}\right\rfloor \text { and } a_{2}<a_{1} \\
n+1 & \text { otherwise }\end{cases} \\
\perp & =0
\end{aligned}
$$
\]

For $\circ \in\{\odot, \rightarrow, \perp\}$, we let $\circ[0, n+1]$ denote the realization of \circ in $[0, n+1] .{ }^{10}$
The following result of Aglianó and Montagna refines the completeness theorem of Cignoli, Esteva, Godo and Torrens.

Theorem 4 (Aglianó and Montagna). Let r_{1}, \ldots, r_{i}, s be terms in L_{n}. Then, $r_{1}, \ldots, r_{i} \vdash_{B L}$ if and only if, for every $\mathbf{a} \in[0, n+1]^{n}$,

$$
r_{1}^{[0, n+1]}(\mathbf{a})=\cdots=r_{i}^{[0, n+1]}(\mathbf{a})=\top^{[0, n+1]} \text { implies } s^{[0, n+1]}(\mathbf{a})=\top^{[0, n+1]} .
$$

In particular, $\vdash_{B L}$ s if and only if, for every $\mathbf{a} \in[0, n+1]^{n}$,

$$
s^{[0, n+1]}(\mathbf{a})=\mathrm{T}^{[0, n+1]} .
$$

To the extent of the decision issue of Basic logic, the previous result is a dramatic improvement of Theorem 2. Indeed, in terms of Theorem 4, Basic logic proves s from r_{1}, \ldots, r_{i} if and only if, for every $\mathbf{a} \in[0, n+1]^{n}, r_{1}^{[0, n+1]}(\mathbf{a})=\cdots=r_{i}^{[0, n+1]}(\mathbf{a})=\top^{[0, n+1]}$ implies $s^{[0, n+1]}(\mathbf{a})=\top^{[0, n+1]}$. The crux is that the decision of the right side of the previous equivalence is in coNP: intuitively, the algebra $[0, n+1]$ allows for a finite reduction of the infinite space of the assignments $\mathbf{a} \in[0, n+1]^{n}$.

The case where $i=0$, that is, the problem whether s is a Basic logic tautology or not, has been proved to be in coNP by Baaz et al. in [BHMV02]. In the vein of [CFM04, MPT03], Bova and Montagna presented in [BM08] an improvement of the seminal algorithm of Baaz

[^6]et al. in [BHMV02]. The algorithm takes in input a Basic logic finite consequence (thus implementing the general case $i \geq 0$), and reduces the instance, of size l, to a collection of exponentially many systems of linear equality and inequality constraints (each having size polynomially bounded in l), such that the instance is valid if and only if all of the systems are unsatisfiable. A careful organization of the reductions allows to show that checking at most $2^{3 l}$ systems suffices to decide the instance. This improves the upper bound implicit in the algorithm of [BHMV02], that involves a number $\geq l$! of witnesses. This nice bound is attained applying techniques inspired by proof theory, despite the algorithm is not still satisfactory as a proof system for Basic logic. ${ }^{11}$

As for lower bounds, the problem of deciding Basic logic consequences is coNP-hard, by the following reduction from the coNP-complete problem of Łukasiewicz tautology [Mun87]. Let $s \in L_{n}$. It is easy to check that s is a tautology of Łukasiewicz logic if and only if $\neg \neg s$ is a tautology of Basic logic, if and only if Basic logic proves $\neg \neg s$ from the empty set. Thus, as a consequence of Theorem 4, not only deciding Basic logic has the same computational complexity of deciding Boolean logic, but there is also a decision algorithm that matches the worst-case upper bounds of Boolean logic decision algorithms.

Before formalizing and attacking the representation issue of Basic logic, let us summarize the motivations we presented in favor of the investigation of Basic logic. Along the lines of [Háj98], we introduced Basic logic as a natural generalization of Boolean logic based upon minimal assumptions, possibly with the exception of conjunction continuity. Then, we presented a strong completeness result of Aglianó and Montagna [AM03], which has as a corollary that Basic logic finite consequences, and hence Basic logic tautologies, have the same computational complexity of the Boolean counterparts, that is, are coNP-complete problems. As a strengthen of the coNP upper bound of Baaz et al. in [BHMV02], we mentioned an algorithm of Bova and Montagna [BM08], that matches the worst case running time of the familiar

[^7]truthtable algorithm for Boolean logic. This bound is optimal, in the general case, if coNP $\neq \mathrm{NP}$ [CR73]. In our opinion, this nucleus of logical and computational facts is sufficient to legitimate Basic logic as an autonomous object of study. ${ }^{12}$

1.2 Outline and Contribution

In the previous section we introduced fuzzy logics as a generalization of Boolean logic, aimed to support logical inferences on vague or uncertain premises. We observed that these logics arose as practical mathematical tools for tackling problems in several theoretical and applicative areas of computer science, for instance fuzzy control, error correcting codes, fuzzy probability, and maximum satisfiability. We also depicted Hájek's paradigm for mathematical fuzzy logics, relying upon the idea of generalizing Boolean logic starting from a suitable generalization of Boolean conjunction, given by $[0,1]$-valued functions known as (continuous) triangular norms. In this setting, Basic logic is a fundamental object, being the intersecting common fragment of all triangular norms based logics. Eventually we discussed the importance of the completeness theorem of Basic logic with respect to the semantics $[0, n+1]$ as regards to the decision issue of Basic logic.

Chapter 2 constitutes the central part of this thesis, and it is devoted to an explicit functional representation of Basic logic.

In Section 2.1 we discuss how the completeness of the n-variate fragment of Basic logic with respect to $[0, n+1]$ furnishes an implicit representation of the truthfunctions of the n-variate fragment of Basic logic, or equivalently of the elements of the Lindenbaum-Tarski algebra of the n-variate fragment of Basic logic, for every $n \geq 1$. The main contribution of this thesis is an explicit description of these truthfunctions, which we call BL-functions, for every $n \geq 1$. This very natural and elementary logical problem has been solved only in the case $n=1$, by Montagna [Mon00]. Even the case $n=2$ eluded intensive research efforts [Mon01].

[^8]In Section 2.2 we mention the completeness of Łukasiewicz logic with respect to the standard MV-chain $[0,1]$, and the functional representation of the truthfunctions of Łukasiewicz logic in terms of McNaughton functions. The framework in which we shall characterize BL-functions inherits several beautiful ideas and technical tools from the case of Łukasiewicz logic and McNaughton functions.

In Section 2.3 we study in full generality the class of BL-functions: these functions act in the BL-algebraic setting as McNaughton functions act in the MV-algebraic setting. In Section 2.3.1 we prepare a conceptual and terminological framework suitable for the study of BL-functions. In Section 2.3.2 we recast the case of unary BL-functions into our framework. This case was already known, thanks to the work of Montagna [Mon00]. In Section 2.3.3, to elicit intuitions in view of the general case, we study in detail binary BL-functions. The step from the unary to the binary case furnishes the heuristic for generalizing the construction to the case of $n \geq 1$ variables, that is treated in Section 2.3.4.

In Section 2.4 we capitalize our explicit description of n-ary BLfunctions in the universal algebraic setting. Since the variety of BLalgebras forms the equivalent algebraic semantics of Basic logic, by universal algebra, the free n-generated BL-algebra is isomorphic to the Lindenbaum-Tarski algebra of the n-variate fragment of Basic logic. Hence our main result accounts as an explicit and constructive functional representation of the free n-generated BL-algebra, for $n \geq 1$.

In Chapter 3 we summarize our results in geometrical terms, and discuss three possible developments of the present work, namely the combinatorial representation of locally finite subvarieties of BL-algebras, the identification of tight finite countermodels to BL-quasiequations, and the construction of deductive interpolants in Basic logic.

1.3 Terminology and Notation

In this section, we introduce the terminology and notation used throughout the thesis.

For every $n \geq 1$, we let $[n]=\{1, \ldots, n\}$. For any $a \in \mathbb{R}$, we let $\lfloor a\rfloor$ denote the integer part of a, stipulating that $\lfloor+\infty\rfloor=+\infty$. Let $n \geq 1$ be
fixed. For any $r \in \mathbb{R}$, we let \mathbf{r} be the vector $(r, \ldots, r) \in \mathbb{R}^{n}$. In particular, $\mathbf{1}=(1, \ldots, 1) \in[0,1]^{n}$, and $\mathbf{n}+\mathbf{1}=(n+1, \ldots, n+1) \in[0, n+1]^{n}$. For $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{a}^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \in \mathbb{R}^{n}$, we let $\mathbf{a}-\mathbf{a}^{\prime}=\left(a_{1}-a_{1}^{\prime}, \ldots, a_{n}-\right.$ $\left.a_{n}^{\prime}\right) \in \mathbb{R}^{n}$. Let f be an n-ary function from B to C, and let $A \subseteq B$. Then, $\left.f\right|_{A}$ denotes the restriction of the function f to A. Let g be a function from A to C. We write $\left.f\right|_{A}=g$ if $f(a)=g(a)$ for every $a \in A$.

Definition 5 (Language). The set $X=\left\{X_{i} \mid i \in \mathbb{N}\right\}$ is a set of symbols, called variables. The set L is the smallest set of strings over the alphabet $X \cup\{\odot, \rightarrow, \perp),,(\}$ such that: $X \subseteq L$ and $\perp \in L ; s, t \in L$ implies $(s \odot$ $t),(s \rightarrow t) \in L$. The set L is called language, and the strings in L are referred to either as terms or as formulae.

Let $n \geq 1$. We let L_{n} denote the n-variate fragment of the language L, that is the subset of L containing exactly the strings built upon variables X_{1}, \ldots, X_{n}. Let $I \subseteq[n]$. We let L_{I} denote the subset of L containing exactly the strings built upon variables X_{i} for $i \in I$.

We let L^{+}denote the subset of terms in L not containing occurrences of \perp, and similarly we let L_{n}^{+}and L_{I}^{+}be the subsets of terms in L_{n} and L_{I} respectively not containing occurrences of \perp.

Note that, for every $t \in L$, there exists $n \geq 1$ such that $t \in L_{n}$. For every term $t \in L$, we write t^{m} for the compound term $t \odot \cdots \odot t$, with t occurring m times.

Definition 6 (Substitution). Let $t \in L_{n}$ and let $I=\left\{i_{1}, \ldots, i_{m}\right\} \subseteq[n]$ such that $i_{1}<\cdots<i_{m}$. We let,

$$
t_{\left\{i_{1} \backslash 1, \ldots, i_{m} \backslash m\right\}},
$$

denote the term in L_{m} obtained by substituting simultaneously and uniformly in t variable $X_{i_{1}}$ with variable X_{1}, \ldots, variable $X_{i_{m}}$ with variable X_{m}. Let $t \in L_{n}$, let $I=\left\{i_{1}, \ldots, i_{m}\right\} \subseteq[n]$ such that $i_{1}<\cdots<i_{m}$, and let t_{1}, \ldots, t_{m} be in L_{n}. We let,

$$
t_{\left\{i_{1} \backslash t_{1}, \ldots, i_{m} \backslash t_{m}\right\}},
$$

denote the term in L_{n} obtained by substituting simultaneously and uniformly in t variable $X_{i_{1}}$ with term t_{1}, \ldots, variable $X_{i_{m}}$ with term t_{m}. Let $r, s, t \in L_{n}$, and let s be a subterm of t. We let,

$$
t_{\{s \backslash r\}},
$$

denote the term in L_{n} obtained by substituting simultaneously and uniformly in t the term s with the term r.

Definition 7 (Logical Calculus). A (logical) calculus, in symbols \vdash, is defined by a finite collection of axiom schemata together with the modus ponens inference rule. A proof of a formula t in the calculus is a tuple $\left(t_{1}, \ldots, t_{m}\right) \in$ L^{m} such that $t=t_{m}$ and for $i=1, \ldots, m-1, t_{i}$ is either an instance of an axiom schema, or the conclusion of a modus ponens inference rule,

$$
t_{j}, t_{j} \rightarrow t_{k} \vdash t_{k}
$$

where $j, k \in[m]$ and $j, k<i$. We say that $t \in L$ is provable in a fixed calculus, notation $\vdash t$, if and only if there exists a proof of t in the calculus.

Definition 8 (Algebraic Semantics, Term Operation). An (algebraic) semantics is an algebra \mathbf{A} having domain A and signature $(\odot, \rightarrow, \perp)$ of type $(2,2,0)$. We let $\circ^{\mathbf{A}}$ denote the operation realizing the symbol $\circ \in\{\odot, \rightarrow, \perp\}$ in A. Let \mathbf{A} be a semantics, and let $t \in L_{n}$. We let,

$$
t^{\mathbf{A}}: A^{n} \rightarrow A
$$

denote the n-ary operation over A, uniquely determined by the following inductive clauses, for every $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$:
(i) if $t=X_{i}$, then $t^{\mathbf{A}}(\mathbf{a})=a_{i}$;
(ii) if $t=\perp$, then $t^{\mathbf{A}}(\mathbf{a})=\perp^{\mathbf{A}}$;
(iii) if $t=r \odot s$, then $(r \odot s)^{\mathbf{A}}(\mathbf{a})=r^{\mathbf{A}}(\mathbf{a}) \odot{ }^{\mathbf{A}} s^{\mathbf{A}}(\mathbf{a})$;
(iv) if $t=r \rightarrow s$, then $(r \rightarrow s)^{\mathbf{A}}(\mathbf{a})=r^{\mathbf{A}}(\mathbf{a}) \rightarrow{ }^{\mathbf{A}} s^{\mathbf{A}}(\mathbf{a})$.

We call $t^{\mathbf{A}}$ the (term) operation corresponding to t in \mathbf{A}.
Definition 9 (Validity, Completeness). Let A be a semantics, and let $r, s \in$ L_{n}. The equation $r=s$ is valid in \mathbf{A}, in symbols $\mathbf{A} \models r=s$, if for every $\mathbf{a} \in A^{n}$, it holds that $r^{\mathbf{A}}(\mathbf{a})=s^{\mathbf{A}}(\mathbf{a})$. The term r is a valid in \mathbf{A}, in symbols, $\mathbf{A} \models t=\top$, if the equation $r=\top$ is valid in \mathbf{A}. \mathbf{A} is complete for a calculus \vdash, if, for every $t \in L$,

$$
\vdash t \text { if and only if } \mathbf{A} \models t=\mathrm{T} \text {. }
$$

We shall adopt the following abbreviations.
Notation 10 (Abbreviations). For every $r, s \in L$ we write $r \wedge s$ instead of $r \odot(r \rightarrow s), r \vee s$ instead of $((r \rightarrow s) \rightarrow s) \wedge((s \rightarrow r) \rightarrow r), \neg r$ instead of $r \rightarrow \perp$, and \top instead of $\neg \perp$.

2 BL-Functions and Free BL-Algebra

In this chapter, we present the main contribution of this thesis. In light of the motivations furnished in the introduction, the problem we are going to deal with is very natural. Roughly speaking, we want to describe explicitly the class of functions that stands to Basic logic truthfunctions as Boolean functions stand to Boolean logic truthfunctions.

More precisely, let $n \geq 1$. Say that terms $r, s \in L_{n}$ are provably equivalent (in Basic logic) if Basic logic proves both $r \rightarrow s$ and $s \rightarrow r$, and write,

$$
[t]=\left\{t^{\prime} \in L_{n} \mid t^{\prime} \text { provably equivalent to } t\right\}
$$

for every $t \in L_{n}$. The relation of equiprovability is an equivalence relation over L_{n}. Let the algebra $\mathbf{A}_{n}=\left(A_{n}, \odot, \rightarrow, \perp\right)$ of type $(2,2,0)$ be defined as follows. The domain A_{n} contains exactly the classes of provably equivalent terms in L_{n},

$$
A_{n}=\left\{[t] \mid t \in L_{n}\right\}
$$

The constant \perp is realized by $[\perp]$, the operation \odot is realized by $[r] \odot$ $[s]=[r \odot s]$, and the operation \rightarrow realized by $[r] \rightarrow[s]=[r \rightarrow s] .{ }^{1}$ The algebra \mathbf{A}_{n} is the Lindenbaum-Tarski algebra of the n-variate fragment of Basic logic. Every element $[t] \in A_{n}$ represents a distinct truthfunction of the n-variate fragment of Basic logic: indeed, by the completeness result in Theorem 4, Basic logic proves $r \rightarrow s$ and $s \rightarrow r$ if and only if

[^9]$r^{[0, n+1]}$ and $s^{[0, n+1]}$ coincide as functions from $[0, n+1]^{n}$ to $[0, n+1] .{ }^{2}$ A natural question is that of describing explicitly the class of functions that contains exactly the truthfunctions of the n-variate fragment of Ba sic logic. We call these functions, BL-functions, and we call the problem of describing explicitly BL-functions, the representation problem of Basic logic.

As far as the representation problem of Boolean logic is concerned, the familiar functional completeness property guarantees that for every n-variate Boolean function f, there exists a Boolean term over n variables computing f. Conversely, every Boolean term over n variables computes an n-variate Boolean function, and two terms are equiprovable in Boolean logic if and only if they compute the same function by semantic completeness. Thus, there is a bijection between n-variate Boolean functions, and Boolean terms of n variables modulo equiprovability. This is not the case in the Basic logic setting, where we evaluate variables over $[0, n+1]$. Whereas it still holds that a Basic logic term over n variables computes an n-variate function over $[0, n+1]$, the converse does not hold: the set of terms is countable, but the set of functions is uncountable. It turns out that the task of isolating those n-variate functions over $[0, n+1]$ that are computed by terms in L_{n} is not trivial.

The representation problem of the n-variate fragment of Basic logic is equivalent to the problem of providing an explicit functional representation of the free BL-algebra over n-generators. To be precise, it is well known that the equivalent semantics of Basic logic, in the sense of Blok and Pigozzi [BP89], is a very natural subvariety of residuated lattices, defined as follows.

Definition 11 (BL-algebra). A commutative bounded divisible residuated lattice is an algebra $(A, \vee, \wedge, \odot, \rightarrow, \top, \perp)$ of type $(2,2,2,2,0,0)$ such that:
(i) (A, \odot, \top) is a commutative monoid;

[^10](ii) $(A, \vee, \wedge, \top, \perp)$ is a bounded lattice $(x \leq y$ if and only if $x \wedge y=x)$;
(iii) residuation holds, that is, for all $a_{1}, a_{2}, a_{3} \in A$:
\[

$$
\begin{equation*}
a_{1} \odot a_{3} \leq a_{2} \text { if and only if } a_{3} \leq a_{1} \rightarrow a_{2}{ }^{3} \tag{2.1}
\end{equation*}
$$

\]

(iv) divisibility holds, that is, for all $a_{1}, a_{2} \in A$:

$$
\begin{equation*}
a_{1} \wedge a_{2}=a_{1} \odot\left(a_{1} \rightarrow a_{2}\right) \tag{2.2}
\end{equation*}
$$

A BL-algebra is a prelinear commutative bounded divisible residuated lattice, that is, for all $a_{1}, a_{2} \in A$,

$$
\begin{equation*}
\left(a_{1} \rightarrow a_{2}\right) \vee\left(a_{2} \rightarrow a_{1}\right)=\top \tag{2.3}
\end{equation*}
$$

The completeness result of Theorem 4 has the following algebraic counterpart.

Definition 12. Let $n \geq 1$. The algebra,

$$
[0, n+1]^{\prime}=([0, n+1], \vee, \wedge, \odot, \rightarrow, \top, \perp)
$$

is the algebra of type $(2,2,2,2,0,0)$, where $\circ \in\{\odot, \rightarrow, \perp\}$ is realized by the operation ${ }^{[0, n+1]}$ of Definition 3, and $\circ \in\{\vee, \wedge, \top\}$ is realized by the following operations ($a_{1}, a_{2} \in[0, n+1]$):

$$
\begin{aligned}
a_{1} \wedge a_{2} & =a_{1} \odot\left(a_{1} \rightarrow a_{2}\right) \\
a_{1} \vee a_{2} & =\left(\left(a_{1} \rightarrow a_{2}\right) \rightarrow a_{2}\right) \wedge\left(\left(a_{2} \rightarrow a_{1}\right) \rightarrow a_{1}\right) \\
\top & =\perp \rightarrow \perp
\end{aligned}
$$

For $\circ \in\{\vee, \wedge, \odot, \rightarrow, \top, \perp\}$, we let $\circ[0, n+1]^{\prime}$ denote the realization of \circ in $[0, n+1]^{\prime}$.

Observing that $T^{[0, n+1]^{\prime}}=n+1$ and, for every $a_{1}, a_{2} \in[0, n+1]$, $a_{1} \wedge^{[0, n+1]^{\prime}} a_{2}=\min \left(a_{1}, a_{2}\right)$, and $a_{1} \vee^{[0, n+1]^{\prime}} a_{2}=\max \left(a_{1}, a_{2}\right)$, it is easy to check that the algebra $[0, n+1]^{\prime}$ is a BL-algebra. Now, Theorem 4 is equivalent to the following statement.

[^11]Theorem 13 (Aglianó and Montagna). Let $n \geq 1$. The algebra $[0, n+1]^{\prime}$ generates as a quasivariety the variety generated by the class of all n-generated BL-algebras.

By universal algebraic facts [MMT81], the free n-generated BL-algebra is isomorphic to the Lindenbaum-Tarski algebra of the n-variate fragment of Basic logic, or equivalently to the algebra of truthfunctions of the n-variate fragment of Basic logic, with pointwise defined operations. Formally,

Corollary 14. Let $n \geq 1$. The free n-generated BL-algebra is isomorphic to the algebra,

$$
\left(B_{n}, \vee, \wedge, \odot, \rightarrow, \top, \perp\right)
$$

of type $(2,2,2,2,0,0)$, where $B_{n}=\left\{t^{[0, n+1]} \mid t \in L_{n}\right\} \subseteq[0, n+1]^{[0, n+1]^{n}}$, \perp and T are realized by $\perp^{[0, n+1]^{\prime}}$ and $T^{[0, n+1]^{\prime}}$ respectively, and each $\circ \in$ $\{\vee, \wedge, \odot, \rightarrow\}$ is realized by the binary operation $\circ^{[0, n+1]^{\prime}}$ defined pointwise.

In Section 2.1 we collect the previous work done on the representation issue of Basic logic. Section 2.2 is devoted to the functional representation of Łukasiewicz logic in terms of McNaughton functions. In Section 2.3, we shall define an explicit class of functions, the class of n ary BL-functions F_{n}, that coincides with the class B_{n} of n-ary functions over $[0, n+1]$ computed by terms in L_{n}. Finally, in Section 2.4 , we shall obtain a representation of the free n-generated BL-algebra, in terms of such explicit class of functions.

2.1 Previous Work

In this section, we formalize the representation issue of Basic logic, distinguishing between implicit and explicit functional representations, and then we summarize the previous work done on this subject.

In light of our introductory discussion, given a term $t \in L_{n}$, we call the n-ary function $t^{[0, n+1]}$ over $[0, n+1]$ the (Basic logic) truthfunction of t. For each $n \geq 1$, we let the set,

$$
\begin{equation*}
B_{n}=\left\{t^{[0, n+1]} \mid t \in L_{n}\right\} \subseteq[0, n+1]^{[0, n+1]^{n}}, \tag{2.4}
\end{equation*}
$$

denote the truthfunctions of the n-variate fragment of Basic logic. It is immediate to observe (say, for cardinality reasons) that,

$$
B_{n} \subset[0, n+1]^{[0, n+1]^{n}} ;
$$

precisely, by the inductive definition (Definition 8) of the map,

$$
t \mapsto t^{[0, n+1]}
$$

sending each $t \in L_{n}$ to a function $t^{[0, n+1]}:[0, n+1]^{n} \rightarrow[0, n+1]$, the set B_{n} is attained as the smallest set of n-ary functions over $[0, n+1]$ satisfying the following inductive clauses:

Basis Clause: B_{n} contains the n-ary constant function 0 , and the n-ary projection functions $x_{1}, \ldots, x_{n} .^{4}$ Indeed, $0=\perp^{[0, n+1]} \in B_{n}$, and $x_{i}=X_{i}^{[0, n+1]} \in B_{n}$ for $i=1, \ldots, n$.

Inductive Clause: B_{n} is closed under pointwise application of the binary operations $\odot^{[0, n+1]}$ and $\rightarrow{ }^{[0, n+1]}$ of Definition 3, that is: if $f, g \in B_{n}$, then $(f \odot g),(f \rightarrow g) \in B_{n}$, where, for every a \in $[0, n+1]^{n}$:

$$
\begin{aligned}
(f \odot g)(\mathbf{a}) & =f(\mathbf{a}) \odot^{[0, n+1]} g(\mathbf{a}), \\
(f \rightarrow g)(\mathbf{a}) & =f(\mathbf{a}) \rightarrow_{[0, n+1]}^{[0, \mathbf{a}) .}
\end{aligned}
$$

Indeed, if $f, g \in B_{n}$, then $f=r^{[0, n+1]}$ and $g=s^{[0, n+1]}$ for some $r, s \in L_{n}$. Therefore, $(r \odot s),(r \rightarrow s) \in L_{n}$, and $(r \odot s)^{[0, n+1]},(r \rightarrow$ $s)^{[0, n+1]} \in B_{n}$. But, for every $\mathbf{a} \in[0, n+1]^{n}$,

$$
\begin{aligned}
(r \odot s)^{[0, n+1]}(\mathbf{a}) & =r^{[0, n+1]}(\mathbf{a}) \odot^{[0, n+1]} s^{[0, n+1]}(\mathbf{a}) \\
& =f(\mathbf{a}) \odot^{[0, n+1]} g(\mathbf{a}) \\
& =(f \odot g)(\mathbf{a}),
\end{aligned}
$$

and,

$$
\begin{aligned}
(r \rightarrow s)^{[0, n+1]}(\mathbf{a}) & =r^{[0, n+1]}(\mathbf{a}) \rightarrow{ }^{[0, n+1]} s^{[0, n+1]}(\mathbf{a}) \\
& =f(\mathbf{a}) \rightarrow{ }^{[0, n+1]} g(\mathbf{a}) \\
& =(f \rightarrow g)(\mathbf{a}),
\end{aligned}
$$

[^12]so that $(f \odot g),(f \rightarrow g) \in B_{n}$.
The inductive definition above furnishes an implicit description of the class B_{n}, in the sense that functions in B_{n} are characterized as the functions computed by a certain class of algebraic circuits; precisely, the algebraic circuits of n inputs over $[0, n+1]$, implementing terms $t \in L_{n}$ over the basis $\left\{\odot^{[0, n+1]}, \rightarrow^{[0, n+1]}, \perp^{[0, n+1]}\right\}$.

The aim of this work is to provide an explicit characterization of the functions in B_{n}, adopting a notion of explicitness inspired by the familiar definition of McNaughton functions (Definition 18).

Definition 15 (Explicitness). Let $n \geq 0$, let $f:[0, n+1]^{n} \rightarrow[0, n+1]$, and let $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in[0, n+1]^{n}$. An explicit description of $f(\mathbf{b})$ is an expression of the form,

$$
\begin{equation*}
f(\mathbf{b})=p(\mathbf{b}), \tag{2.5}
\end{equation*}
$$

where p is an n-variate linear polynomial with integer coefficients over the real numbers. We say that f is described explicitly if there exists a finite collection of n-variate linear polynomials with integer coefficients over the real numbers that describe $f(\mathbf{b})$ explicitly for every $\mathbf{b} \in[0, n+1]^{n}$. We say that a class of functions has an explicit description if it contains only explicitly described functions.

An explicit description of a function f improves an implicit description for at least two reasons. The first is that if f has an explicit description, then f has exactly one explicit description, whereas if f has an implicit description, then it is easy to realize that f has infinitely many implicit descriptions. The second is that, in contrast with implicit descriptions, explicit descriptions give a geometrical intuition on the described functions, that are fruitful for several logical and algebraic applications: this geometrical insight and its applications are discussed in the conclusion of this thesis (Chapter 3).

The problem of describing explicitly the class B_{n} splits into the following two subproblems:

Subproblem 1: Describe explicitly a class F_{n} of n-ary functions over

$$
[0, n+1] .
$$

Subproblem 2: Prove that $B_{n} \subseteq F_{n}$ that is, prove that for every term t in L_{n}, the function $t^{[0, n+1]}$ is in F_{n}. Conversely, prove that $F_{n} \subseteq$
B_{n} that is, prove that for every function f in F_{n}, there exists a term t in L_{n} such that $f=t^{[0, n+1]}$; as an additional benefit, given an effective specification of f, provide an effective construction of t.

We will apply the previous schema to the special cases $n=1$ and $n=2$ (Section 2.3.2 and Section 2.3.3), and eventually to the general case $n \geq 1$ (Section 2.3.4).

Despite its very natural and elementary statement, the problem of describing explicitly the class B_{n} has been solved only for the case $n=$ 1, by Montagna [Mon00]. An effective construction of terms $t \in L_{1}$ computing functions $f \in B_{1}$ has been provided by Aguzzoli and Gerla [AG05]. However, even the case $n=2$ eluded intensive research efforts [Mon01].

In the next section, we preliminarily study the representation issue of Łukasiewicz logic.

2.2 McNaughton Functions and Free MV-algebra

In this section, we study the case of Łukasiewicz logic. The completeness theorem of Chang, together the representation theorem of McNaughton, guarantees that the truthfunctions of the n-variate fragment of Łukasiewicz logic coincide with n-ary McNaughton functions [Cha58, McN51, Mun94].

The logical calculus of $Ł u k a s i e w i c z ~ l o g i c, \vdash_{L}$, is defined by adding the following axiom to the axioms of Basic logic in Definition $1(t \in L)$:
(L1) $\neg \neg t \rightarrow t$,
An MV-algebra $\mathbf{A}=(A, \vee, \wedge, \odot, \rightarrow, \top, \perp)$ is a BL-algebra satisfying involutiveness, that is,

$$
\begin{equation*}
a=\neg \neg a, \tag{2.6}
\end{equation*}
$$

for all $a \in A$, where $\neg a$ is for $a \rightarrow \perp$. The variety of MV-algebras forms the algebraic semantics of Łukasiewicz logic, that is, for every $t \in L$,

$$
\vdash_{L} t \text { if and only if } \mathbf{A} \models t=\mathrm{T},
$$

for every MV-algebra A. As a strengthening of this completeness result, we recall the celebrated completeness theorem of Chang [Cha58].

Definition 16. The algebra $[0,1]=([0,1], \odot, \rightarrow, \perp)$ is the algebra of type $(2,2,2,2,0,0)$ defined as follows $\left(a_{1}, a_{2} \in[0,1]\right)$:

$$
\begin{aligned}
a_{1} \odot a_{2} & =\max \left(0, a_{1}+a_{2}-1\right) \\
a_{1} \rightarrow a_{2} & =\min \left(1, a_{2}+1-a_{1}\right) \\
\perp & =0
\end{aligned}
$$

For $\circ \in\{\odot, \rightarrow, \perp\}$, we let $\circ{ }^{[0,1]}$ denote the realization of \circ in $[0,1]$.
Theorem 17 (Chang). Let $t \in L$. Then,

$$
\vdash_{\mathrm{L}} t \text { if and only if }[0,1] \models t=\top \text {. }
$$

In light of the previous completeness result, given a term $t \in L_{n}$, we call the n-ary function $t^{[0,1]}$ over $[0,1]$ the Łukasiewicz logic truthfunction of t. For each $n \geq 1$, we let the set,

$$
Ł_{n}=\left\{t^{[0,1]} \mid t \in L_{n}\right\} \subseteq[0,1]^{[0,1]^{n}}
$$

denote the truthfunctions of the n-variate fragment of Łukasiewicz logic.

As above, it is immediate to observe that $Ł_{n} \subset[0, n+1]^{[0, n+1]^{n}}$, precisely, $Ł_{n}$ is the smallest set of n-ary functions over $[0,1]$ that contains the n-ary constant 0 , the n-ary projections x_{1}, \ldots, x_{n}, and is closed under pointwise application of the binary operations $\odot^{[0,1]}$ and $\rightarrow{ }_{[0,1]}^{[}$.

It is known that the implicit class $Ł_{n}$ coincides with the explicit class of n-ary McNaughton functions. We rephrase this important result in terms of the solution schema presented in Section 2.1. The first step of our schema consists in guessing an explicit class of n-ary functions over $[0,1]$, for every $n \geq 1$.

Definition 18 (McNaughton Function). Let $n \geq 1$. A continuous n-ary function $f:[0,1]^{n} \rightarrow[0,1]$ is an n-ary McNaughton function if and only if there exists a finite collection C_{f} of n-variate linear polynomials with integer coefficients over the real numbers such that, for every $\mathbf{a} \in[0,1]^{n}, f(\mathbf{a})=p(\mathbf{a})$ for some $p \in C_{f}$. We let M_{n} denote the set of n-ary McNaughton functions.

Note that the n-ary constant 0 , and the n-ary constant 1 , are n-ary McNaughton functions.

Since the notion of explicitness introduced in Definition 15 abstracts upon the definition of McNaughton functions,

Fact 19. M_{n} has an explicit description, for every $n \geq 1$.
The explicit class M_{n} settles the first step of our solution schema. The second step asks for a proof that the class M_{n} of n-ary McNaughton functions coincides with the class $Ł_{n}$ of n-ary Łukasiewicz truthfunctions, thus replacing the implicit, circuital, description furnished by the latter by the explicit, geometric, description furnished by the former. As it is well know,

Theorem 20 (McNaughton). The truthfunctions of the n-variate fragment of Łukasiewicz logic coincide with the n-ary McNaughton functions, that is, $M_{n}=Ł_{n}$.

In fact, Theorem 20 gives a functional representation of the free n generated MV-algebra, in terms of n-ary McNaughton functions. Formally,

Definition 21. The algebra $[0,1]^{\prime}=([0,1], \vee, \wedge, \odot, \rightarrow, \top, \perp)$ is the algebra of type $(2,2,2,2,0,0)$, where $\circ \in\{\odot, \rightarrow, \perp\}$ is realized by the operation ${ }^{[0,1]}$ of Definition 16, and $\circ \in\{\vee, \wedge, \top\}$ is realized by the following defined operations ($a_{1}, a_{2} \in[0,1]$):

$$
\begin{aligned}
a_{1} \wedge a_{2} & =a_{1} \odot\left(a_{1} \rightarrow a_{2}\right) \\
a_{1} \vee a_{2} & =\left(\left(a_{1} \rightarrow a_{2}\right) \rightarrow a_{2}\right) \wedge\left(\left(a_{2} \rightarrow a_{1}\right) \rightarrow a_{1}\right) \\
\mathrm{\top} & =\perp \rightarrow \perp
\end{aligned}
$$

For $\circ \in\{\vee, \wedge, \odot, \rightarrow, \top, \perp\}$, we let $\circ[0,1]^{\prime}$ denote the realization of \circ in $[0,1]^{\prime}$.
Fact 22. The algebra $[0,1]^{\prime}$ is an $M V$-algebra.
The completeness statement of Theorem 17 has the following, equivalent, universal algebraic rephrasing.

Theorem 23. The algebra $[0,1]^{\prime}$ generates the variety of $M V$-algebras.
Corollary 24. Let $n \geq 1$. The free n-generated $M V$-algebra is isomorphic to the algebra $\left(~_{n}, \vee, \wedge, \odot, \rightarrow, \top, \perp\right)$ of type $(2,2,2,2,0,0)$, where \perp and \top are realized by $\perp^{[0,1]}$ and $\top^{[0,1]}$ respectively, and each $\circ \in\{\vee, \wedge, \odot, \rightarrow\}$ is realized by the binary operation $\circ^{[0,1]^{\prime}}$ defined pointwise.

For instance, if f and g are in $Ł_{n}$, say $f=r^{[0,1]}$ and $g=s^{[0,1]}$ for $r, s \in L_{n}$, then $(f \vee g)$ is in $Ł_{n}$, where $(f \vee g)$ is defined by,

$$
\begin{aligned}
(f \vee g)(\mathbf{a}) & =f(\mathbf{a}) \vee^{[0,1]^{\prime}} g(\mathbf{a}) \\
& =\left(f(\mathbf{a}) \rightarrow^{[0,1]^{\prime}} g(\mathbf{a})\right) \rightarrow^{[0,1]^{\prime}} g(\mathbf{a}) \\
& =\left(f(\mathbf{a}) \rightarrow^{[0,1]} g(\mathbf{a})\right) \rightarrow^{[0,1]} g(\mathbf{a}) \\
& =\left(r^{[0,1]}(\mathbf{a}) \rightarrow \rightarrow^{[0,1]} s^{[0,1]}(\mathbf{a})\right) \rightarrow \rightarrow^{[0,1]} s^{[0,1]}(\mathbf{a}) \\
& =(r \rightarrow s)^{[0,1]}(\mathbf{a}) \rightarrow \rightarrow^{[0,1]} s^{[0,1]}(\mathbf{a}) \\
& =((r \rightarrow s) \rightarrow s)^{[0,1]}(\mathbf{a}) \\
& =(r \vee s)^{[0,1]}(\mathbf{a})
\end{aligned}
$$

for every $\mathbf{a} \in[0,1]^{n}$.
Now, since M_{n} has an explicit description, and $M_{n}=Ł_{n}$, we obtain a functional representation of the free n-generated MV-algebra.

Theorem 25 (Functional Representation). Let $n \geq 1$. The free n-generated $M V$-algebra is isomorphic to the algebra $\left(M_{n}, \vee, \wedge, \odot, \rightarrow, \top, \perp\right)$, having type $(2,2,2,2,0,0)$, where \perp and T are realized by the n-ary constant 0 and constant 1 functions respectively, and each $\circ \in\{\vee, \wedge, \odot, \rightarrow\}$ is realized by the binary operation ${ }^{[0,1]^{\prime}}$ defined pointwise.

For instance, if f and g are in M_{n}, then $(f \vee g)$ is in M_{n}, where $(f \vee g)$ is defined by,

$$
\begin{aligned}
(f \vee g)(\mathbf{a}) & =f(\mathbf{a}) \vee^{[0,1]^{\prime}} g(\mathbf{a}) \\
& =\max (f(\mathbf{a}), g(\mathbf{a}))
\end{aligned}
$$

for every $\mathbf{a} \in[0,1]^{n}$.
As an additional benefit, in [Mun94], Mundici described an effective construction that, given any n-ary McNaughton function f in input, returns in output a term $t \in L_{n}$ such that $t^{[0,1]}=f$. To describe such construction, an effective encoding of the input function f is necessary. The following notion is crucial.

Definition 26 (Unimodular Triangulation). A set $S \subseteq[0,1]^{n}$ is an n dimensional simplex if it is the convex hull of a set of $n+1$ affinely independent points $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n+1}$ in $[0,1]^{n}$, called the vertices of S. Let $\mathbf{v} \in[0,1]^{n}$ be
a rational point, w.l.o.g. $\mathbf{v}=\left(a_{1} / d, \ldots, a_{n} / d\right)$ for uniquely determined relatively prime integers a_{1}, \ldots, a_{n}, d with $d \geq 1$. We say that $\left(a_{1}, \ldots, a_{n}, d\right)$ are the homogeneous coordinates of \mathbf{v}. An n-dimensional simplex S in $[0,1]^{n}$ with rational vertices listed by $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n+1}\right)$ can be displayed as the integer square matrix M_{S} having the homogeneous coordinates of \mathbf{v}_{i} as i th row. An n-dimensional simplex S with rational vertices is unimodular if $\left|\operatorname{det}\left(M_{S}\right)\right|=1$. The convex hull of any subset of $(k+1)$ vertices of S is a k-dimensional simplex, called a face of S (the empty set is a face of any simplex).
A unimodular triangulation of $[0,1]^{n}$ is a finite set U of n-dimensional unimodular simplexes, such that each face of each simplex of U belongs to U, any two simplexes of U intersect in a common face, and $[0,1]^{n}$ is the union of all simplexes in U.

Let f be an n-ary McNaughton function, and let U be a unimodular triangulation of $[0,1]^{n}$. We say that U linearizes f if for every simplex $S \in U$, there is $p \in C_{f}$ such that $f(\mathbf{a})=p(\mathbf{a})$ for every $\mathbf{a} \in S$. Let U and U^{\prime} be unimodular triangulations. Then, we say that U^{\prime} is a refinement of U if, for every $S \in U$, there exist $S_{1}, \ldots, S_{m} \in U^{\prime}$ such that $\bigcup_{j \in[m]} S_{j}=S$.

The following statements follow directly from Theorem 20.
Fact 27. The following statements hold.
(i) Let f be an n-ary McNaughton function. Then, there exists a unimodular triangulation of $[0,1]^{n}$ that linearizes f.
(ii) Let f and f^{\prime} be n-ary McNaughton functions, let U and U^{\prime} be unimodular triangulations linearizing f and f^{\prime} respectively, and let $g=f \circ f^{\prime}$ for $\circ \in\{\odot, \rightarrow\}$. Then, there exists a unimodular triangulation V that refines both U and U^{\prime} and linearizes the n-ary McNaughton function g.

By Definition 26 and Fact 27(i), any McNaughton function f can be effectively encoded by a finite set of pairs (S, p) such that $S \in U$ for some unimodular triangulation U linearizing f, and $p \in C_{f}$ is such that $f(\mathbf{b})=p(\mathbf{b})$ for every $\mathbf{b} \in S$.

Theorem 28 (Mundici). Let f be an n-ary McNaughton function. Then, there is an algorithm that receives in input an effective encoding of f and returns in output a term $t \in L_{n}$ such that $t^{[0,1]}=f$.

We shall use the following notion.
Definition 29 (1-Reproducing). Let $n \geq 1$. If $t \in L_{n}$ is such that $t^{[0,1]}(\mathbf{1})=$ 1 , we say that t is 1 -reproducing. Let $I=\left\{i_{1}, \ldots, i_{m}\right\} \subset[n]$ be such that $i_{1}<\cdots<i_{m}$. If $t \in L_{I}$ is such that $t_{\left\{i_{1} \backslash 1, \ldots, i_{m} \backslash m\right\}} \in L_{m}$ is 1-reproducing, we say that t is 1-reproducing.

Note that if t is in L_{n}^{+}, then t is 1-reproducing, but the converse does not hold. However,

Corollary 30. Let $s \in L_{n}$ be a 1-reproducing term. Then, there is an algorithm that receives in input s and returns in output a term $t \in L_{n}^{+}$such that $t^{[0,1]}=s^{[0,1]}$.

Proof. It is easy to check that the following equations are valid in the MV-algebra $[0,1]$:
(i) $r \odot \perp=\perp, \perp \odot r=\perp, \perp \rightarrow r=r \rightarrow r$, and $r \rightarrow \perp=\neg r$;
(ii) $(r \odot \neg s)=\neg(r \rightarrow s)$ and $(\neg r \odot s)=\neg(s \rightarrow r)$;
(iii) $(r \rightarrow \neg s)=\neg(r \odot s)$ and $(\neg r \rightarrow s)=(r \rightarrow(r \odot s)) \rightarrow s$;
(iv) $\neg \neg r=r$.

Now, applying the equations above, compute a term t starting from s by subsequent substitutions, as follows. First, remove the symbol \perp, possibly introducing the symbol \neg, applying the equations in (i). Then, either remove or move outwards the symbol \neg applying the equations in (ii)-(iii). Eventually, remove pairs of the symbol \neg from the prefix applying the equation in (iv). Clearly, $s^{[0,1]}=t^{[0,1]}$. Moreover, $t \in L_{n}^{+}$. For otherwise, $t=\neg r$ for some $r \in L_{n}^{+}$. But then, $r^{[0,1]}(\mathbf{1})=1$, and $(\neg r)^{[0,1]}(\mathbf{1})=0$, contradiction since $(\neg r)^{[0,1]}(\mathbf{1})=t^{[0,1]}(\mathbf{1})=s^{[0,1]}(\mathbf{1})=$ 1 by hypothesis.

As an application of the previous corollary, given a term $t \in L_{n}$ such that t is not 1-reproducing, it is possible to compute a term $s=\neg s^{\prime}$ with $s^{\prime} \in L_{n}^{+}$such that $t^{[0,1]}=s^{[0,1]}$.

In the next section, we introduce and study the main object of this thesis, that is, the class of BL-functions.

2.3 BL-Functions

The goal of this section is to describe explicitly a class of n-ary functions over $[0, n+1]$, called n-ary BL-functions ($n \geq 1$), and to show that these functions coincide with the truthfunctions of the n-variate fragment of Basic logic (Section 2.3.1 and Section 2.3.4). Preliminarily, we study the case $n=1$ (Section 2.3.2) and the case $n=2$ (Section 2.3.3). As we mentioned in Section 2.1, the case $n=1$ has already been solved by Montagna [Mon00] and Aguzzoli and Gerla [AG05].

2.3.1 Definition

This section is devoted to the description of a suitable framework for defining and investigating BL-functions. We refer the reader to Section 3.1.1 for an alternative, equivalent, definition of BL-functions in geometrical terms.

Definition 31 (Parameter, Neighborhood). Let $n \geq 1$ and let $\mathbf{a} \in[0,1]^{n}$. We call the set,

$$
\operatorname{par}(\mathbf{a})=\left\{i \in[n] \mid a_{i}=1\right\},
$$

the set of parameters of \mathbf{a}, and we call the set,

$$
\operatorname{neigh}(\mathbf{a})=\left\{\mathbf{c} \in[0,1]^{n} \mid c_{i}=1 \text { if } i \in \operatorname{par}(\mathbf{a}) \text { and } 0 \leq c_{i}<1 \text { otherwise }\right\}
$$

the neighborhood of a. See Figure 2.1(a) and (c), Figure 2.2(a) and (c), and Figure 2.3(a) and (c).

Note that $\operatorname{par}(\mathbf{a})=[n]$ if and only if $\mathbf{a}=\mathbf{1}$.
Definition 32 (Realm). Let $n \geq 1$. The map controller from $[0, n+1]^{n}$ to $[0,1]^{n}$ is defined as follows, for every $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in[0, n+1]^{n}$:

$$
\operatorname{controller}(\mathbf{b})= \begin{cases}\mathbf{1} & \text { if } \mathbf{b}=\mathbf{n}+\mathbf{1} \\ \mathbf{b}-\mathbf{j} & \text { if }\left\lfloor b_{1}\right\rfloor=\cdots=\left\lfloor b_{n}\right\rfloor=j \\ \left(a_{1}, \ldots, a_{n}\right) & \text { otherwise }\end{cases}
$$

where, for $i=1, \ldots, n$,

$$
a_{i}= \begin{cases}b_{i}-\left\lfloor b_{i}\right\rfloor & \text { if }\left\lfloor b_{i}\right\rfloor=\min \left\{\left\lfloor b_{k}\right\rfloor \mid k \in[n\rfloor\right\} \\ 1 & \text { otherwise }\end{cases}
$$

We say that \mathbf{a} controls \mathbf{b} if controller $(\mathbf{b})=\mathbf{a}$. Let $A \subseteq[0,1]^{n}$. The set,

$$
\operatorname{realm}(A)=\left\{\mathbf{b} \in[0, n+1]^{n} \mid \text { there exists } \mathbf{a} \in A \text { that controls } \mathbf{b}\right\}
$$

is called the realm of A. See Figure 2.1(b) and (d), Figure 2.2(b) and (d), and Figure 2.3(b) and (d).

(a)

(b)

(c)

(d)

Figure 2.1: Sampling Definitions 31 and 32 with $n=2$. Figure (a) highlights the point $\mathbf{a}=\mathbf{1} \in[0,1]^{2}$. Here, $\operatorname{par}(\mathbf{a})=\{1,2\}$. Figures (b), (c), and (d) respectively highlight $\operatorname{realm}(\{\mathbf{a}\})=\{\mathbf{3}\}, \operatorname{neigh}(\{\mathbf{a}\})=\{\mathbf{1}\}$, and $\operatorname{realm}(\operatorname{neigh}(\{\mathbf{a}\}))=\{\mathbf{3}\}$.

Figure 2.2: Sampling Definitions 31 and 32 with $n=2$. Figure (a) highlights the points $\mathbf{a}=\left(a_{1}, a_{2}\right)=(1 / 4,1) \in[0,1]^{2}$. Here, $\operatorname{par}(\mathbf{a})=\{2\}$. Figure (b) highlights realm $(\{\mathbf{a}\})=\left\{\left(a_{1}, b_{2}\right) \mid 1 \leq b_{2} \leq 3\right\} \cup\left\{\left(a_{1}+1, b_{2}\right) \mid 2 \leq b_{2} \leq\right.$ $3\} \cup\left\{\left(a_{1}+2,3\right)\right\} \subseteq[0,3]^{2}$. Figure (c) highlights neigh $(\{\mathbf{a}\})=\left\{\left(c_{1}, 1\right) \mid 0 \leq\right.$ $\left.c_{1}<1\right\} \subseteq[0,1]^{2}$. Figure (d) highlights realm(neigh $\left.(\{\mathbf{a}\})\right)=\left\{\left(b_{1}, b_{2}\right) \mid 0 \leq b_{1}<\right.$ $\left.1 \leq b_{2} \leq 3\right\} \cup\left\{\left(b_{1}, b_{2}\right) \mid 1 \leq b_{1}<2 \leq b_{2} \leq 3\right\} \cup\left\{\left(b_{1}, 3\right) \mid 2 \leq b_{1}<3\right\} \subseteq[0,3]^{2}$.

In contrast with the case of n-ary McNaughton functions and unimodular triangulations of $[0,1]^{n}$, we deal with a class of discontinuous n-ary functions over $[0, n+1]^{n}$, so that, to provide a blockwise description of these functions, we need a partition of $[0, n+1]^{n}$ into disjoint blocks. As a preliminary step, given a unimodular triangulation U of $[0,1]^{n}$, we determine a finite collection of rational points in $[0,1]^{n}$, such

(a)

(b)

(c)

(d)

Figure 2.3: Sampling Definitions 31 and 32 with $n=2$. Figure (a) highlights the point $\mathbf{a}=\left(a_{1}, a_{2}\right)=(1 / 3,1 / 4) \in[0,1]^{2}$. Here, $\operatorname{par}(\mathbf{a})=\emptyset$. Figure (b) highlights $\operatorname{realm}(\{\mathbf{a}\})=\left\{\left(a_{1}, a_{2}\right),\left(a_{1}+1, a_{2}+1\right),\left(a_{1}+2, a_{2}+2\right)\right\} \subseteq[0,3]^{2}$. Figure (c) highlights neigh $(\{\mathbf{a}\})=\left\{\left(c_{1}, c_{2}\right) \mid 0=\left\lfloor c_{1}\right\rfloor=\left\lfloor c_{2}\right\rfloor<1\right\} \subseteq[0,1]^{2}$. Figure (d) highlights realm $(\operatorname{neigh}(\{\mathbf{a}\}))=\left\{\left(b_{1}, b_{2}\right) \mid 0 \leq\left\lfloor b_{1}\right\rfloor=\left\lfloor b_{2}\right\rfloor<3\right\} \subseteq$ $[0,3]^{2}$.
that each point represents the relative interior of a fixed simplex in U, as follows.

Definition 33 (Quasipartition, Parent). Let $n \geq 1$. Let U be any unimodular triangulation of $[0,1]^{n}$. The set,

$$
\tilde{U} \subseteq \mathbb{Q}^{n} \cap[0,1]^{n}
$$

is a quasipartition of $[0,1]^{n}$ if the following holds: $\mathbf{u} \in \tilde{U}$ if and only if \mathbf{u} is the mediant of the vertices of some simplex S in $U . \mathbf{u}$ is called the delegate of S. The points lying in the relative interior of S are called siblings of \mathbf{u}, and \mathbf{u} is their parent. In symbols,

$$
\operatorname{sibl}(\mathbf{u})=\left\{\mathbf{a} \in[0,1]^{n} \mid \mathbf{a} \in \operatorname{relint} S, \mathbf{u} \text { delegate of } S\right\}
$$

Note that \tilde{U} encodes a genuine partition of $[0,1]^{n}$, that is, the blocks in,

$$
\left\{\operatorname{sibl}(\mathbf{u}) \subseteq[0,1]^{n} \mid \mathbf{u} \in \tilde{U}\right\}
$$

are disjoint and their union is equal to $[0,1]^{n}$. Note also that the blocks in,

$$
\left\{\operatorname{realm}(\operatorname{sibl}(\mathbf{u})) \subseteq[0, n+1]^{n} \mid \mathbf{u} \in \tilde{U}\right\}
$$

form a genuine partition of $[0, n+1]^{n}$, that is, they are disjoint and their union is equal to $[0, n+1]^{n}$. This partitioning strategy is crucial in the description of n-ary BL-functions. See Figure 2.4.

Figure 2.4: Sampling Definition 33 with $n=2$. Figures (a) and (b) depict respectively a unimodular triangulation U of $[0,1]^{2}$, and the corresponding quasipartition \tilde{U}. Figure (c) highlights three delegates in \tilde{U}, namely $\mathbf{u}=(0,1) \in \tilde{U}, \mathbf{u}^{\prime}=(1,1 / 2) \in \tilde{U}$, and $\mathbf{u}^{\prime \prime}=(2 / 7,2 / 7) \in \tilde{U}$. Figures (d), (e), and (f) highlight respectively realm $(\operatorname{sibl}(\mathbf{u})) \subseteq[0,3]^{2}$, realm $\left(\operatorname{sibl}\left(\mathbf{u}^{\prime}\right)\right) \subseteq[0,3]^{2}$, and $\operatorname{realm}\left(\operatorname{sibl}\left(\mathbf{u}^{\prime \prime}\right)\right) \subseteq[0,3]^{2}$.

Definition 34 (System). Let $n \geq 1$. Let $r \in L_{n}$ be such that $r \in L_{n}^{+}$if r is 1-reproducing, and $r=\neg r^{\prime}$ with $r^{\prime} \in L_{n}^{+}$otherwise. Let U be a unimodular triangulation linearizing $r^{[0,1]}$. A system \tilde{r} for r (with underlying quasipartition \tilde{U}) is a map,

$$
\tilde{r}: \tilde{U} \rightarrow L_{n},
$$

such that, for every $\mathbf{u} \in \tilde{U}$:
(i) if $\mathbf{u}=\mathbf{1}$, then, ifr is 1 -reproducing, $\tilde{r}(\mathbf{1}) \in L_{n}^{+}$;
(ii) otherwise, if $\mathbf{u} \notin[0,1)^{n}$ and $r^{[0,1]}(\mathbf{u})=1$, then $\tilde{r}(\mathbf{u}) \in L_{\mathrm{par}(\mathbf{u})}$ and $\tilde{r}(\mathbf{u})$ is 1-reproducing;
(iii) otherwise, $\tilde{r}(\mathbf{u})=r$.

We say that $\tilde{r}(\mathbf{u})$ is the module of the system responsible over realm $(\operatorname{sibl}(\mathbf{u}))$.

Note that, if r is not 1-reproducing, then $\tilde{r}(\mathbf{1})=r$.
Definition 35 (Implementation). Let $n \geq 1$ and let $r \in L_{n}$. Let \tilde{r} be a system for r, over the quasipartition \tilde{U}, and let $\mathbf{u} \in \tilde{U}$. Let $\mathbf{b} \in[0, n+1]^{n}$ such that $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$. Then, we say that \tilde{r} implements $f(\mathbf{b})$ if the following holds:
(i) If $\mathbf{b} \notin[1, n+1]^{n}$ and $\tilde{r}(\mathbf{u})=t$, then:

$$
f(\mathbf{b})=t^{[0, n+1]}(\mathbf{b})
$$

(ii) If $\mathbf{b} \in[1, n+1]^{n}$ and $\tilde{r}(\mathbf{1})=s$, the following holds. If r is not 1 reproducing, then,

$$
f(\mathbf{b})=r^{[0, n+1]}(\mathbf{b}) ;
$$

otherwise, $s \in L_{n}^{+}$and there exists an auxiliary system \tilde{s} for s such that $\tilde{s}(\mathbf{u})=t$ and,

$$
f(\mathbf{b})=t^{[0, n+1]}(\mathbf{b})
$$

Let $f:[0, n+1]^{n} \rightarrow[0, n+1]$. We say that \tilde{r} implements f if \tilde{r} implements $f(\mathbf{b})$ for every $\mathbf{b} \in[0, n+1]^{n}$.

We are now in the position to define the class of n-ary BL-functions.
Definition 36 (n-ary BL-functions, F_{n}). Let $n \geq 1$. An n-ary function $f:[0, n+1]^{n} \rightarrow[0, n+1]$ is an n-ary BL-function if and only if there exists a system \tilde{r} over a term $r \in L_{n}$ such that \tilde{r} implements f. We let F_{n} denote the class of n-ary BL-functions.

Our goal is to prove that, for every $n \geq 1$, the class F_{n} is explicit in terms of Definition 15, and coincides with the class B_{n} in (2.4). The proof is by induction on n. In the next section, we settle the base case, $n=1$.

2.3.2 Unary Case

We want to show that F_{1} has an explicit description in terms of Definition 15, and coincides with B_{1}. This case has already been solved by Montagna [Mon00] and Aguzzoli and Gerla [AG05].

We instatiate Definition 3 with $n=1$.

Definition 37. The algebra $[0,2]=([0,2], \odot, \rightarrow, \perp)$ is the algebra of type $(2,2,0)$, defined as follows $\left(a_{1}, a_{2} \in[0,2]\right)$:

$$
\begin{aligned}
a_{1} \odot a_{2} & = \begin{cases}\min \left(a_{1}, a_{2}\right) & \text { if }\left\lfloor a_{1}\right\rfloor \neq\left\lfloor a_{2}\right\rfloor \\
a_{1} \odot^{[0,1]} a_{2} & \text { if }\left\lfloor a_{1}\right\rfloor=\left\lfloor a_{2}\right\rfloor=0 \\
\left(a_{1}-1 \odot^{[0,1]} a_{2}-1\right)+1 & \text { otherwise }\end{cases} \\
a_{1} \rightarrow a_{2} & = \begin{cases}2 & \text { if } a_{1} \leq a_{2} \\
a_{2} & \text { if }\left\lfloor a_{2}\right\rfloor<\left\lfloor a_{1}\right\rfloor \\
a_{1} \rightarrow^{[0,1]} a_{2} & \text { if }\left\lfloor a_{1}\right\rfloor=\left\lfloor a_{2}\right\rfloor=0 \\
\left(a_{1}-1 \rightarrow\left[^{[0,1]} a_{2}-1\right)+1\right. & \text { otherwise }\end{cases} \\
\perp & =0
\end{aligned}
$$

We enrich the signature with the defined operations \vee, \wedge, \neg, and \top of arity 2 , 2,1 , and 0 respectively $\left(a_{1}, a_{2} \in[0,2]\right)$:

$$
\begin{aligned}
\neg a_{1} & =a_{1} \rightarrow \perp \\
a_{1} \wedge a_{2} & =a_{1} \odot\left(a_{1} \rightarrow a_{2}\right) \\
a_{1} \vee a_{2} & =\left(\left(a_{1} \rightarrow a_{2}\right) \rightarrow a_{2}\right) \wedge\left(\left(a_{2} \rightarrow a_{1}\right) \rightarrow a_{1}\right) \\
\top & =\neg \perp
\end{aligned}
$$

For $\circ \in\{\vee, \wedge, \odot, \rightarrow, \neg, \top, \perp\}$, we let $\circ^{[0,2]}$ denote the realization of the symbol \circ in the algebra $[0,2]$.

Fact 38. For every $a_{1}, a_{2} \in[0,2], a_{1} \wedge^{[0,2]} a_{2}=\min \left(a_{1}, a_{2}\right), a_{1} \vee^{[0,2]} a_{2}=$ $\max \left(a_{1}, a_{2}\right), \top^{[0,2]}=2$, and,

$$
\neg^{[0,2]} a_{1}= \begin{cases}2 & \text { if } a_{1}=0 \\ 1-a_{1} & \text { if } 0<a_{1}<1 \\ 0 & \text { otherwise }\end{cases}
$$

Note that, by Notation 10, for every $r, s \in L_{1}$ and every $\mathbf{a} \in[0,2]$, $(\neg r)^{[0,2]}(\mathbf{a})=\neg^{[0,2]} r^{[0,2]}(\mathbf{a}),(r \wedge s)^{[0,2]}(\mathbf{a})=r^{[0,2]}(\mathbf{a}) \wedge^{[0,2]} s^{[0,2]}(\mathbf{a}),(r \vee$ $s)^{[0,2]}(\mathbf{a})=r^{[0,2]}(\mathbf{a}) \vee^{[0,2]} s^{[0,2]}(\mathbf{a})$, and $\top^{[0,2]}(\mathbf{a})=\top^{[0,2]}$.

We mentioned that the truthfunctions of the 1-variate fragment of Basic logic, B_{1}, coincide with the smallest set of unary functions over $[0,2]$ that contains the projection function x_{1}, the constant function 0 ,
and is closed under pointwise application of the operations $\odot^{[0,2]}$ and $\rightarrow{ }^{[0,2]}$. The problem is to provide an explicit description of B_{1} : to this aim, we first guess an explicit class of unary functions over $[0,2]$, and we then prove that the guessed class coincides with B_{1}.

Definition 39 (Unary BL-functions, F_{1}). A unary function f over $[0,2]$ is a unary BL-function if and only if there exists a system \tilde{r} over a term $r \in L_{1}$ that implements f. We let F_{1} denote the class of unary BL-functions.

We claim that the class of unary BL-functions is explicit, in the sense that if \tilde{r} implements f, then \tilde{r} provides an explicit description of f in terms of Definition 15. A formal proof requires preliminarily the following lemma (compare also Example 47 and Example 48).

Lemma 40 (Lifting). Let $t \in L_{1}$ be such that, if t is 1-reproducing, then $t \in L_{1}^{+}$, and $t=\neg t^{\prime}$ with $t^{\prime} \in L_{1}^{+}$otherwise. Then, $t^{[0,2]}$ has an explicit description in terms of Definition 15.

Proof. Let $\mathbf{b}=\left(b_{1}\right) \in[0,2]$ and let $\mathbf{a} \in[0,1]$ be such that $\mathbf{b} \in \operatorname{realm}(\{\mathbf{a}\})$. We distinguish two cases.

If t is 1 -reproducing, so that $t \in L_{1}^{+}$, by induction on t, applying Definition 37, we have:

$$
t^{[0,2]}(\mathbf{b})= \begin{cases}t^{[0,1]}(\mathbf{b}) & \text { if }\left\lfloor b_{1}\right\rfloor=0 \text { and } t^{[0,1]}(\mathbf{a})<1 \tag{2.7}\\ t^{[0,1]}(\mathbf{b}-\mathbf{1})+1 & \text { if }\left\lfloor b_{1}\right\rfloor=1 \text { and } t^{[0,1]}(\mathbf{a})<1 \\ 2 & \text { otherwise }\end{cases}
$$

If t is not 1 -reproducing, so that $t=\neg t^{\prime}$ with $t^{\prime} \in L_{1}^{+}$, by Fact 38 and applying the previous case to t^{\prime}, we have:

$$
t^{[0,2]}(\mathbf{b})= \begin{cases}t^{[0,1]}(\mathbf{b}) & \text { if }\left\lfloor b_{1}\right\rfloor=0 \text { and } 0<t^{[0,1]}(\mathbf{a})<1 \tag{2.8}\\ 2 & \text { if }\left\lfloor b_{1}\right\rfloor=0 \text { and } t^{[0,1]}(\mathbf{a})=0 \\ 0 & \text { otherwise }\end{cases}
$$

In both cases, since $t^{[0,1]}$ has an explicit description by Fact 19, we have that $t^{[0,2]}(\mathbf{b})$ has an explicit description. Since this holds for any $\mathbf{b} \in$ $[0,2]$, we conclude that $t^{[0,2]}$ has an explicit description, precisely, the description given by equations (2.7)-(2.8).

Figure 2.5: A sample of Lemma 40 enlightens the lifting phenomenon. In plots (a)-(b), the term r is 1-reproducing, thus in L_{1}^{+}. In plots (c)-(d), the term $s \in L_{1}$ is not 1-reproducing.

Figure 2.5 enlightens the lifting phenomenon.
Proposition 41 (Explicitness). F_{1} has an explicit description in terms of Definition 15.

Proof. Let $f \in F_{1}$. Let \tilde{r} be a system implementing f, over the quasipartition \tilde{U}. We distinguish two cases. First suppose that r is 1 -reproducing. By Definition 34, if r is 1-reproducing, then $\tilde{r}(\mathbf{u}) \in L_{1}^{+}$for every $\mathbf{u} \in \tilde{U}$. Let $\mathbf{b} \in[0,2]$. Thus, by Definition 35, we have that $f(\mathbf{b})=t^{[0,2]}(\mathbf{b})$ with $t \in L_{1}^{+}$. Since, by Lemma $40, t^{[0,2]}(\mathbf{b})$ has an explicit description, we conclude that $f(\mathbf{b})$ has an explicit description. Thus, f has an explicit description. Next suppose that r is not 1-reproducing, so that $r=\neg r^{\prime}$ with $r^{\prime} \in L_{1}^{+}$. By Definition 34, if r is not 1-reproducing, then $f(\mathbf{b})=r^{[0,2]}(\mathbf{b})$ for every $\mathbf{b} \in[0,2]$. By Lemma $40, r^{[0,2]}$ has an explicit description, hence, f has an explicit description.

The explictly described class F_{1} settles the first step of our solution schema. The second step consists in proving that the class F_{1} of unary BL-functions coincides with the truthfunctions of the 1 -variate fragment of Basic logic,

$$
B_{1}=\left\{t^{[0,2]} \mid t \in L_{1}\right\} \subseteq[0,2]^{[0,2]} .
$$

We prove the inclusion $B_{1} \subseteq F_{1}$.
Lemma 42 (Closure). $t^{[0,2]} \in F_{1}$ for every $t \in L_{1}$.
Proof. The proof is by induction on t. We show that there exists a function $f \in F_{1}$ such that $t^{[0,2]}=f$.

For the base case, let $t=X_{1}$. Take $r, s=X_{1}$ and fix a unimodular triangulation U of $[0,1]$ linearizing $X_{1}^{[0,1]}:[0,1] \rightarrow[0,1]$. Then, $\tilde{r}=$ $\tilde{s}=\left\{\left(\mathbf{u}, X_{1}\right) \mid \mathbf{u} \in \tilde{U}\right\}$ forms a system for r and s. By definition, \tilde{r} implements x_{1}, thus $x_{1} \in F_{1}$. But, by definition, $X_{1}^{[0,2]}(\mathbf{a})=a_{1}$ for every $\mathbf{a}=\left(a_{1}\right) \in[0,2]$, that is $X_{1}^{[0,2]}$ is the projection function x_{1} over $[0,2]$. Now, let $t=\perp$. Take $r=\perp$ and fix a unimodular triangulation U linearizing $\perp^{[0,1]}$. Then, $\tilde{r}=\{(\mathbf{u}, \perp) \mid \mathbf{u} \in \tilde{U}\}$ forms a system for r. By definition, \tilde{r} implements 0 , thus $0 \in F_{1}$. But, by definition, $\perp^{[0,2]}(\mathbf{a})=0$ for every $\mathbf{a} \in[0,2]$, that is $\perp^{[0,2]}$ is the constant function 0 over $[0,2]$. The base case is proved.

For the inductive step, let $t=t_{1} \circ t_{2}$ for $\circ \in\{\odot, \rightarrow\}$. By the induction hypothesis, $t_{1}^{[0,2]}, t_{2}^{[0,2]} \in F_{1}$. Below, we construct a system \tilde{r} (over a certain quasipartition \tilde{U}) such that that \tilde{r} implements the function $t_{1}^{[0,2]} \circ^{[0,2]} t_{2}^{[0,2]}$, so that $t_{1}^{[0,2]}{ }^{[0,2]} t_{2}^{[0,2]} \in F_{1}$. But, by definition, $t^{[0,2]}=t_{1}^{[0,2]}{ }_{\circ}[0,2] t_{2}^{[0,2]}$, thus proving that $t^{[0,2]} \in F_{1}$.

The system \tilde{r} is defined as follows. Since $t_{1}^{[0,2]}, t_{2}^{[0,2]} \in F_{1}$, there exist systems $\tilde{r_{1}}$ (say over quasipartition $\tilde{U_{1}}$) and $\tilde{r_{2}}$ (say over quasipartition \tilde{U}_{2}) implementing $t_{1}^{[0,2]}$ and $t_{2}^{[0,2]}$. On the basis of $\tilde{r_{1}}$ and $\tilde{r_{2}}$, we define \tilde{r}, as follows. There are eight cases (\circ is equal to \odot or to \rightarrow; both r_{1} and r_{2} are 1-reproducing, only r_{1} is 1-reproducing, only r_{2} is 1-reproducing, neither r_{1} nor r_{2} are 1-reproducing). We examine the case where \circ is equal to \odot and both r_{1} and r_{2} are 1-reproducing in L_{1}^{+}(the other cases are similar, compare also Lemma 65). In this case, $\tilde{r_{1}}(\mathbf{1})=s_{1}$ with s_{1} 1 -reproducing in L_{1}^{+}, and $\tilde{r_{2}}(\mathbf{1})=s_{2}$ with $s_{2} 1$-reproducing in L_{1}^{+}. Let $\tilde{s_{1}}$ (say over \tilde{V}_{1}) and $\tilde{s_{2}}$ (say over \tilde{V}_{2}) be the systems for s_{1} and s_{2} respectively (these systems exist by induction hypothesis). By Fact 27(ii), let U be a unimodular triangulation refining both U_{1} and U_{2} and linearizing $r_{1} \odot r_{2}$, and let V be a unimodular triangulation refining both V_{1} and V_{2} and linearizing $s_{1} \odot s_{2}$. We let $r=r_{1} \odot r_{2}$ and $s=s_{1} \odot s_{2}$ (note that both r and s are 1-reproducing in L_{1}^{+}). Now we define \tilde{r} and \tilde{s}. First we put $\tilde{r}(\mathbf{1})=s$. Next observe that, for every $\mathbf{1} \neq \mathbf{u} \in \tilde{U}$, there exists exactly one pair $\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \in \tilde{U}_{1} \times \tilde{U}_{2}$ such that $\mathbf{u} \in \operatorname{sibl}\left(\mathbf{u}_{1}\right) \cap \operatorname{sibl}\left(\mathbf{u}_{2}\right)$. In this case we put $\tilde{r}(\mathbf{u})=\tilde{r_{1}}\left(\mathbf{u}_{1}\right) \odot \tilde{r_{2}}\left(\mathbf{u}_{2}\right)$. Similarly, for every $\mathbf{v} \in \tilde{V}$, there exists exactly one pair $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \in \tilde{V}_{1} \times \tilde{V}_{2}$ such that $\mathbf{v} \in \operatorname{sibl}\left(\mathbf{v}_{1}\right) \cap \operatorname{sibl}\left(\mathbf{v}_{2}\right)$. In this case we put $\tilde{s}(\mathbf{v})=\tilde{s_{1}}\left(\mathbf{v}_{1}\right) \odot \tilde{s_{2}}\left(\mathbf{v}_{2}\right)$. But now, by construction, \tilde{r} implements $t_{1}^{[0,2]} \odot^{[0,2]} t_{2}^{[0,2]}=t^{[0,2]}=f$. The inductive step is proved.

We now deal with the inclusion $F_{1} \subseteq B_{1}$. We exploit the following isolation mechanism.

Definition 43 (Isolation). Let $D \in\{[0,1),[1,2]\}$. Say that the term $t \in$ L_{1} isolates the term $s \in L_{1}$ over D if $t^{[0,2]}(\mathbf{b})=s^{[0,2]}(\mathbf{b})$ if $\mathbf{b} \in D$, and $t^{[0,2]}(\mathbf{b})=T^{[0,2]}$ if $\mathbf{b} \notin D$.

The first observation is that it is easy to isolate X_{1}, either over $[0,1)$, or over [1, 2]. Formally,

Lemma 44 (Variable Isolation). There exist terms $v_{1}, w_{1} \in L_{1}$ such that v_{1} isolates X_{1} over $[0,1)$, and w_{1} isolates X_{1} over $[1,2]$.

Proof. Let $v_{1}=\neg \neg X_{1}$ and $w_{1}=\neg \neg X_{1} \rightarrow X_{1}$. By Definition 37 and Fact $38, v_{1}$ and w_{1} satisfy the claim. Compare also Figure 2.6.

Figure 2.6: The isolation of variable X_{1}.

The second observation is that, relying on the availability of v_{1} and w_{1}, a direct inspection of the definitions of $\odot^{[0,2]}$ and $\rightarrow{ }^{[0,2]}$ is sufficient to realize that, given a term $t \in L_{1}^{+}$, it is easy to isolate t over $[0,1)$ or over [1, 2]. Formally,

Lemma 45 (Term Isolation). Let t be a term in L_{1} such that, if t is 1reproducing, then $t \in L_{1}^{+}$, otherwise $t=\neg t^{\prime}$ with $t^{\prime} \in L_{1}^{+}$. Then, there exist terms \hat{t} and \check{t} in L_{1} such that, \hat{t} isolates t over $[0,1)$, and \check{t} isolates t over [1,2].

Proof. We distinguish two cases. If $t \in L_{1}$ is 1 -reproducing $\left(t \in L_{1}^{+}\right)$, put $\hat{t}=t_{\left\{1 \backslash v_{1}\right\}}$ and $\check{t}=t_{\left\{1 \backslash w_{1}\right\}}$, where v_{1} and w_{1} are as in Lemma 44. A routine induction on t, with appeal to Lemma 44 and Definition 37, shows
that \hat{t} and \check{t} satisfy the claim. Compare also Figure 2.7 and Figure 2.8. Otherwise, if $t \in L_{1}$ is not 1 -reproducing ($t=\neg t^{\prime}$ with $t^{\prime} \in L_{1}^{+}$), then put $\hat{t}=\check{t}=\neg t_{\left\{1 \backslash v_{1}\right\}}^{\prime}$, where v_{1} is as in Lemma 44. Applying the first case to t^{\prime} and the definition of $\neg^{[0,2]}$ in Fact 50, we have that \hat{t} isolates $\neg t^{\prime}$, that is t, over $[0,1)$, and \check{t} isolates $\neg t^{\prime}$, that is \perp, over $[1,2]$.

Figure 2.7: Sampling Lemma 45 with $t \in L_{1}^{+} 1$-reproducing depicted in (a). By Lemma $44, \hat{t}^{[0,2]}$ and $\check{t}^{[0,2]}$ are as in plots (b) and (c) respectively.

Figure 2.8: Let $t \in L_{1}$ be a 1-reproducing term. In this case, the syntactic assumption $t \in L_{1}^{+}$in Lemma 44, supported by Corollary 30, is necessary, for otherwise the defined terms $\hat{t}^{[0,2]}$ and $\check{t}^{[0,2]}$ do not satisfy the statement. For instance, letting $r=\left(X_{1} \vee \neg X_{1}\right) \in L_{1}$ and $s=\left(X_{1} \rightarrow\left(X_{1} \odot X_{1}\right)\right) \in L_{1}^{+}$, we have that $r^{[0,1]}=s^{[0,1]}$ and, in particular, $r^{[0,1]}(\mathbf{1})=s^{[0,1]}(\mathbf{1})=1$, so that both r and s are 1-reproducing by Definition 29. However, $\hat{s}^{[0,2]}$ isolates s over $[0,1)$ and $\check{s}^{[0,2]}$ isolates s over $[1,2]$ as depicted in (c), but $\check{r}^{[0,2]}$ does not isolate r over $[1,2]$ as depicted in (b).

Relying on the availability of the term isolation mechanism described above, it is easy to construct a term $t \in L_{1}$ that computes a function $f \in F_{1}$, given by its implementing system. Formally,

Lemma 46 (Normal Form). For every function $f \in F_{1}$, there exists a term $t \in L_{1}$ such that $f=t^{[0,2]}$.

Proof. Let $f \in F_{1}$ be implemented by the system \tilde{r} (with quasipartition \tilde{U}) for some $r \in L_{1}$, and let $\tilde{r}(\mathbf{1})=s$. We distinguish two cases.

If r is 1-reproducing, then, by Definition 34, $\tilde{r}(\mathbf{1})=s$ with both r and s in L_{1}^{+}. By Definition 35, for every $\mathbf{b} \in[0,1), f(\mathbf{b})=r^{[0,2]}(\mathbf{b})$, and for every $\mathbf{b} \in[1,2], f(\mathbf{b})=s^{[0,2]}(\mathbf{b})$. But then, putting,

$$
\begin{equation*}
t=\hat{r} \wedge \check{s} \tag{2.9}
\end{equation*}
$$

where \hat{r} and \check{s} are given by applying Lemma 45 to r and s respectively, settles the claim, that is $f=t^{[0,2]}$. Compare also Figure 2.9.

If r is not 1-reproducing, then putting $t=\hat{r} \wedge \check{s}=\hat{r}$ settles the claim, that is $f=t^{[0,2]}$. Compare also Figure 2.10.

(a) f.

(b) $r^{[0,1]}$.

(c) $s^{[0,1]}$.

(d) $\hat{r}^{[0,2]}$.

(e) $\check{s}^{[0,2]}$

Figure 2.9: Sampling Lemma 46 with $f \in F_{1}$ depicted in (a). f is implemented by the system \tilde{r} for r, such that $\tilde{r}(\mathbf{1})=s$, and the auxiliary system \tilde{s} for s. r and s are the 1-reproducing terms in L_{1}^{+}depicted in (b) and (c) respectively. $\tilde{r}(\mathbf{u})=r$ and $\tilde{s}(\mathbf{u})=s$ for every $\mathbf{u} \in \tilde{U}$, where \tilde{U} is the quasipartition of Example 47. By Lemma 40 and Lemma 44, $\hat{r}^{[0,2]}$ and $\check{s}^{[0,2]}$ are as in (d) and (e) respectively. By direct inspection, $f=(\hat{r} \wedge \check{s})^{[0,2]}=t^{[0,2]}$.

(a) f.

(b) $r^{[0,1]}$.

(c) $t^{[0,2]}$.

Figure 2.10: Sampling Lemma 46 with $f \in F_{1}$ depicted in (a). f is implemented by the system \tilde{r} such that $\tilde{r}(\mathbf{u})=r$ for every $\mathbf{u} \in \tilde{U}$, where $r \in L_{1}$ is the not 1-reproducing term depicted in (b), and \tilde{U} is the quasipartition of Example 47. By Lemma 40, $r^{[0,2]}=t^{[0,2]}$ is depicted in (c). By direct inspection, $f=t^{[0,2]}$.

Thus, by Lemma 42 and Lemma 46, we conclude that $B_{1}=F_{1}$. This settles the case $n=1$. Notice that, as an additional benefit, in the proof
of the inclusion $F_{1} \subseteq B_{1}$, we also described a construction of a term $t \in L_{1}$ that computes the given $f \in F_{1}$.

We conclude this section by means of two examples.
Example 47. Let $r \in L_{1}$ be such that $r^{[0,1]}$ is as in Figure 2.11, so that r is 1 -reproducing in $L_{1}^{+} . r^{[0,1]}$ has four linear components p_{1}, p_{2}, p_{3}, and p_{4}, lin-

(a) $r^{[0,1]}$.

(b) $s^{[0,1]}$.

(c) f.

Figure 2.11: \tilde{r} implement f.
earized by the unimodular triangulation U with simplexes $S_{1}=\operatorname{conv}\{(0),(1 / 3)\}, S_{2}=\operatorname{conv}\{(1 / 3),(1 / 2)\}, S_{3}=\operatorname{conv}\{(1 / 2),(2 / 3)\}$, $S_{4}=\operatorname{conv}\{(2 / 3),(1)\} \cdot r^{[0,1]}$ coincides with p_{i} over S_{i}, for $i=1, \ldots, 4$. The corresponding quasipartition is,

$$
\tilde{U}=\{(0),(1 / 4),(1 / 3),(2 / 5),(1 / 2),(3 / 5),(2 / 3),(3 / 4),(1)\} .
$$

The points $(0),(1 / 3),(1 / 2),(2 / 3),(1)$ have theirselves as parents in \tilde{U}, and the points in relint $\operatorname{conv}\{(0),(1 / 3)\}$, relint $\operatorname{conv}\{(1 / 3),(1 / 2)\}$, relint $\operatorname{conv}\{(1 / 2),(2 / 3)\}$, and relint $\operatorname{conv}\{(2 / 3),(1)\}$, have respectively $(1 / 4),(2 / 5),(3 / 5)$, and $(3 / 4)$ as parents in \tilde{U}. The map,

$$
\tilde{r}(\mathbf{u})= \begin{cases}r & \text { if } \mathbf{u} \in \tilde{U} \backslash\{\mathbf{1}\} \\ s & \text { otherwise }\end{cases}
$$

forms a system for r, with $s \in L_{1}^{+} 1$-reproducing such that $s^{[0,1]}$ is as in Figure 2.11. $s^{[0,1]}$ has four components q_{1}, q_{2}, q_{3}, and $q_{4} . U$ and \tilde{U} are as above, and $s^{[0,1]}$ coincides with q_{i} over S_{i}, for $i=1, \ldots, 4$. The map,

$$
\tilde{s}(\mathbf{u})= \begin{cases}s & \text { if } \mathbf{u} \in \tilde{U} \backslash\{\mathbf{1}\} \\ t & \text { otherwise }\end{cases}
$$

where $t \in L_{1}$ is 1-reproducing (possibly, $t=s$), forms a system for s.

Applying Definition 35 and Lemma 40, it is easy to see that \tilde{r} implements the unary function f over $[0,2]$ in Figure 2.11. Indeed, if $\mathbf{b} \in[0,1)$,

$$
f(\mathbf{b})= \begin{cases}2=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=0 \\ p_{1}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{0, \frac{1}{3}\right\} \\ p_{1}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=\frac{1}{3} \\ p_{2}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{\frac{1}{3}, \frac{1}{2}\right\} \\ 2=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=\frac{1}{2} \\ p_{3}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{\frac{1}{2}, \frac{2}{3}\right\} \\ p_{3}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=\frac{2}{3} \\ p_{4}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{\frac{2}{3}, 1\right\}\end{cases}
$$

and if $\mathbf{b} \in[1,2]$,
$f(\mathbf{b})= \begin{cases}q_{1}(\mathbf{b}-\mathbf{1})+1=s^{[0,1]}(\mathbf{b}-\mathbf{1})+1=s^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=1 \\ q_{1}(\mathbf{b}-\mathbf{1})+1=s^{[0,1]}(\mathbf{b}-\mathbf{1})+1=s^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{1, \frac{4}{3}\right\} \\ q_{1}(\mathbf{b}-\mathbf{1})+1=s^{[0,1]}(\mathbf{b}-\mathbf{1})+1=s^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=\frac{4}{3} \\ q_{2}(\mathbf{b}-\mathbf{1})+1=s^{[0,1]}(\mathbf{b}-\mathbf{1})+1=s^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{\frac{4}{3}, \frac{3}{2}\right\} \\ q_{2}(\mathbf{b}-\mathbf{1})+1=s^{[0,1]}(\mathbf{b}-\mathbf{1})+1=s^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=\frac{3}{2} \\ q_{3}(\mathbf{b}-\mathbf{1})+1=s^{[0,1]}(\mathbf{b}-\mathbf{1})+1=s^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{\frac{3}{2}, \frac{5}{3}\right\} \\ q_{3}(\mathbf{b}-\mathbf{1})+1=s^{[0,1]}(\mathbf{b}-\mathbf{1})+1=s^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=\frac{5}{3} \\ q_{4}(\mathbf{b}-\mathbf{1})+1=s^{[0,1]}(\mathbf{b}-\mathbf{1})+1=s^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{\frac{5}{3}, 2\right\} \\ 2=t^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=2\end{cases}$
Thus, \tilde{r} implements f. Note that the implementation describes f explicitly.
Example 48. As a second example of implementation, let $r \in L_{1}$ be such that $r^{[0,1]}$ is as in Figure 2.12, so that r is not 1-reproducing. $r^{[0,1]}$ has four linear

Figure 2.12: \tilde{r} implements f.
components p_{1}, p_{2}, p_{3}, and p_{4}, linearized by the unimodular triangulation U
above, with the quasipartition \tilde{U} above. The map \tilde{r} that sends every $\mathbf{u} \in \tilde{U}$ to r forms a system for r. Note that $\tilde{r}(\mathbf{1})=r$. Applying Definition 35 and Lemma 40, it is easy to see that \tilde{r} implements the unary function f over $[0,2]$ in Figure 2.12. Indeed, for every $\mathbf{b} \in[0,2]$,

$$
f(\mathbf{b})= \begin{cases}2=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=0 \\ p_{1}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{0, \frac{1}{3}\right\} \\ p_{1}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=\frac{1}{3} \\ p_{2}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{\frac{1}{3}, \frac{1}{2}\right\} \\ 2=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=\frac{1}{2} \\ p_{3}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{\frac{1}{2}, \frac{2}{3}\right\} \\ p_{3}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b}=\frac{2}{3} \\ p_{4}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in \operatorname{relint} \operatorname{conv}\left\{\frac{2}{3}, 1\right\} \\ 0=r^{[0,2]}(\mathbf{b}) & \text { if } \mathbf{b} \in[1,2]\end{cases}
$$

Thus, \tilde{r} implements f. Note that the implementation describes f explicitly.
In the next section, we study the case $n=2$.

2.3.3 Binary Case

In this section, we prove that the class of binary BL-functions F_{2} coincides with the class of binary term functions B_{2}.

We instatiate Definition 3 with $n=2$. Compare also Figure 2.13.
Definition 49. The algebra $[0,3]=([0,3], \odot, \rightarrow, \perp)$ is an algebra of type $(2,2,0)$ such that $\perp=0$ and, for every $a_{1}, a_{2} \in[0,3]$:

$$
\begin{aligned}
& a_{1} \odot a_{2}= \begin{cases}\min \left(a_{1}, a_{2}\right) & \text { if }\left\lfloor a_{1}\right\rfloor \neq\left\lfloor a_{2}\right\rfloor \\
a_{1} \odot^{[0,1]} a_{2} & \text { if }\left\lfloor a_{1}\right\rfloor=\left\lfloor a_{2}\right\rfloor=0 \\
\left(a_{1}-1 \odot^{[0,1]} a_{2}-1\right)+1 & \text { if }\left\lfloor a_{1}\right\rfloor=\left\lfloor a_{2}\right\rfloor=1 \\
\left(a_{1}-2 \odot^{[0,1]} a_{2}-2\right)+2 & \text { otherwise }\end{cases} \\
& a_{1} \rightarrow a_{2}= \begin{cases}3 & \text { if } a_{1} \leq a_{2} \\
a_{2} & \text { if }\left\lfloor a_{2}\right\rfloor<\left\lfloor a_{1}\right\rfloor \\
a_{1} \rightarrow \rightarrow^{[0,1]} a_{2} & \text { if }\left\lfloor a_{1}\right\rfloor=\left\lfloor a_{2}\right\rfloor=0 \\
\left(a_{1}-1 \rightarrow\left[^{[0,1]} a_{2}-1\right)+1\right. & \text { if }\left\lfloor a_{1}\right\rfloor=\left\lfloor a_{2}\right\rfloor=1 \\
\left(a_{1}-2 \rightarrow\left[^{[0,1]} a_{2}-2\right)+2\right. & \text { otherwise }\end{cases}
\end{aligned}
$$

We enrich the signature with the operations \vee, \wedge, \neg, and T, of arity $2,2,1$, and 0 respectively, defined as in Definition 37. For $\circ \in\{\vee, \wedge, \odot, \rightarrow, \neg, \top, \perp\}$, we let $\circ{ }^{[0,3]}$ denote the realization of the symbol \circ in the algebra $[0,3]$.

Fact 50. For every $a_{1}, a_{2} \in[0,3], a_{1} \wedge^{[0,3]} a_{2}=\min \left(a_{1}, a_{2}\right), a_{1} \vee^{[0,3]} a_{2}=$ $\max \left(a_{1}, a_{2}\right), \top^{[0,3]}=3$, and,

$$
\neg^{[0,3]} a_{1}= \begin{cases}3 & \text { if } a_{1}=0 \\ 1-a_{1} & \text { if } 0<a_{1}<1 \\ 0 & \text { otherwise }\end{cases}
$$

Note that, by Notation 10, for every $r, s \in L_{2}$ and every $\mathbf{a} \in[0,3]^{2}$, $(\neg r)^{[0,3]}(\mathbf{a})=\neg^{[0,3]} r^{[0,3]}(\mathbf{a}),(r \wedge s)^{[0,3]}(\mathbf{a})=r^{[0,3]}(\mathbf{a}) \wedge^{[0,3]} s^{[0,3]}(\mathbf{a}),(r \vee$ $s)^{[0,3]}(\mathbf{a})=r^{[0,3]}(\mathbf{a}) \vee \vee^{[0,3]} s^{[0,3]}(\mathbf{a})$, and $\top^{[0,3]}(\mathbf{a})=\top^{[0,3]}$.

Figure 2.13: Let $X_{1} \odot X_{2}, X_{1} \rightarrow X_{2}, \neg X_{1} \in L_{2}$. Plot (a) shows $\left(X_{1} \odot X_{2}\right)^{[0,3]}$, plot (b) shows $\left(X_{1} \rightarrow X_{2}\right)^{[0,3]}$, and plot (c) shows $\left(\neg X_{1}\right)^{[0,3]}$. Note that, by Definition $8,\left(\neg X_{1}\right)^{[0,3]}$ is a binary function over $[0,3]$; it is essentially unary on its first coordinate.

We mentioned that the truthfunctions of the 2 -variate fragment of Basic logic, B_{2}, coincide with the smallest set of binary functions over $[0,3]$ that contains the projections x_{1} and x_{2}, the constant 0 , and is closed under pointwise application of the operations $\odot^{[0,3]}$ and $\rightarrow{ }^{[0,3]}$.

The problem is to provide an explicit description of B_{2}. The first step in our solution schema consists in guessing an explicit class of binary functions over $[0,3]$.

Definition 51 (Binary BL-functions, F_{2}). A binary function f over $[0,3]$ is a binary BL-function if and only if there exists a system \tilde{r} over a term $r \in L_{2}$ that implements f. We let F_{2} denote the class of binary BL-functions.

We claim that the class of binary BL-functions is explicit, in the sense that if \tilde{r} implements f, then \tilde{r} actually furnishes an explicit description of f (compare also Example 61 and Example 62). To prove the claim, we preliminarily prove two technical lemmas.

The first lemma addresses a phenomenon which we call extension. This phenomenon arises only if $n \geq 2$. The underlying intuition is that if a 1-reproducing term $t \in L_{2}$ contains only one variable, say the variable X_{1}, then the binary function $t^{[0,3]}:[0,3]^{2} \rightarrow[0,3]$ can be described in terms of the unary function $t^{[0,2]}:[0,2] \rightarrow[0,2]$. But then, $t^{[0,3]}$ is described explicitly: indeed, $t \in L_{1}$, so that $t^{[0,2]} \in B_{1} \subseteq F_{1}$ by Lemma 42 , and therefore $t^{[0,2]}$ has an explicit description by Proposition 41. The formal details follow.

Definition 52 (Projection). Let $I=\{i\} \subset\{1,2\}$ and let $\mathbf{b}=\left(b_{1}, b_{2}\right) \in$ $[0,3]^{2}$. Let $\mathbf{c}=\left(c_{1}\right) \in[0,2]$ be the unique element in $[0,2]$ such that $c_{1}-$ $\left\lfloor c_{1}\right\rfloor=b_{i}-\left\lfloor b_{i}\right\rfloor$ and: $\left\lfloor c_{1}\right\rfloor=0$, if $\left\lfloor b_{i}\right\rfloor=0 ;\left\lfloor c_{1}\right\rfloor=2$, if $\left\lfloor b_{i}\right\rfloor=3 ;\left\lfloor c_{1}\right\rfloor=1$, otherwise. We call \mathbf{c} the I-projection of \mathbf{b} over $[0,2]$.

Lemma 53 (Extension). Let $I=\{i\} \subset\{1,2\}$, and let $t \in L_{I}$ be a 1reproducing term. Then, $t^{[0,3]}$ has an explicit description in terms of Definition 15.

Proof. Let $\mathbf{b}=\left(b_{1}, b_{2}\right) \in[0,3]^{2}$, and let $\mathbf{c}=\left(c_{1}\right) \in[0,2]$ be the I projection of \mathbf{b} over $[0,2]$. Let $\bar{t}=t_{\{i \backslash 1\}} \in L_{1}$. By induction on t, applying Definition 49, we get,

$$
t^{[0,3]}(\mathbf{b})= \begin{cases}0 & \text { if } \bar{t}^{[0,2]}(\mathbf{c})=0 \tag{2.10}\\ 3 & \text { if } \bar{t}^{[0,2]}(\mathbf{c})=2 \\ \bar{t}^{[0,2]}(\mathbf{c})-\left\lfloor\bar{t}^{[0,2]}(\mathbf{c})\right\rfloor+\left\lfloor b_{i}\right\rfloor & \text { otherwise }\end{cases}
$$

By Lemma 42, we know that $\bar{t}^{[0,2]}$ is equal to some $f \in F_{1}$, and f has an explicit description by Proposition 41. So, $\vec{t}^{[0,2]}$ has an explicit description. Therefore, $t^{[0,3]}$ has an explicit description, precisely, the description given by equation (2.10). See also Figure 2.14.

The second lemma generalizes the lifting phenomenon, already encountered in the unary case, to the binary case.

Figure 2.14: Sampling Lemma 53 with $I=\{1\}$, so that t is a 1-reproducing term in L_{1}. In this case, $\bar{t}=t_{\{i \backslash 1\}}=t$. Let $\bar{t}^{[0,2]}$ be depicted in (a). By Lemma $53, t^{[0,3]}$ is described explicitly in terms of equation (2.10), that is, $t^{[0,3]}$ is as in (b). Plot (c) shows $t^{[0,3]}\left(\left(b_{1}, 0\right)\right)$ for $0 \leq b_{1} \leq 3$. A comparison of (a) and (c) enlightens the extension phenomenon.

Lemma 54 (Lifting). Let $t \in L_{2}$ be such that $t \in L_{2}^{+}$if t is 1-reproducing, and $t=\neg t^{\prime}$ with $t^{\prime} \in L_{2}^{+}$otherwise. Then, $t^{[0,3]}(\mathbf{b})$ has an explicit description in terms of Definition 15.

Proof. Let \tilde{U} be a quasipartition for t, let $\mathbf{b}=\left(b_{1}, b_{2}\right) \in[0,3]^{2}$, and let $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$ for \mathbf{u} in \tilde{U}. We examine two cases.

First suppose that t is 1-reproducing $\left(t \in L_{2}^{+}\right)$. By induction on t, applying Definition 49, we get,

$$
t^{[0,3]}(\mathbf{b})= \begin{cases}t^{[0,1]}(\mathbf{b}-\mathbf{j})+j & \text { if } j=\left\lfloor b_{1}\right\rfloor=\left\lfloor b_{2}\right\rfloor \text { and } t^{[0,1]}(\mathbf{u})<1 \tag{2.11}\\ 3 & \text { if }\left\lfloor b_{1}\right\rfloor=\left\lfloor b_{2}\right\rfloor \text { and } t^{[0,1]}(\mathbf{u})=1 \\ t^{[0,1]}(\operatorname{controller}(\mathbf{b}))+j & \text { if } t^{[0,1]}(\mathbf{u})<1 \text { and } j=\min \left\{\left\lfloor b_{1}\right\rfloor,\left\lfloor b_{2}\right\rfloor\right\} \\ t^{[0,3]}(\mathbf{b}) & \text { otherwise },\end{cases}
$$

where \bar{t} is a 1-reproducing term in $L_{\operatorname{par}(\mathbf{u})}$. Noticing that, if $\left\lfloor b_{1}\right\rfloor \neq$ $\left\lfloor b_{2}\right\rfloor$, then $\emptyset \subset \operatorname{par}(\mathbf{u}) \subset\{1,2\}$, we apply Lemma 53 to \bar{t}, and we have that $\vec{t}^{[0,3]}$ has an explicit description. Moreover, by Fact $19, t^{[0,1]}$ has an explicit description. Hence, $t^{[0,3]}$ has an explicit description, precisely, the description given by equation (2.11). Compare also Figure 2.15.

Now suppose that t is not 1-reproducing $\left(t=\neg t^{\prime}\right.$ with $\left.t^{\prime} \in L_{2}^{+}\right)$. By

Fact 50, and applying the previous case to t^{\prime}, we get,

$$
t^{[0,3]}(\mathbf{b})= \begin{cases}t^{[0,1]}(\mathbf{b}) & \text { if } \mathbf{b} \in[0,1)^{2} \text { and } t^{[0,1]}(\mathbf{u})<1 \tag{2.12}\\ 3 & \text { if } \mathbf{b} \in[0,1)^{2} \text { and } t^{[0,1]}(\mathbf{u})=1 \\ 0 & \text { if } \mathbf{b} \in[1,3]^{2} \\ t^{[0,1]}(\text { controller }(\mathbf{b})) & \text { if } t^{[0,1]}(\mathbf{u})<1 \\ 3 & \text { otherwise },\end{cases}
$$

Since $t^{[0,1]}$ has an explicit description by Fact 19, so that $t^{[0,3]}$ has an explicit description, precisely, the description given by equation (2.12). Compare also Figure 2.16.

Figure 2.15: Sampling the first case of Lemma 54 with the 1-reproducing term $t \in L_{2}^{+}$depicted in (a). The underlying unimodular triangulation U and quasipartition \tilde{U} are sketched in Figure 2.25. The region highlighted in (b) coincides with the set of $\mathbf{b} \in[0,3]^{2}$ such that $\mathbf{u} \in[0,1)^{2}$ or $t^{[0,1]}(\mathbf{u})<1$. The restriction of $t^{[0,3]}$ to the highlighted region is then described in terms of the first, second and third clause of equation (2.11), as it is depicted in (c). A comparison of (a) and (c) enlightens the lifting phenomenon.

The previous lemmas on lifting and extension allow to conclude that F_{2} has an explicit description.

Proposition 55 (Explicitness). F_{2} has an explicit description in terms of Definition 15.

Proof. Let $f \in F_{2}$, and let \tilde{r} be the system (over quasipartition \tilde{U}) implementing f, with $r \in L_{2}$. We distinguish two cases.

If r is 1-reproducing, then $\tilde{r}(\mathbf{1})=s$ with s is 1-reproducing in L_{2}, and there is an auxiliary system \tilde{s} for s, say over quasipartition \tilde{V}. Both

Figure 2.16: Sampling the second case of Lemma 54 with the not 1reproducing term $t \in L_{2}$ depicted in (a). The underlying unimodular triangulation U and quasipartition \tilde{U} are sketched in Figure 2.25. The region highlighted in (b) coincides with the set $[1,3]^{2}$ and the set of $\mathbf{b} \notin[1,3]^{2}$ such that $\mathbf{u} \in[0,1)^{2}$ or $t^{[0,1]}(\mathbf{u})<1$. The restriction of $t^{[0,3]}$ to the highlighted region is then described in terms of the first, second, third, and fourth clause of equation (2.12), as it is depicted in (c).
r and s are in L_{2}^{+}. Let $\mathbf{b} \in[0,3]^{2}$. First suppose that $\mathbf{b} \notin[1,3]^{2}$. Let \mathbf{u} in \tilde{U} be such that $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$, and let $\tilde{r}(\mathbf{u})=t$. Note that $|\operatorname{par}(\mathbf{u})|=$ 1. By Definition 34, either $t \in L_{\operatorname{par}(\mathbf{u})}$ or $t=r$; and, by Definition 35, $f(\mathbf{b})=t^{[0,3]}(\mathbf{b})$. But then, by Lemma 53 and Lemma 54, we have that $t^{[0,3]}(\mathbf{b})$ is described explicitly, hence $f(\mathbf{b})$ is described explicitly. Next suppose that $\mathbf{b} \in[1,3]^{2}$. Let \mathbf{v} in \tilde{V} be such that $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{v}))$, and let $\tilde{s}(\mathbf{v})=t^{\prime}$. Noticing that $|\operatorname{par}(\mathbf{v})|=1$ and reasoning as above, we have that $t^{[0,3]}(\mathbf{b})$ is described explicitly, hence $f(\mathbf{b})$ is described explicitly. Thus we conclude that \tilde{r} describes explicitly f, so that in this case, f has an explicit description. If r is not 1-reproducing, an entirely similar argument shows that \tilde{r} describes explicitly f, so that in this case also, f has an explicit description.

Hence, every $f \in F_{2}$ has an explicit description, so that F_{2} has an explicit description.

The explicit class F_{2} of binary functions over $[0,3]$ settles the first step of our solution schema, in the case $n=2$. The second step consists in proving that the class F_{2} of binary BL-functions coincides with the truthfunctions of the 2-variate fragment of Basic logic,

$$
B_{2}=\left\{t^{[0,3]} \mid t \in L_{2}\right\} \subseteq[0,3]^{[0,3]^{2}}
$$

We prove the inclusion $B_{2} \subseteq F_{2}$.
Lemma 56 (Closure). $t^{[0,3]} \in F_{2}$ for every $t \in L_{2}$.
Proof. The proof is by induction on t. We refer the reader to the proof of the general case $n \geq 1$ in Lemma 65 .

We prove the inclusion $F_{2} \subseteq B_{2}$. To this aim we preliminarily generalize the isolation mechanism to the case $n=2$.

Definition 57 (Isolation). Let $D \subseteq[0,3]^{2}$. Say that the term $t \in L_{2}$ isolates the term $s \in L_{2}$ over D if $t^{[0,3]}(\mathbf{b})=s^{[0,3]}(\mathbf{b})$ if $\mathbf{b} \in D$, and otherwise $t^{[0,3]}(\mathbf{b})=\top^{[0,3]}$.

Let \tilde{r} be a system, over the quasipartition \tilde{U}, and let $\mathbf{u} \in \tilde{U}$. The final objective is that of isolating the term $\tilde{r}(\mathbf{u})$ over realm $(\operatorname{sibl}(\mathbf{u}))$. We proceed in two steps. In the first step, we isolate certain variables over certain regions of $[0,3]^{2}$ (compare Lemma 58 below). In the second step, on the basis of the variable isolation mechanism, we isolate certain terms over certain regions of $[0,3]^{2}$ (compare Lemma 59 below).

Lemma 58 (Variable Isolation). Let $i \in\{1,2\}$.
(i) Let $\mathbf{a} \in[0,1]^{2}$ be such that $i \in \operatorname{par}(\mathbf{a})$. There exists terms $r_{(i, \mathbf{a})}, s_{(i, \mathbf{a})} \in$ L_{2} such that, $r_{(i, \mathbf{a})}$ and $s_{(i, \mathbf{a})}$ isolate $X_{i} \operatorname{over} D_{(i, \mathbf{a})}$ and $E_{(i, \mathbf{a})}$ respectively, where,

$$
\begin{aligned}
D_{(i, \mathbf{a})} & =\left\{\mathbf{b} \notin[1,3]^{2} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a}))\right\} \\
E_{(i, \mathbf{a})} & =\left\{\mathbf{b} \in[1,3]^{2} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a}))\right\} .
\end{aligned}
$$

(ii) Let \tilde{U} be a quasipartition of $[0,1]^{2}$ and let $\mathbf{u} \in \tilde{U}$ be such that $i \in$ $\operatorname{par}(\mathbf{u})$. There exists terms $r_{(i, \mathbf{u})}, s_{(i, \mathbf{u})} \in L_{2}$ such that, $r_{(i, \mathbf{u})}$ and $s_{(i, \mathbf{u})}$ isolate X_{i} over $D_{(i, \mathbf{u})}$ and $E_{(i, \mathbf{u})}$ respectively, where,

$$
\begin{aligned}
D_{(i, \mathbf{u})} & =\left\{\mathbf{b} \notin[1,3]^{2} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))\right\} \\
E_{(i, \mathbf{u})} & =\left\{\mathbf{b} \in[1,3]^{2} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))\right\} .
\end{aligned}
$$

(iii) There exist terms $v_{i}, w_{i} \in L_{2}$ such that, v_{i} and w_{i} isolate X_{i} over J_{i} and K_{i} respectively, where,

$$
\begin{aligned}
J_{i} & =\left\{\mathbf{b} \notin[1,3]^{2} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a})), i \notin \operatorname{par}(\mathbf{a})\right\} \\
K_{i} & =\left\{\mathbf{b} \in[1,3]^{2} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a})), i \notin \operatorname{par}(\mathbf{a})\right\} .
\end{aligned}
$$

Proof. (i) If a is equal to $\mathbf{1}$, then $r_{(i, \mathbf{a})}=s_{(i, \mathbf{a})}=\mathrm{T}$ settles the claim, simply noticing that realm $(\operatorname{neigh}(\mathbf{a}))=\mathbf{n}+\mathbf{1}$. Otherwise, put,

$$
\begin{aligned}
& r_{(1, \mathbf{a})}=\left(\neg \neg X_{2}\right) \vee\left(\neg \neg X_{1} \rightarrow X_{1}\right) \\
& s_{(1, \mathbf{a})}=\left(\left(X_{1} \rightarrow X_{2}\right) \rightarrow X_{2}\right) \rightarrow\left(\left(\neg \neg X_{1} \rightarrow X_{1}\right) \vee\left(\neg \neg X_{2} \rightarrow X_{2}\right)\right) \\
& r_{(2, \mathbf{a})}=\left(\neg \neg X_{1}\right) \vee\left(\neg \neg X_{2} \rightarrow X_{2}\right) \\
& s_{(2, \mathbf{a})}=\left(\left(X_{2} \rightarrow X_{1}\right) \rightarrow X_{1}\right) \rightarrow\left(\left(\neg \neg X_{2} \rightarrow X_{2}\right) \vee\left(\neg \neg X_{1} \rightarrow X_{1}\right)\right),
\end{aligned}
$$

But then, by Definition 49 and Fact 50, for $i=1,2, r_{(i, \mathbf{a})}$ and $s_{(i, \mathbf{a})}$ isolate X_{i} over $D_{(i, \mathbf{a})}$ and $E_{(i, \mathbf{a})}$ respectively. See Figure 2.17.

Figure 2.17: Lemma 58(i).
(ii) If \mathbf{u} is equal to $\mathbf{1}$, then $r_{(i, \mathbf{u})}=s_{(i, \mathbf{u})}=\mathrm{T}$ settle the claim, simply noticing that realm $(\operatorname{sibl}(\mathbf{u}))=\mathbf{n}+\mathbf{1}$. Otherwise, $\operatorname{par}(\mathbf{u})=\{i\}$. Suppose w.l.o.g. that $i=1$ (the case $i=2$ is similar). There are two cases.

As a first case, suppose that $\operatorname{sibl}(\mathbf{u})$ contains exactly a rational vertex in the unimodular triangulation U. Say, w.l.o.g. that $\operatorname{sibl}(\mathbf{u})=\left\{\mathbf{u}_{28}\right\}$ in Figure 2.25(b). Note that $\mathbf{u}_{28}=\left(u_{28,1}, u_{28,2}\right)=(1,1 / 2)$. Fix $t \in L_{1}^{+}$such that $t^{[0,1]}(\mathbf{c})=1$ if and only if $\mathbf{c}=\left(u_{28,2}\right)=1 / 2$ or $\mathbf{c}=\mathbf{1}=1$. Such t exists by Theorem 28 and Corollary 30. Let $r_{(1, \mathbf{u})}=t_{\{1 \backslash 2\}} \rightarrow r_{(1, \mathbf{a})}$ and $s_{(1, \mathbf{u})}=t_{\{1 \backslash 2\}} \rightarrow s_{(1, \mathbf{a})}$, where $r_{(1, \mathbf{a})}$ and $s_{(1, \mathbf{a})}$ are as in part (i), say with $\mathbf{a}=\mathbf{u}$. By Lemma 53 and Definition 49, we have that $r_{(1, \mathbf{u})}$ and $s_{(1, \mathbf{u})}$ isolate X_{1} over $D_{(1, \mathbf{a})}$ and $E_{(1, \mathbf{a})}$ respectively. See Figure 2.18.

As a second case, suppose that $\operatorname{sibl}(\mathbf{u})$ is an open line segment having as endpoints a pair of rational vertices in the unimodular triangulation U. Say, w.l.o.g. that $\operatorname{sibl}(\mathbf{u})=$ relint $\operatorname{conv}\left\{\mathbf{u}_{28}, \mathbf{u}_{30}\right\}$ in Figure 2.25(b). Note that $\mathbf{u}_{28}=\left(u_{28,1}, u_{28,2}\right)=(1,1 / 2)$, and $\mathbf{u}_{30}=\left(u_{30,1}, u_{30,2}\right)=(1,0)$. Fix $t \in L_{1}$ such that $t^{[0,1]}(\mathbf{c})=1$ if and only if $\mathbf{c} \in \operatorname{conv}\left\{u_{28,2}, u_{30,2}\right\}=$ $\operatorname{conv}\{0,1 / 2\}$ or $\mathbf{c}=\mathbf{1}=1$. Such t exists by Theorem 28. Let $r_{\left(1, \mathbf{u}_{28}\right),}$, $r_{\left(1, \mathbf{u}_{30}\right)}, s_{\left(1, \mathbf{u}_{28}\right)}$, and $s_{\left(1, \mathbf{u}_{30}\right)}$ be settled as in the previous case. Let $r_{(1, \mathbf{u})}=$

Figure 2.18: Lemma 58(ii), Case 1: $\operatorname{sibl}(\mathbf{u})=\left\{\mathbf{u}_{28}\right\}, \mathbf{u}_{28}=(1,1 / 2)$.
$\left(r_{\left(1, \mathbf{u}_{28}\right)} \wedge r_{\left(1, \mathbf{u}_{30}\right)}\right) \rightarrow\left(t_{\{1 \backslash 2\}} \rightarrow r_{(1, \mathbf{a})}\right)$ and $s_{(1, \mathbf{u})}=\left(s_{\left(1, \mathbf{u}_{28}\right)} \wedge s_{\left(1, \mathbf{u}_{30}\right)}\right) \rightarrow$ $\left(t_{\{1 \backslash 2\}} \rightarrow s_{(1, \mathbf{a})}\right)$, where $r_{(1, \mathbf{a})}$ and $s_{(1, \mathbf{a})}$ are as in part (i), say with $\mathbf{a}=\mathbf{u}$. By Lemma 53, Definition 49, and the previous case, we have that $r_{(1, \mathbf{u})}$ and $s_{(1, \mathbf{u})}$ isolate X_{1} over $D_{(1, \mathbf{a})}$ and $E_{(1, \mathbf{a})}$ respectively. See Figure 2.19.

Figure 2.19: Lemma 58(ii), Case 2: $\operatorname{sibl}(\mathbf{u})=$ relint $\operatorname{conv}\left\{\mathbf{u}_{28}, \mathbf{u}_{30}\right\}, \mathbf{u}_{28}=$ $\left(u_{28,1}, u_{28,2}\right)=(1,1 / 2)$, and $\mathbf{u}_{30}=\left(u_{30,1}, u_{30,2}\right)=(1,0)$.
(iii) For $i=1,2$, put,

$$
\begin{align*}
v_{i} & =\neg \neg X_{i} \tag{2.13}\\
w_{i} & =\left(\bigwedge_{\mathbf{a} \in A}\left(r_{(i, \mathbf{a})} \wedge s_{(i, \mathbf{a})}\right)\right) \rightarrow\left(\neg \neg X_{i} \rightarrow X_{i}\right) \tag{2.14}
\end{align*}
$$

where $A=\left\{\mathbf{a} \in[0,1]^{2} \mid i \in \operatorname{par}(\mathbf{a})\right\}$, and $r_{(i, \mathbf{a})}$ and $s_{(i, \mathbf{a})}$ are as in part (i). But then, by part (i), Definition 49 and Fact 50, we have that v_{i} and w_{i} isolate X_{i} over J_{i} and K_{i} respectively. See Figure 2.20.

We now extend the term isolation mechanism to the case $n=2$.

Lemma 59 (Term Isolation). The following statements hold.

(a) $v_{1}^{[0,1]}$.

(b) $w_{1}^{[0,1]}$.

(c) $v_{2}^{[0,1]}$.

(d) $w_{2}^{[0,1]}$.

Figure 2.20: Lemma 58(iii).
(i) Let $t \in L_{2}^{+}$and let \tilde{U} be a quasipartition for t. Then, there exist terms \hat{t} and \check{t} in L_{2} such that, \hat{t} isolates t over:
$\left\{\mathbf{b} \notin[1,3]^{2} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u})), \mathbf{u} \in \tilde{U}, \mathbf{u} \in[0,1)^{2}\right.$ or $\left.t^{[0,1]}(\mathbf{u})<1\right\}$, and \check{t} isolates t over:
$\left\{\mathbf{b} \in[1,3]^{2} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u})), \mathbf{u} \in \tilde{U}, \mathbf{u} \in[0,1)^{2}\right.$ or $\left.t^{[0,1]}(\mathbf{u})<1\right\}$.
(ii) Let $t=\neg t^{\prime}$ with $t^{\prime} \in L_{2}^{+}$and let \tilde{U} be a quasipartition for t. Then, there exists a term \hat{t} in L_{2} such that, \hat{t} isolates t over

$$
[1,3]^{2} \cup\left\{\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u})) \mid \mathbf{u} \in \tilde{U}, \mathbf{u} \in[0,1)^{2} \text { or } t^{[0,1]}(\mathbf{u})<1\right\} .
$$

(iii) Let \tilde{U} be a quasipartition of $[0,1]^{2}$, and let $\mathbf{u} \in \tilde{U}$ be such that $|\operatorname{par}(\mathbf{u})|=$ 1. Let tbe a 1-reproducing term in $L_{\mathrm{par}(\mathbf{u})}$. Then, there exist terms \dot{t} and \ddot{t} in L_{2} such that, \dot{t} isolates t over:

$$
\left\{\mathbf{b} \notin[1,3]^{2} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u})), \mathbf{u} \in \tilde{U}\right\},
$$

and \ddot{t} isolates t over:

$$
\left\{\mathbf{b} \in[1,3]^{2} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u})), \mathbf{u} \in \tilde{U}\right\} .
$$

Proof. (i) Put:

$$
\begin{aligned}
& \hat{t}=t_{\left\{1 \backslash v_{1}, 2 \backslash v_{2}\right\}}, \\
& \check{t}=t_{\left\{1 \backslash w_{1}, 2 \backslash w_{2}\right\}},
\end{aligned}
$$

where v_{1}, v_{2}, w_{1}, and w_{2} are as in Lemma 58(iii). A routine induction on t, appealing to Lemma 58 (iii) and to the definition of $\odot^{[0,3]}$ and $\rightarrow{ }^{[0,3]}$, shows that \hat{t} and \check{t} satisfy the claim. Compare also Figure 2.21.

Figure 2.21: Sampling Lemma 59(i) with the 1-reproducing $t \in L_{2}^{+}$depicted in (a). \hat{t} and \check{t} satisfy the statement of the lemma.
(ii) Put:

$$
\hat{t}=\neg t_{\left\{1 \backslash v_{1}, 2 \backslash v_{2}\right\}}^{\prime}
$$

where v_{1} and v_{2} are as in Lemma 58(iii). Now, by part (i) of the present lemma, applied to t^{\prime}, and by the definition of $\neg^{[0,3]}$, we have that \hat{t} satisfies the statement. Compare also Figure 2.22.

Figure 2.22: Sampling Lemma 59(ii) with the not 1-reproducing $t \in L_{2}$ depicted in (a). \hat{t} satisfies the statement of the lemma.
(iii) Let $\operatorname{par}(\mathbf{u})=\{i\}$, so that t is 1-reproducing in $L_{\{i\}}$. Put:

$$
\begin{align*}
& \dot{t}_{\mathbf{u}}=t_{\left\{i \backslash r_{(i, \mathbf{u})}\right\}} \tag{2.15}\\
& \ddot{t}_{\mathbf{u}}=t_{\left\{i \backslash s_{(i, \mathbf{u})}\right\}} \tag{2.16}
\end{align*}
$$

where $r_{(i, \mathbf{u})}$ and $s_{(i, \mathbf{u})}$ are the terms given by Lemma 58(ii). We claim that $\dot{t}_{\mathbf{u}}$ and $\ddot{t}_{\mathbf{u}}$ satisfy the claim. Indeed, consider $\dot{t}_{\mathbf{u}}$ (the case of $\ddot{t}_{\mathbf{u}}$ is analogous). Let $\mathbf{b} \in[0,3]^{2} \backslash[1,3]^{2}$. If $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$, by Lemma 58(ii), $r_{(i, \mathbf{u})}^{[0,3]}(\mathbf{b})=X_{i}^{[0,3]}(\mathbf{b})$, so that,

$$
\dot{t}_{\mathbf{u}}(\mathbf{b})=\left(\dot{t}_{\mathbf{u}}\right)_{\left\{r_{(i, \mathbf{u})} \backslash X_{i}\right\}}(\mathbf{b})=t(\mathbf{b})
$$

Otherwise, suppose $\mathbf{b} \notin \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$. By Lemma 58(ii), $r_{(i, \mathbf{u})}^{[0,3]}(\mathbf{b})=$ $\top^{[0,3]}$, so that,

$$
\dot{t}_{\mathbf{u}}(\mathbf{b})=\left(\dot{t}_{\mathbf{u}}\right)_{\left\{r_{(i, \mathbf{u})} \backslash \top\right\}}(\mathbf{b})=t_{\left\{X_{i} \backslash \top\right\}}(\mathbf{b})=\top^{[0,3]}
$$

where the last equality holds because because t is 1-reproducing in $L_{\{i\}}$. Compare also Figure 2.23.

Figure 2.23: Sampling Lemma 59(iii) with $\mathbf{u}=\mathbf{u}_{30}$ in the quasipartition \tilde{U} of Figure 2.25, so that $i=1$ and t is a 1-reproducing term in $L_{\{1\}}=L_{1}$. Then, $\dot{t}_{\mathbf{u}}$ and $\ddot{t}_{\mathbf{u}}$ satisfy the statement of the lemma.

With the background of the term isolation mechanism, the problem of constructing a term $t \in L_{2}$ that computes a given function $f \in F_{2}$ reduces to the following: given a system \tilde{r} that implements f, isolate each term $\tilde{r}(\mathbf{u})$ over the region realm $(\operatorname{sibl}(\mathbf{u}))$, and output the meet of the resulting terms.

Lemma 60 (Normal Form). For every function $f \in F_{2}$, there exists a term $t \in L_{2}$ such that $f=t^{[0,3]}$.

Proof. Let $f \in F_{2}$ be implemented by the system \tilde{r} over the quasipartition \tilde{U}, for $r \in L_{2}$. We distinguish two cases.

First suppose that r is 1-reproducing (so, $r \in L_{2}^{+}$). Then, by Definition 34, $\tilde{r}(\mathbf{1})=s$ with s 1-reproducing in L_{2}^{+}, and, by Definition 35, there exists a system \tilde{s}, say over quasipartition \tilde{V}. Put,

$$
t=\left(\hat{r} \wedge \bigwedge_{\tilde{r}(\mathbf{u})=p} \dot{p}_{\mathbf{u}}\right) \wedge\left(\check{s} \wedge \bigwedge_{\tilde{s}(\mathbf{v})=q} \ddot{q}_{\mathbf{v}}\right)
$$

where: \hat{r} corresponds to r as by Lemma $59(\mathrm{i}) ; \check{s}$ corresponds to s as by Lemma $59(\mathbf{i}) ; \mathbf{u}$ ranges over all the $\mathbf{u}^{\prime} \in \tilde{U}$ such that $\mathbf{u}^{\prime} \notin[0,1)^{2}$ and $r^{[0,1]}\left(\mathbf{u}^{\prime}\right)=1$, and $\dot{p}_{\mathbf{u}}$ corresponds to p and \mathbf{u} as by Lemma $59($ iii $)$; \mathbf{v} ranges over all the $\mathbf{v}^{\prime} \in \tilde{V}$ such that $\mathbf{v}^{\prime} \notin[0,1)^{2}$ and $s^{[0,1]}\left(\mathbf{v}^{\prime}\right)=1$, and $\ddot{q}_{\mathbf{v}}$ corresponds to q and \mathbf{v} as by Lemma 59(iii). But then, applying Lemma $59(\mathrm{i})$ and (iii) and Definition 35, we have that $f=t^{[0,2]}$. See Figure 2.24.

Figure 2.24: Sampling Lemma 60 with $f \in F_{2}$ depicted in Figure 2.28.
Next suppose that r is not 1-reproducing. Put,

$$
t=\hat{r} \wedge \bigwedge_{\tilde{r}(\mathbf{u})=p} \dot{p}_{\mathbf{u}}
$$

where: \hat{r} corresponds to r as by Lemma 59(ii); u ranges over all the $\mathbf{u}^{\prime} \in \tilde{U}$ such that $\mathbf{u}^{\prime} \notin[0,1)^{2}$ and $r^{[0,1]}\left(\mathbf{u}^{\prime}\right)=1$, and $\dot{p}_{\mathbf{u}}$ corresponds to p and \mathbf{u} as by Lemma 59(iii). But then, applying Lemma 59(ii) and (iii) and Definition 35, we have that $f=t^{[0,2]}$.

Thus, by Lemma 56 and Lemma 60, we conclude that $B_{2}=F_{2}$. This settles the case $n=2$. Notice that, as an additional benefit, in the proof of the inclusion $F_{2} \subseteq B_{2}$, we also described a construction of a term
$t \in L_{2}$ that computes the given $f \in F_{2}$. We conclude this section by means of two examples.

Example 61. Let $U=\left\{S_{1}, \ldots, S_{8}\right\}$ be the unimodular triangulation of $[0,1]^{2}$ sketched in Figure 2.25(a), with quasipartition $\tilde{U}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{33}\right\}$ sketched in Figure 2.25(b). Consider, for instance, the 2-dimensional simplex $S_{1}=\operatorname{conv}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{5}\right\}$, with edges $F_{1}=\operatorname{conv}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}, F_{2}=\operatorname{conv}\left\{\mathbf{v}_{1}, \mathbf{v}_{5}\right\}$, and $F_{3}=\operatorname{conv}\left\{\mathbf{v}_{2}, \mathbf{v}_{5}\right\}$, and vertices $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{5}. Points in relint S_{1} have \mathbf{u}_{3} as parent, points in relint F_{1} have \mathbf{u}_{19} as parent, points in relint F_{2} have \mathbf{u}_{2} as parent, points in relint F_{3} have \mathbf{u}_{4} as parent, and eventually points in $\left\{\mathbf{v}_{1}\right\},\left\{\mathbf{v}_{2}\right\}$, and $\left\{\mathbf{v}_{5}\right\}$ have respectively $\mathbf{u}_{18}, \mathbf{u}_{20}$, and \mathbf{u}_{1} as parents. Let

Figure 2.25: Example 61.
$r, s \in L_{2}$ be such that $r^{[0,1]}$ and $s^{[0,1]}$ are as in Figure 2.26(a) and 2.27(a) respectively. Both r and s are 1-reproducing, $r^{[0,1]}$ has linear components p_{1}, \ldots, p_{5}, and $s^{[0,1]}$ has linear components $1, q_{1}, \ldots, q_{4}$. Both $r^{[0,1]}$ and $s^{[0,1]}$ are linearized by U, as shown in Figure 2.26(b) and 2.27(b) respectively. Let $r_{1}=\cdots=r_{4}=X_{2} \odot X_{2}, r_{5}=X_{1} \odot X_{1}$, and $s_{1}=s_{2}=X_{1} \odot X_{1}$. Let the map \tilde{r} be specified by the pairs: $\left(\mathbf{u}_{22}, r_{1}\right),\left(\mathbf{u}_{23}, r_{2}\right),\left(\mathbf{u}_{24}, r_{3}\right),\left(\mathbf{u}_{25}, r_{4}\right)$, $\left(\mathbf{u}_{26}, s\right),\left(\mathbf{u}_{30}, r_{5}\right),\left(\mathbf{u}_{i}, r\right)$ for all $i \notin\{22, \ldots, 26,30\}$. Let the map \tilde{s} be specified by the pairs: $\left(\mathbf{u}_{26}, t\right),\left(\mathbf{u}_{27}, s_{1}\right),\left(\mathbf{u}_{28}, s_{2}\right),\left(\mathbf{u}_{i}, s\right)$ for all $i \notin\{26,27,28\}$. Then, \tilde{r} and \tilde{s} form systems for r and s. These systems are depicted in Figure 2.26(c) and Figure 2.27(c).

We claim that \tilde{r} implements the binary function f over $[0,3]$ depicted in Figure 2.28. It is sufficient to prove that \tilde{r} implements $f(\mathbf{b})$ for every

Figure 2.26: r from Example 61. (a) $r^{[0,1]}$. (b) The linear decomposition of $r^{[0,1]}$ over U. (c) The system \tilde{r} over \tilde{U}.

(a)

(b)

(c)

Figure 2.27: s from Example 61. (a) $s^{[0,1]}$. (b) The linear decomposition of $s^{[0,1]}$ over U. (c) The system \tilde{s} over \tilde{U}.
$\mathbf{b} \in[0,3]^{2}$, by applying Definition 35. Let $\mathbf{b} \in[0,3]^{2}$. We distinguish two cases. First suppose that $\mathbf{b} \notin[1,3]^{2}$, and let $i \in[33]$ be such that $\mathbf{b} \in \operatorname{realm}\left(\operatorname{sibl}\left(\mathbf{u}_{i}\right)\right)$. Notice that $i \in\{27,28,29\}$ implies $0=\left\lfloor b_{2}\right\rfloor<\left\lfloor b_{1}\right\rfloor$. Then, \tilde{r} implements $f(\mathbf{b})$, indeed, by Lemma 54(i) and Lemma 53 (see Figure 2.29):

$$
f(\mathbf{b})= \begin{cases}p_{1}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,3]}(\mathbf{b}) & \text { if } i \in\{1,2,3,4,18,19,20\} \\ p_{2}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,3]}(\mathbf{b}) & \text { if } i \in\{5,6,21\} \\ p_{3}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,3]}(\mathbf{b}) & \text { if } i \in\{7,8,9,10\} \\ p_{4}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,3]}(\mathbf{b}) & \text { if } i \in\{11,12\} \\ p_{4}(\mathbf{a})=r^{[0,1]}(\mathbf{a})=r^{[0,3]}(\mathbf{b}) & \text { if } i \in\{27,28\} \text { and controller }(\mathbf{b})=\mathbf{a} \\ p_{5}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,3]}(\mathbf{b}) & \text { if } i \in\{13,14,15,16,17,31,32,33\}\end{cases}
$$

Figure 2.28: The claim of Example 61 is that \tilde{r} implements the function f : $[0,3]^{2} \rightarrow[0,3]$ above.

$$
f(\mathbf{b})= \begin{cases}p_{5}(\mathbf{a})=r^{[0,1]}(\mathbf{a})=r^{[0,3]}(\mathbf{b}) & \text { if } i=29 \text { and controller }(\mathbf{b})=\mathbf{a} \\ \left(X_{2} \odot X_{2}\right)^{[0,3]}(\mathbf{b})=r_{1}^{[0,3]}(\mathbf{b}) & \text { if } i=22 \\ \left(X_{2} \odot X_{2}\right)^{[0,3]}(\mathbf{b})=r_{2}^{[0,3]}(\mathbf{b}) & \text { if } i=23 \\ \left(X_{2} \odot X_{2}\right)^{[0,3]}(\mathbf{b})=r_{3}^{[0,3]}(\mathbf{b}) & \text { if } i=24 \\ \left(X_{2} \odot X_{2}\right)^{[0,3]}(\mathbf{b})=r_{4}^{[0,3]}(\mathbf{b}) & \text { if } i=25 \\ \left(X_{1} \odot X_{1}\right)^{[0,3]}(\mathbf{b})=r_{5}^{[0,3]}(\mathbf{b}) & \text { if } i=30\end{cases}
$$

Suppose that $\mathbf{b} \in[1,3]^{2}$, and let $i \in[33]$ be such that $\mathbf{b} \in \operatorname{realm}\left(\operatorname{sibl}\left(\mathbf{u}_{i}\right)\right)$. Notice that $i \in\{22,23,24,25\}$ implies $1=\left\lfloor b_{1}\right\rfloor<\left\lfloor b_{2}\right\rfloor$, and $i \in\{29,30\}$ implies $1=\left\lfloor b_{2}\right\rfloor<\left\lfloor b_{1}\right\rfloor$. Then, \tilde{r} implements $f(\mathbf{b})$, indeed, by Lemma 54 and Lemma 53 (see Figure 2.30):
$f(\mathbf{b})= \begin{cases}3=s^{[0,3]}(\mathbf{b}) & \text { if } i \in\{1,2,3,4,10,11,12,18,19,20\} \\ q_{1}(\mathbf{b})=s^{[0,1]}(\mathbf{b})=s^{[0,3]}(\mathbf{b}) & \text { if } i \in\{5,6,21\} \\ q_{2}(\mathbf{b})=s^{[0,1]}(\mathbf{b})=s^{[0,3]}(\mathbf{b}) & \text { if } i \in\{7,8,9,10\} \\ q_{2}(\mathbf{a})+1=s^{[0,1]}(\mathbf{a})+1=s^{[0,3]}(\mathbf{b}) & \text { if } i \in\{22, \ldots, 25\} \text { and controller }(\mathbf{b})=\mathbf{a} \\ q_{3}(\mathbf{b})=s^{[0,1]}(\mathbf{b})=s^{[0,3]}(\mathbf{b}) & \text { if } i \in\{13,14\} \\ q_{3}(\mathbf{a})+1=s^{[0,1]}(\mathbf{a})+1=s^{[0,3]}(\mathbf{b}) & \text { if } i \in\{29,30\} \text { and controller }(\mathbf{b})=\mathbf{a} \\ q_{4}(\mathbf{b})=s^{[0,1]}(\mathbf{b})=s^{[0,3]}(\mathbf{b}) & \text { if } i \in\{15,16,17,31,32,33\} \\ \left(X_{1} \odot X_{1}\right)^{[0,3]}(\mathbf{b})=s_{1}^{[0,3]}(\mathbf{b}) & \text { if } i=27 \\ \left(X_{1} \odot X_{1}\right)^{[0,3]}(\mathbf{b})=s_{2}^{[0,3]}(\mathbf{b}) & \text { if } i=28 \\ 3=s^{[0,3]}(\mathbf{b})=t^{[0,3]}(\mathbf{b}) & \text { if } i=26\end{cases}$

Figure 2.29: Example 61, Case $\mathbf{b} \in[0,3]^{2} \backslash[1,3]^{2}$. Let $\mathbf{u} \in \tilde{U}$, where \tilde{U} is the quasipartition underlying \tilde{r}. (a) \tilde{r} implements $f(\mathbf{b})$ for each $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$ such that either $\mathbf{u} \in[0,1)^{2}$ or $r^{[0,1]}(\mathbf{u})<1$. (b) \tilde{r} implements $f(\mathbf{b})$ for each $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$ such that $\mathbf{u} \notin[0,1)^{2}$ and $r^{[0,1]}(\mathbf{u})=1$. (c) \tilde{r} implements $f(\mathbf{b})$ for each $\mathbf{b} \in[0,3]^{2} \backslash[1,3]^{2}$.

Note that the above description of f is explicit.

Example 62. Let U and \tilde{U} be exactly as in Example 61. Let $r \in L_{2}$ be such that $r^{[0,1]}$ is as in Figure 2.31(a). r is not 1-reproducing. $r^{[0,1]}$ has linear components p_{1}, \ldots, p_{4}, and is linearized by U, as shown in Figure 2.31(b). Let $r_{1}=r_{2}=r_{3}=X_{2} \odot X_{2}$. Let \tilde{r} be the map specified by the following pairs: $\left(\mathbf{u}_{22}, r_{1}\right),\left(\mathbf{u}_{23}, r_{2}\right),\left(\mathbf{u}_{24}, r_{3}\right),\left(\mathbf{u}_{30}, r_{4}\right),\left(\mathbf{u}_{i}, r\right)$ for all $i \notin\{22,23,24,30\}$. Then, \tilde{r} is a system for r. It is depicted in Figure 2.31(c).

We claim that \tilde{r} implements the binary function f over $[0,3]$ depicted in Figure 2.32. Let $\mathbf{b} \in[0,3]^{2}$. It is sufficient to prove that \tilde{r} implements $f(\mathbf{b})$ for every $\mathbf{b} \in[0,3]^{2}$. Let $i \in[33]$ be such that $\mathbf{b} \in \operatorname{realm}\left(\operatorname{sibl}\left(\mathbf{u}_{i}\right)\right)$. Notice that $i \in\{22,23,24\}$ implies $0=\left\lfloor b_{1}\right\rfloor<\left\lfloor b_{2}\right\rfloor$, and $i=30$ implies $0=\left\lfloor b_{2}\right\rfloor<$ $\left\lfloor b_{1}\right\rfloor$. Then, \tilde{r} implements $f(\mathbf{b})$, indeed, by Lemma 54 and Lemma 53 (see Figure 2.32), if $\mathbf{b} \in[1,3]^{2}$ then $f(\mathbf{b})=r^{[0,3]}(\mathbf{b})=0$, and otherwise:

$$
f(\mathbf{b})= \begin{cases}p_{1}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,3]}(\mathbf{b}) & \text { if } i \in\{1,2,3,4,8,9,10,18,19,20\} \\ p_{1}(\mathbf{a})=r^{[0,1]}(\mathbf{a})=r^{[0,3]}(\mathbf{b}) & \text { if } i=25 \text { and controller }(\mathbf{b})=\mathbf{a} \\ p_{2}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,3]}(\mathbf{b}) & \text { if } i \in\{5,6,21\} \\ p_{3}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,3]}(\mathbf{b}) & \text { if } i=7 \\ p_{4}(\mathbf{b})=r^{[0,1]}(\mathbf{b})=r^{[0,3]}(\mathbf{b}) & \text { if } i \in\{11, \ldots, 17,31,32,33\}\end{cases}
$$

Figure 2.30: Example 61, Case $\mathbf{b} \in[1,3]^{2}$. In this case, \tilde{r} delegates the implementation of f to the auxiliary system \tilde{s}. Let $\mathbf{u} \in \tilde{U}$, where \tilde{U} is the quasipartition underlying \tilde{s}. (a) \tilde{s} implements $f(\mathbf{b})$ for each $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$ such that either $\mathbf{u} \in[0,1)^{2} \cup\{\mathbf{1}\}$ or $s^{[0,1]}(\mathbf{u})<1$. (b) \tilde{s} implements $f(\mathbf{b})$ for each $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u})), \mathbf{u} \in \tilde{U}$, such that $\mathbf{u} \notin[0,1)^{2} \cup\{\mathbf{1}\}$ and $s^{[0,1]}(\mathbf{u})=1$. (c) \tilde{r} implements $f(\mathbf{b})$ for each $\mathbf{b} \in[1,3]^{2}$.

Figure 2.31: r from Example 62. (a) $r^{[0,1]}$. (b) The linear decomposition of $r^{[0,1]}$ over U. (c) The system \tilde{r} over \tilde{U}.
$f(\mathbf{b})= \begin{cases}p_{4}(\mathbf{a})=r^{[0,1]}(\mathbf{a})=r^{[0,3]}(\mathbf{b}) & \text { if } i \in\{27,28,29\} \text { and controller }(\mathbf{b})=\mathbf{a} \\ \left(X_{2} \odot X_{2}\right)^{[0,3]}(\mathbf{b})=r_{1}^{[0,3]}(\mathbf{b}) & \text { if } i=22 \\ \left(X_{2} \odot X_{2}\right)^{[0,3]}(\mathbf{b})=r_{2}^{[0,3]}(\mathbf{b}) & \text { if } i=23 \\ \left(X_{2} \odot X_{2}\right)^{[0,3]}(\mathbf{b})=r_{3}^{[0,3]}(\mathbf{b}) & \text { if } i=24 \\ \left(X_{1} \odot X_{1}\right)^{[0,3]}(\mathbf{b})=r_{4}^{[0,3]}(\mathbf{b}) & \text { if } i=30\end{cases}$

Note that the above description of f is explicit.

In the next section, we finally get to the general case, $n \geq 1$.

Figure 2.32: The claim of Example 62 is that \tilde{r} implements the function $f:[0,3]^{2} \rightarrow[0,3]$ depicted in (a). Plot (b) shows that \tilde{r} implements $f(\mathbf{b})$ for each $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$ such that either $\mathbf{u} \in[0,1)^{2} \cup\{\mathbf{1}\}$ or $r^{[0,1]}(\mathbf{u})<1$. Plot (c) shows that \tilde{r} implements $f(\mathbf{b})$ for each $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$ such that $\mathbf{u} \notin[0,1)^{2}$ and $r^{[0,1]}(\mathbf{u})=1$.

2.3.4 General Case

In this section, we show that the class F_{n} of n-ary BL-functions in Definition 36 has an explicit description in terms of Definition 15, and coincides with the class B_{n} of the truthfunctions of the n-variate fragment of Basic logic.

First, we enrich the signature of the algebra $[0, n+1]$ of Definition 3 by adding the operations \vee, \wedge, \neg, and T, of arity $2,2,1$, and 0 respectively, defined as in Definition 37. For $\circ \in\{\vee, \wedge, \odot, \rightarrow, \neg, \top, \perp\}$, we let ${ }^{[0, n+1]}$ denote the realization of the symbol \circ in the algebra $[0, n+1]$ over the enriched signature.

Fact 63. For every $a_{1}, a_{2} \in[0, n+1], a_{1} \wedge^{[0, n+1]} a_{2}=\min \left(a_{1}, a_{2}\right), a_{1} \vee^{[0, n+1]}$ $a_{2}=\max \left(a_{1}, a_{2}\right), \top^{[0, n+1]}=n+1$, and,

$$
\neg^{[0, n+1]} a_{1}= \begin{cases}n+1 & \text { if } a_{1}=0 \\ \neg^{[0,1]} a_{1} & \text { if } 0<a_{1}<1 \\ 0 & \text { otherwise }\end{cases}
$$

Note that, by Notation 10, for every $r, s \in L_{n}$ and every $\mathbf{a} \in[0, n+$ $1]^{n},(\neg r)^{[0, n+1]}(\mathbf{a})=\neg^{[0, n+1]} r^{[0, n+1]}(\mathbf{a}),(r \wedge s)^{[0, n+1]}(\mathbf{a})=r^{[0, n+1]}(\mathbf{a}) \wedge^{[0, n+1]}$ $s^{[0, n+1]}(\mathbf{a}),(r \vee s)^{[0, n+1]}(\mathbf{a})=r^{[0, n+1]}(\mathbf{a}) \vee^{[0, n+1]} s^{[0, n+1]}(\mathbf{a})$, and $\top^{[0, n+1]}(\mathbf{a})=$ $\top^{[0, n+1]}$.

Fact 64. For every $a_{1}, a_{2} \in[0, n+1]$,

$$
\begin{aligned}
& a_{1} \odot^{[0, n+1]} a_{2}= \begin{cases}\min \left(a_{1}, a_{2}\right) & \text { if }\left\lfloor a_{1}\right\rfloor \neq\left\lfloor a_{2}\right\rfloor \\
\left(a_{1}-j \odot^{[0,1]} a_{2}-j\right)+j & \text { if }\left\lfloor a_{1}\right\rfloor=\left\lfloor a_{2}\right\rfloor=j\end{cases} \\
& a_{1} \rightarrow^{[0, n+1]} a_{2}= \begin{cases}n+1 & \text { if } a_{1} \leq a_{2} \\
a_{2} & \text { if }\left\lfloor a_{2}\right\rfloor<\left\lfloor a_{1}\right\rfloor \\
\left.\left(a_{1}-j \rightarrow\right]^{[0,1]} a_{2}-j\right)-j & \text { if }\left\lfloor a_{1}\right\rfloor=\left\lfloor a_{2}\right\rfloor=j\end{cases}
\end{aligned}
$$

Let $n \geq 1$. We mentioned that the truthfunctions of the n-variate fragment of Basic logic, B_{n},

$$
B_{n}=\left\{t^{[0, n+1]} \mid t \in L_{n}\right\} \subseteq[0, n+1]^{[0, n+1]^{n}}
$$

coincide with the smallest set of n-ary functions over $[0, n+1]^{n}$ that contains the projections x_{1}, \ldots, x_{n}, the constant 0 , and is closed under pointwise application of the operations $\odot^{[0, n+1]}$ and $\rightarrow^{[0, n+1]}$. Our goal is to provide an explicit description of B_{n}, in terms of Definition 15.

The solution schema sketched in Section 2.1 has two stages. The first stage consists in guessing an explicit class of n-ary functions over $[0, n+1]$. We guess that the required class of functions is F_{n}, the class of n-ary BL-functions in Definition 36. The second stage consists in checking that the guessed class is equal to B_{n}.

In the next section, we show that F_{n} is explicit, and that the inclusion $B_{n} \subseteq F_{n}$ holds.

Explicitness and Closure

In this section, we prove the inclusion $B_{n} \subseteq F_{n}$, and then we prove that F_{n} has an explicit description $(n \geq 1)$.

Lemma 65 (Closure). Let t be a term in L_{n}. Then, there exists a function $f \in F_{n}$ such that $t^{[0, n+1]}=f$.

Proof. The proof is by induction on t.
For the base case, let $i \in[n]$ and let $t=X_{i}$. By definition, $X_{i}^{[0, n+1]}(\mathbf{b})=$ b_{i} for every $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in[0, n+1]^{n}$, that is $X_{i}^{[0, n+1]}$ is the projection function x_{i} over $[0, n+1]^{n}$. Take $r, s=X_{i}$ and fix a unimodular triangulation U of $[0,1]^{n}$ linearizing $X_{i}^{[0,1]}:[0,1]^{n} \rightarrow[0,1]$. Then, the
map \tilde{r} that sends every $\mathbf{u} \in \tilde{U}$ to X_{i} is a system for r, and the map \tilde{s} that sends every $\mathbf{u} \in \tilde{U}$ to X_{i} is a system for s. But, \tilde{r} implements x_{i}. Thus, $x_{i} \in F_{n}$. Now, let $t=\perp$. By definition, $\perp^{[0, n+1]}(\mathbf{b})=0$ for every $\mathbf{b} \in[0, n+1]^{n}$, that is $\perp^{[0, n+1]}$ is the constant function 0 over $[0, n+1]^{n}$. Take $r=\perp$ and fix a unimodular triangulation U of $[0,1]^{n}$ linearizing $\perp^{[0,1]}:[0,1]^{n} \rightarrow[0,1]$. Then, the map \tilde{r} that sends every $\mathbf{u} \in \tilde{U}$ to \perp is a system for r. But, \tilde{r} implements 0 . Thus, $0 \in F_{n}$. The base case is settled.

For the inductive step, let $t=t_{1} \circ t_{2}$ for $\circ \in\{\odot, \rightarrow\}$. By the induction hypothesis, there exist functions $f_{1}, f_{2} \in F_{n}$ such that $t_{1}^{[0, n+1]}=f_{1}$ and $t_{2}^{[0, n+1]}=f_{2}$. By definition,

$$
t^{[0, n+1]}=t_{1}^{[0, n+1]} \circ^{[0, n+1]} t_{2}^{[0, n+1]}=f_{1} \circ^{[0, n+1]} f_{2}
$$

Let $f=f_{1}{ }^{\circ}{ }^{[0, n+1]} f_{2}$. We define a system \tilde{r} (over a certain \tilde{U}) that implements f, thus proving that $f \in F_{n}$.

Since $f_{1}, f_{2} \in F_{n}$, there exist systems $\tilde{r_{1}}$ (say over $\tilde{U_{1}}$) and $\tilde{r_{2}}$ (say over \tilde{U}_{2}) implementing f_{1} and f_{2}. On the basis of $\tilde{r_{1}}$ and $\tilde{r_{2}}$, we define \tilde{r}, as follows. There are eight cases (\circ is equal to \odot or to \rightarrow; both r_{1} and r_{2} are 1-reproducing, only r_{1} is 1-reproducing, only r_{2} is 1-reproducing, neither r_{1} nor r_{2} are 1-reproducing).

Case 1 ($r_{1}, r_{2} 1$-reproducing and $\circ=\odot$): In this case, by Definition 35, $r_{1}, r_{2} \in L_{n}^{+}, \tilde{r_{1}}(\mathbf{1})=s_{1}, \tilde{r_{2}}(\mathbf{1})=s_{2}$, with $s_{1}, s_{2} \in L_{n}^{+}$. We let $r=r_{1} \odot r_{2}$, and $s=s_{1} \odot s_{2}$. Note that both r and s are 1-reproducing in L_{n}^{+}. We define \tilde{r} and \tilde{s}, as follows. First we put $\tilde{r}(\mathbf{1})=s$. By Fact 27, let U be a unimodular triangulation refining both U_{1} and U_{2} and linearizing r, and let V be a unimodular triangulation refining both V_{1} and V_{2} and linearizing s. Note that for every $\mathbf{1} \neq \mathbf{u} \in \tilde{U}$, there exists exactly one pair $\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \in \tilde{U}_{1} \times \tilde{U}_{2}$ such that $\mathbf{u} \in \operatorname{sibl}\left(\mathbf{u}_{1}\right) \cap \operatorname{sibl}\left(\mathbf{u}_{2}\right)$. Note that $\operatorname{par}(\mathbf{u})=\operatorname{par}\left(\mathbf{u}_{1}\right)=\operatorname{par}\left(\mathbf{u}_{2}\right)$. In this case, we put,

$$
\tilde{r}(\mathbf{u})= \begin{cases}t_{1} \odot t_{2} & \text { if } \tilde{r_{1}}\left(\mathbf{u}_{1}\right)=t_{1} \in L_{\mathrm{par}\left(\mathbf{u}_{1}\right)} \text { and } \tilde{r_{2}}\left(\mathbf{u}_{2}\right)=t_{2} \in L_{\mathrm{par}\left(\mathbf{u}_{2}\right)} \\ r & \text { otherwise }\end{cases}
$$

where t_{1} and t_{2} are 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$, so that $t_{1} \odot t_{2}$ is 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$. Similarly, for every $\mathbf{v} \in \tilde{V}$, there exists exactly one
pair $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \in \tilde{V}_{1} \times \tilde{V}_{1}$ such that $\mathbf{v} \in \operatorname{sibl}\left(\mathbf{v}_{1}\right) \cap \operatorname{sibl}\left(\mathbf{v}_{2}\right)$. Note that $\operatorname{par}(\mathbf{v})=\operatorname{par}\left(\mathbf{v}_{1}\right)=\operatorname{par}\left(\mathbf{v}_{2}\right)$. In this case, we put $\tilde{s}(\mathbf{1})=s$ and,
$\tilde{s}(\mathbf{v})= \begin{cases}w_{1} \odot w_{2} & \text { if } \tilde{s_{1}}\left(\mathbf{v}_{1}\right)=w_{1} \in L_{\operatorname{par}\left(\mathbf{v}_{1}\right)} \text { and } \tilde{s_{2}}\left(\mathbf{v}_{2}\right)=w_{2} \in L_{\operatorname{par}\left(\mathbf{v}_{2}\right)} \\ s & \text { otherwise }\end{cases}$ where w_{1} and w_{2} are 1-reproducing in $L_{\operatorname{par}(\mathbf{v})}$, so that $w_{1} \odot w_{2}$ is 1reproducing in $L_{\mathrm{par}(\mathbf{v})}$.

Case 2 (r_{1} only 1 -reproducing and $\circ=\odot$): In this case, by Definition 35, $r_{1} \in L_{n}^{+}$, and $r_{2}=\neg r_{2}^{\prime}$ with $r_{2}^{\prime} \in L_{n}^{+}$. Note that $r_{1} \odot \neg r_{2}^{\prime}$ is not 1-reproducing, and $\left(r_{1} \odot \neg r_{2}^{\prime}\right)^{[0,1]}=\left(\neg\left(r_{1} \rightarrow r_{2}^{\prime}\right)\right)^{[0,1]}$. We let $r=\neg\left(r_{1} \rightarrow r_{2}^{\prime}\right)$, where $\left(r_{1} \rightarrow r_{2}^{\prime}\right) \in L_{n}^{+}$. We define \tilde{r}, as follows. First we put $\tilde{r}(\mathbf{1})=r$. Next, letting $\mathbf{u}, \mathbf{u}_{1}, \mathbf{u}_{2}$ as in the previous case, we put,

$$
\tilde{r}(\mathbf{u})= \begin{cases}t_{1} \odot t_{2} & \text { if } \tilde{r_{1}}\left(\mathbf{u}_{1}\right)=t_{1} \in L_{\mathrm{par}\left(\mathbf{u}_{1}\right)} \text { and } \tilde{r_{2}}\left(\mathbf{u}_{2}\right)=t_{2} \in L_{\mathrm{par}\left(\mathbf{u}_{2}\right)} \\ r & \text { otherwise }\end{cases}
$$

where t_{1} and t_{2} are 1-reproducing in $L_{\operatorname{par}(\mathbf{u})}$, so that $t_{1} \odot t_{2}$ is 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$.

Case 3 (r_{2} only 1-reproducing and $\circ=\odot$): Here, $r_{2} \in L_{n}^{+}$and $r_{1}=$ $\neg r_{1}^{\prime}$ with $r_{1}^{\prime} \in L_{n}^{+}$. We let $r=\neg\left(r_{2} \rightarrow r_{1}^{\prime}\right)$. The rest is similar to Case 2.

Case 4 (neither r_{1} nor r_{2} 1-reproducing and $\circ=\odot$): Here, $r_{1}=$ $\neg r_{1}^{\prime}$ with $r_{1}^{\prime} \in L_{n}^{+}$, and $r_{2}=\neg r_{2}^{\prime}$ with $r_{2}^{\prime} \in L_{n}^{+}$. Noticing that $\left(\neg r_{1}^{\prime} \odot\right.$ $\left.\neg r_{2}^{\prime}\right)^{[0,1]}=\left(\neg\left(\left(r_{1}^{\prime} \rightarrow\left(r_{1}^{\prime} \odot r_{2}^{\prime}\right)\right) \rightarrow r_{2}^{\prime}\right)\right)^{[0,1]}$, we let $r=\neg\left(\left(r_{1}^{\prime} \rightarrow\left(r_{1}^{\prime} \odot\right.\right.\right.$ $\left.\left.\left.r_{2}^{\prime}\right)\right) \rightarrow r_{2}^{\prime}\right)$. The rest is similar to Case 2.

Case 5 ($r_{1}, r_{2} 1$-reproducing and $\circ=\rightarrow$): Here, $r_{1}, r_{2} \in L_{n}^{+}, \tilde{r_{1}}(\mathbf{1})=$ $s_{1}, \tilde{r_{2}}(\mathbf{1})=s_{2}$, with $s_{1}, s_{2} \in L_{n}^{+}$. We let $r=r_{1} \rightarrow r_{2}$, and $s=s_{1} \rightarrow s_{2}$. Note that both r and s are 1-reproducing in L_{n}^{+}. We define \tilde{r} and \tilde{s}, as follows. First we put $\tilde{r}(\mathbf{1})=s$. Next, letting $\mathbf{u}, \mathbf{u}_{1}, \mathbf{u}_{2}$ be mutatis mutandis as in Case 1, we put,
$\tilde{r}(\mathbf{u})= \begin{cases}t_{1} \rightarrow t_{2} & \text { if } \tilde{r_{1}}\left(\mathbf{u}_{1}\right)=t_{1} \in L_{\operatorname{par}\left(\mathbf{u}_{1}\right)} \text { and } \tilde{r_{2}}\left(\mathbf{u}_{2}\right)=t_{2} \in L_{\mathrm{par}\left(\mathbf{u}_{2}\right)} \\ \top & \text { if } \tilde{r_{1}}\left(\mathbf{u}_{1}\right)=r_{1} \text { and } \tilde{r_{2}}\left(\mathbf{u}_{2}\right)=t_{2} \in L_{\mathrm{par}\left(\mathbf{u}_{2}\right)} \\ r & \text { otherwise }\end{cases}$
where t_{1} and t_{2} are 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$, so that $t_{1} \odot t_{2}$ is 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$, and \top is trivially 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$. Finally, letting $\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}$ be mutatis mutandis as in Case 1, we put $\tilde{s}(\mathbf{1})=s$ and,
$\tilde{s}(\mathbf{v})= \begin{cases}w_{1} \rightarrow w_{2} & \text { if } \tilde{s_{1}}\left(\mathbf{v}_{1}\right)=w_{1} \in L_{\operatorname{par}\left(\mathbf{v}_{1}\right)} \text { and } \tilde{s_{2}}\left(\mathbf{v}_{2}\right)=w_{2} \in L_{\mathrm{par}\left(\mathbf{v}_{2}\right)} \\ \top & \text { if } \tilde{s_{1}}\left(\mathbf{v}_{1}\right)=s_{1} \text { and } \tilde{s_{2}}\left(\mathbf{v}_{2}\right)=w_{2} \in L_{\mathrm{par}\left(\mathbf{v}_{2}\right)} \\ s & \text { otherwise }\end{cases}$
where w_{1} and w_{2} are 1 -reproducing in $L_{\mathrm{par}(\mathbf{v})}$, so that $w_{1} \rightarrow w_{2}$ is 1reproducing in $L_{\mathrm{par}(\mathbf{v})}$, and T is trivially 1-reproducing in $L_{\mathrm{par}(\mathbf{v})}$.

Case 6 (r_{1} only 1-reproducing and $\circ=\rightarrow$): Here, $r_{1} \in L_{n}^{+}$and $r_{2}=\neg r_{2}^{\prime}$ with $r_{2}^{\prime} \in L_{n}^{+}$. Noticing that $r_{1} \rightarrow \neg r_{2}^{\prime}$ is not 1-reproducing, that $\left(r_{1} \rightarrow \neg r_{2}^{\prime}\right)^{[0,1]}=\left(\neg\left(r_{1} \odot r_{2}^{\prime}\right)\right)^{[0,1]}$, we let $r=\neg\left(r_{1} \odot r_{2}^{\prime}\right)$, where $\left(r_{1} \odot r_{2}^{\prime}\right) \in L_{n}^{+}$. We define \tilde{r} as follows. First we put $\tilde{r}(\mathbf{1})=r$. Next, letting $\mathbf{u}, \mathbf{u}_{1}, \mathbf{u}_{2}$ be mutatis mutandis as in Case 1, we put,

$$
\tilde{r}(\mathbf{u})= \begin{cases}t_{1} \rightarrow t_{2} & \text { if } \tilde{r_{1}}\left(\mathbf{u}_{1}\right)=t_{1} \in L_{\mathrm{par}\left(\mathbf{u}_{1}\right)} \text { and } \tilde{r_{2}}\left(\mathbf{u}_{2}\right)=t_{2} \in L_{\mathrm{par}\left(\mathbf{u}_{2}\right)} \\ \top & \text { if } \tilde{r_{1}}\left(\mathbf{u}_{1}\right)=r_{1} \text { and } \tilde{r_{2}}\left(\mathbf{u}_{2}\right)=t_{2} \in L_{\mathrm{par}\left(\mathbf{u}_{2}\right)} \\ r & \text { otherwise }\end{cases}
$$

where t_{1} and t_{2} are 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$, so that $t_{1} \odot t_{2}$ is 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$, and T is trivially 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$.

Case 7 (r_{2} only 1-reproducing and $\circ=\rightarrow$): Here, $r_{1}=\neg r_{1}^{\prime}$ with $r_{1}^{\prime} \in L_{n}^{+}, \tilde{r_{1}}(\mathbf{1})=r_{1}, r_{2} \in L_{n}^{+}$, and $\tilde{r_{2}}(\mathbf{1})=s_{2}$ with $s_{2} \in L_{n}^{+}$. Noticing that $\neg r_{1}^{\prime} \rightarrow r_{2}$ is 1-reproducing, that $\left(\neg r_{1}^{\prime} \rightarrow r_{2}\right)^{[0,1]}=\left(\left(r_{1}^{\prime} \rightarrow\left(r_{1}^{\prime} \odot\right.\right.\right.$ $\left.\left.\left.r_{2}\right)\right) \rightarrow r_{2}\right)^{[0,1]}$, and that $\left(\neg r_{1}^{\prime} \rightarrow s_{2}\right)^{[0,1]}=\left(\left(r_{1}^{\prime} \rightarrow\left(r_{1}^{\prime} \odot s_{2}\right)\right) \rightarrow s_{2}\right)^{[0,1]}$, we let $r=\left(\left(r_{1}^{\prime} \rightarrow\left(r_{1}^{\prime} \odot r_{2}\right)\right) \rightarrow r_{2}\right)$, and $s=\left(\left(r_{1}^{\prime} \rightarrow\left(r_{1}^{\prime} \odot s_{2}\right)\right) \rightarrow s_{2}\right)$, where both r and s are in L_{n}^{+}. The rest is similar to Case 5 .

Case 8 (neither r_{1} nor r_{2} 1-reproducing and $\circ=\rightarrow$): Here, $r_{1}=\neg r_{1}^{\prime}$ with $r_{1}^{\prime} \in L_{n}^{+}, \tilde{r_{1}}(\mathbf{1})=r_{1}, r_{2}=\neg r_{2}^{\prime}$ with $r_{2}^{\prime} \in L_{n}^{+}, \tilde{r_{2}}(\mathbf{1})=r_{2}$. Noticing that $\neg r_{1}^{\prime} \rightarrow \neg r_{2}^{\prime}$ is 1-reproducing, and that $\left(\neg r_{1}^{\prime} \rightarrow \neg r_{2}^{\prime}\right)^{[0,1]}=\left(r_{2}^{\prime} \rightarrow\right.$ $\left.\left(r_{1}^{\prime} \odot\left(r_{1}^{\prime} \rightarrow r_{2}^{\prime}\right)\right)\right)^{[0,1]}$, we let $r=s=\left(r_{2}^{\prime} \rightarrow\left(r_{1}^{\prime} \odot\left(r_{1}^{\prime} \rightarrow r_{2}^{\prime}\right)\right)\right) \in L_{n}^{+}$. The rest is similar to Case 5 .

We conclude the proof noticing that, by construction, \tilde{r} is a system that implements the function f. Thus, $f \in F_{n}$, and the inductive step is settled.

Now we consider the explicitness of F_{n}, and we claim that Definition 36 provides an explicit description of F_{n} : if the function $f \in F_{n}$ is implemented by the system \tilde{r}, then \tilde{r} describes explicitly f in the sense of Definition 15. In order to prove the claim, we preliminarily need two technical lemmas, that deal in full generality with the phenomena of extension and lifting we have already encountered.

The first lemma deals with the extension mechanism. Modulo technicalities, the underlying intuition is that if $t \in L_{n}$ is a term such that at most $m<n$ variables occur in t, say among X_{1}, \ldots, X_{m}, then, reasoning on Definition 3, the function,

$$
t^{[0, n+1]}:[0, n+1]^{n} \rightarrow[0, n+1],
$$

can be described in terms of the function,

$$
t^{[0, m+1]}:[0, m+1]^{m} \rightarrow[0, m+1] .
$$

But then, under the assumption that $t^{[0, m+1]}$ has an explicit description, $t^{[0, n+1]}$ itself has an explicit description. The assumption is justified by an inductive argument, with the case $n=1$ in Section 2.3.2 acting as induction basis. The technical details follow.

Definition 66 (Projection). Let $n \geq 2$. Let $I=\left\{i_{1}, \ldots, i_{m}\right\} \subset[n]$ be such that $i_{1}<\cdots<i_{m}$. Let $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in[0, n+1]^{n}$, and let π be a permutation of I such that $\left\lfloor b_{\pi\left(i_{1}\right)}\right\rfloor \leq \cdots \leq\left\lfloor b_{\pi\left(i_{m}\right)}\right\rfloor$. Let $k \geq 0$ and $\left(\triangleleft_{1}, \ldots, \triangleleft_{m-k+1}\right) \in\{<,=\}^{m-k+1}$ be such that:
$0=\left\lfloor b_{\pi\left(i_{1}\right)}\right\rfloor=\cdots=\left\lfloor b_{\pi\left(i_{k}\right)}\right\rfloor<1 \triangleleft_{1}\left\lfloor b_{\pi\left(i_{k+1}\right)}\right\rfloor \triangleleft_{2} \cdots \triangleleft_{m-k}\left\lfloor b_{\pi\left(i_{m}\right)}\right\rfloor \triangleleft_{m-k+1} n+1$.
Let ρ be the permutation of $[m]$ such that $\rho(j)=j^{\prime}$ if and only if $\pi\left(i_{j}\right)=i_{j^{\prime}}$. Let $\mathbf{c}=\left(c_{1}, \ldots, c_{m}\right) \in[0, m+1]^{m}$ be the unique element in $[0, m+1]^{m}$ that satisfies $c_{1}-\left\lfloor c_{1}\right\rfloor=b_{i_{1}}-\left\lfloor b_{i_{1}}\right\rfloor, \ldots, c_{m}-\left\lfloor c_{m}\right\rfloor=b_{i_{m}}-\left\lfloor b_{i_{m}}\right\rfloor$, satisfies,
$0=\left\lfloor c_{\rho(1)}\right\rfloor=\cdots=\left\lfloor c_{\rho(k)}\right\rfloor<1 \triangleleft_{1}\left\lfloor c_{\rho(k+1)}\right\rfloor \triangleleft_{2} \cdots \triangleleft_{m-k}\left\lfloor c_{\rho(m)}\right\rfloor \triangleleft_{m-k+1} m+1$,
and minimizes $\left\lfloor c_{1}\right\rfloor+\cdots+\left\lfloor c_{m}\right\rfloor$. We call \mathbf{c} the I-projection of \mathbf{b} over $[0, m+1]^{m}$.

Lemma 67 (Extension). Let $n \geq 2$, and suppose that F_{i} has an explicit description for all $i<n$. Let $\emptyset \subset I \subset[n]$ and let t be a 1-reproducing term in L_{I}. Then, $t^{[0, n+1]}$ has an explicit description in terms of Definition 15.

Proof. Suppose that $I=\left\{i_{1}, \ldots, i_{m}\right\}$ with $i_{1}<\cdots<i_{m}$, and let $\bar{t}=$ $t_{\left\{i_{1} \backslash 1, \ldots, i_{m} \backslash m\right\}}$. A routine induction on t, applying Definition 3 and Definition 66 , shows that, for every $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in[0, n+1]^{n}$, letting $\mathbf{c}=\left(c_{1}, \ldots, c_{m}\right) \in[0, m+1]^{m}$ be the I-projection of \mathbf{b} over $[0, m+1]^{m}$:

$$
t^{[0, n+1]}(\mathbf{b})= \begin{cases}0 & \text { if } \bar{t}^{[0, m+1]}(\mathbf{c})=0 \tag{2.17}\\ n+1 & \text { if } \bar{t}^{[0, m+1]}(\mathbf{c})=m+1 \\ \bar{t}^{[0, m+1]}(\mathbf{c})-\left\lfloor\bar{t}^{[0, m+1]}(\mathbf{c})\right\rfloor+j & \text { otherwise }\end{cases}
$$

where j in the third clause is settled as follows: if $0<\bar{t}^{[0, m+1]}(\mathbf{c})<$ $m+1$, then there exists $k \in[m]$ such that $\left\lfloor\tilde{t}^{[0, m+1]}(\mathbf{c})\right\rfloor=\left\lfloor c_{k}\right\rfloor$; then, let $k \in[m]$ be such that $\left\lfloor\vec{t}^{[0, m+1]}(\mathbf{c})\right\rfloor=\left\lfloor c_{k}\right\rfloor$, and settle $j=\left\lfloor b_{i_{k}}\right\rfloor$.

By Lemma 65, $\bar{t}^{[0, m+1]} \in B_{m} \subseteq F_{m}$. Since by hypothesis $m<n$, by hypothesis, F_{m} has an explicit description. Hence, we conclude that (2.17) describes explicitly $t^{[0, n+1]}$.

The second lemma deals with the lifting mechanism.
Lemma 68 (Lifting). Let $n \geq 2$, and suppose that F_{i} has an explicit description for all $i<n$. Let $t \in L_{n}$ be such that $t \in L_{n}^{+}$if t is 1-reproducing, and $t=\neg t^{\prime}$ with $t^{\prime} \in L_{n}^{+}$otherwise. Then, $t^{[0, n+1]}$ has an explicit description.

Proof. Let \tilde{U} be a quasipartition for t, let $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in[0, n+1]^{n}$, and let \mathbf{u} in \tilde{U} be such that $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$. We show that $t^{[0, n+1]}(\mathbf{b})$ is described explicitly by equation (2.18) if t is 1-reproducing, and by equation (2.19) if t is not 1-reproducing.

First suppose that t is 1-reproducing, so that $t \in L_{n}^{+}$. By induction on t, applying Definition 3, we get,

$$
t^{[0, n+1]}(\mathbf{b})= \begin{cases}t^{[0,1]}(\mathbf{b}-\mathbf{j})+j & j=\left\lfloor b_{1}\right\rfloor=\cdots=\left\lfloor b_{n}\right\rfloor, t^{[0,1]}(\mathbf{u})<1 \tag{2.18}\\ n+1 & j=\left\lfloor b_{1}\right\rfloor=\cdots=\left\lfloor b_{n}\right\rfloor, t^{[0,1]}(\mathbf{u})=1 \\ t^{[0,1]}(\operatorname{controller}(\mathbf{b}))+j & j=\min \left\{\left\lfloor b_{1}\right\rfloor, \ldots,\left\lfloor b_{n}\right\rfloor\right\}, t^{[0,1]}(\mathbf{u})<1 \\ t^{[0, n+1]}(\mathbf{b}) & \text { otherwise, }\end{cases}
$$

where \bar{t} is a 1-reproducing term in $L_{\operatorname{par}(\mathbf{u})}$. Noticing that $\emptyset \subset \operatorname{par}(\mathbf{u}) \subset$ $[n]$ in the last clause, and that F_{i} has an explicit description for all $i<$ n by hypothesis, we apply Lemma 67 to \bar{t}, and we have that $\bar{t}^{[0, n+1]}$ has an explicit description. Moreover, by Fact $19, t^{[0,1]}$ has an explicit description. Hence, $t^{[0, n+1]}(\mathbf{b})$ has an explicit description, precisely, the description given by equation (2.18).

Next suppose that t is not 1-reproducing, so that $t=\neg t^{\prime}$ for $t^{\prime} \in L_{n}^{+}$. By the previous part, t^{\prime} is described explicitly by (2.18). Hence, by the definition of $\neg^{[0, n+1]}$ in Fact 63, we get,

$$
t^{[0, n+1]}(\mathbf{b})= \begin{cases}t^{[0,1]}(\mathbf{b}) & \mathbf{b} \in[0,1)^{n}, t^{[0,1]}(\mathbf{u})<1 \tag{2.19}\\ n+1 & \mathbf{b} \in[0,1)^{n}, t^{[0,1]}(\mathbf{u})=1 \\ 0 & \mathbf{b} \in[1, n+1]^{n} \\ t^{[0,1]}(\text { controller }(\mathbf{b})) & t^{[0,1]}(\mathbf{u})<1 \\ n+1 & \text { otherwise },\end{cases}
$$

By Fact $19, t^{[0,1]}$ has an explicit description. Hence, $t^{[0, n+1]}(\mathbf{b})$ has an explicit description, precisely, the description given by equation (2.19).

It is now possible to show that F_{n} has an explicit description $(n \geq 1)$.
Proposition 69 (Explicitness). For every $n \geq 1, F_{n}$ has an explicit description in terms of Definition 15.

Proof. The proof is by induction on n. For the base case $n=1$, we have that F_{1} has an explicit description by Proposition 41. For the inductive step, let $n \geq 2$ and suppose that F_{i} has an explicit description for every $i<n$. Let $f \in F_{n}$ be implemented by the system \tilde{r} over the term $r \in L_{n}$ and the quasipartition \tilde{U}. We distinguish two cases.

If r is 1-reproducing, then $\tilde{r}(\mathbf{1})=s$, with s is 1-reproducing in L_{n}, and there exists a system \tilde{s} for s, say over the quasipartition \tilde{V}. Both r and s are in L_{n}^{+}. Let $\mathbf{b} \in[0, n+1]^{n}$. We have to show that $f(\mathbf{b})$ has an explicit description. First suppose that $\mathbf{b} \notin[1, n+1]^{n}$. Let $\mathbf{a} \in[0,1]^{n}$ be the controller of \mathbf{b}, let \mathbf{u} be the parent of \mathbf{a} in \tilde{U}, and let $\tilde{r}(\mathbf{u})=t$. By Definition 35, $f(\mathbf{b})=t^{[0, n+1]}(\mathbf{b})$. If $\mathbf{u} \in[0,1)^{n}$ or $r^{[0,1]}(\mathbf{u})<1$, we have that $t=r$, and, by Lemma 68 we have that $r^{[0, n+1]}(\mathbf{b})$ has an explicit description; otherwise, if $\mathbf{u} \notin[0,1)^{n}$ and $r^{[0,1]}(\mathbf{u})=1$, we have that t is

1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$, with $\emptyset \subset \operatorname{par}(\mathbf{u}) \subset[n]$. Hence, exploiting the induction hypothesis, Lemma 67 applies and we have that $t^{[0, n+1]}(\mathbf{b})$ has an explicit description. Next suppose that $\mathbf{b} \in[1, n+1]^{n}$. Let $\mathbf{a} \in[0,1]^{n}$ be the controller of \mathbf{b}, let \mathbf{v} be the parent of \mathbf{a} in \tilde{V}, and let $\tilde{s}(\mathbf{v})=t$. By Definition 35, $f(\mathbf{b})=t^{[0, n+1]}(\mathbf{b})$. Reasoning as above, we have that $t^{[0, n+1]}(\mathbf{b})$ has an explicit description. Therefore, if r is 1-reproducing, then f has an explicit description.

Otherwise, suppose that r is not 1-reproducing ($r=\neg r^{\prime}$ with $r^{\prime} \in$ $\left.L_{n}^{+}\right)$. Let $\mathbf{b} \in[0, n+1]^{n}$. We have to show that $f(\mathbf{b})$ has an explicit description. First suppose that $\mathbf{b} \notin[1, n+1]^{n}$. Let $\mathbf{a} \in[0,1]^{n}$ be the controller of \mathbf{b}, let \mathbf{u} be the parent of \mathbf{a} in \tilde{U}, and let $\tilde{r}(\mathbf{u})=t$. By Definition $35, f(\mathbf{b})=t^{[0, n+1]}(\mathbf{b})$. If $\mathbf{u} \in[0,1)^{n}$ or $r^{[0,1]}(\mathbf{u})<1$, we have that $t=r$, and, by Lemma 68 we have that $r^{[0, n+1]}(\mathbf{b})$ has an explicit description; otherwise, if $\mathbf{u} \notin[0,1)^{n}$ and $r^{[0,1]}(\mathbf{u})=1$, we have that t is 1-reproducing in $L_{\operatorname{par}(\mathbf{u})}$, with $\emptyset \subset \operatorname{par}(\mathbf{u}) \subset[n]$. Hence, by the induction hypothesis, Lemma 67 applies and we have that $t^{[0, n+1]}(\mathbf{b})$ has an explicit description. Next suppose that $\mathbf{b} \in[1, n+1]^{n}$. Since r is not 1-reproducing, $\tilde{r}(\mathbf{1})=r$, and by Definition 35, $f(\mathbf{b})=r^{[0, n+1]}(\mathbf{b})$. But, by Lemma $68, r^{[0, n+1]}(\mathbf{b})=0$. Therefore, if r is not 1-reproducing, f has an explicit description.

In the next section, we perform the last step of our solution schema, proving the inclusion $F_{n} \subseteq B_{n}$.

Normal Forms

In this section, we provide a constructive proof of the inclusion $F_{n} \subseteq$ B_{n}. To this aim, we preliminarily implement in full generality the isolation mechanism.

Definition 70 (Isolation). Let $n \geq 2$, let $t, s \in L_{n}$, and let $D \subseteq[0, n+1]^{n}$. We say that t isolates s over the D if $t^{[0, n+1]}(\mathbf{b})=s^{[0, n+1]}(\mathbf{b})$ if $\mathbf{b} \in D$, and otherwise $t^{[0, n+1]}(\mathbf{b})=T^{[0, n+1]}$.

The intuition underlying the isolation mechanism is the following. Let $f \in F_{n}$ be an n-ary BL-function, and let \tilde{r} be a system, say over the quasipartition \tilde{U}, that implements f. For the sake of clarity, suppose that r is 1-reproducing in L_{n}^{+}(the case where $r=\neg r^{\prime}$ with r^{\prime} in L_{n}^{+}is
basically subsumed). Then, by Definition $34, \tilde{r}(\mathbf{1})=s \in L_{n}^{+}$, and, by Definition 35 , there exists an auxiliary system \tilde{s}, say over the quasipartition \tilde{V}. The isolation mechanism works as follows: for every $\mathbf{u} \in \tilde{U}$, it computes an isolating term $t_{\mathbf{u}}$, that is, a term that isolates $\tilde{r}(\mathbf{u})$ over realm $(\operatorname{sibl}(\mathbf{u})) \cap\left([0, n+1]^{n} \backslash[1, n+1]^{n}\right)$; and similarly, for every $\mathbf{v} \in \tilde{V}$, it computes an isolating term $w_{\mathbf{v}}$, that is, a term that isolates $\tilde{s}(\mathbf{v})$ over realm $(\operatorname{sibl}(\mathbf{v})) \cap[1, n+1]^{n}$. But then the term,

$$
\bigwedge_{\mathbf{u} \in \tilde{U}} t_{\mathbf{u}} \wedge \bigwedge_{\mathbf{v} \in \tilde{V}} w_{\mathbf{v}}
$$

computes the input function f.
By Definition 34 and Definition 35, $\tilde{r}(\mathbf{u})$ is either r, that is, a 1reproducing term in L_{n}^{+}, or is a 1 -reproducing term in L_{I} for some $\emptyset \subset I \subset[n]$, and similarly $\tilde{s}(\mathbf{v})$ is either s, that is, a 1-reproducing term in L_{n}^{+}, or is a 1-reproducing term in L_{I} for some $\emptyset \subset I \subset[n]$. The mechanism isolates the variables first, and then easily extends to terms. For instance, consider the case where $\mathbf{u} \in[0,1)^{n}$, so that $\tilde{r}(\mathbf{u})=r$. It turns out that, by Lemma 71(i), we are able to isolate variable X_{1}, variable X_{2}, \ldots, variable X_{n} over $D=\operatorname{realm}($ neigh $(\mathbf{u})) \cap\left([0, n+1]^{n} \backslash[1, n+1]^{n}\right)$. Let $t_{1}, \ldots, t_{n} \in L_{n}$ be terms that isolate variables X_{1}, \ldots, X_{n} respectively over D. Then the term,

$$
r_{\left\{X_{1} \backslash t_{1}, \ldots, X_{n} \backslash t_{n}\right\}}
$$

isolates the term r over D, indeed, for every $\mathbf{b} \in D$,

$$
r_{\left\{X_{1} \backslash t_{1}, \ldots, X_{n} \backslash t_{n}\right\}}^{[0, n+1]}(\mathbf{b})=r_{\left\{X_{1} \backslash X_{1}, \ldots, X_{n} \backslash X_{n}\right\}}^{[0, n+1]}(\mathbf{b})=r^{[0, n+1]}(\mathbf{b})
$$

and for every $\mathbf{b} \notin D$,

$$
r_{\left\{X_{1} \backslash t_{1}, \ldots, X_{n} \backslash t_{n}\right\}}^{[0, n+1]}(\mathbf{b})=r_{\left\{X_{1} \backslash \top, \ldots, X_{n} \backslash \top\right\}}^{[0, n+1]}(\mathbf{b})=\top^{[0, n+1]},
$$

noticing that, if r is 1 -reproducing, then $r^{[0, n+1]}(\mathbf{n}+\mathbf{1})=\mathrm{T}^{[0, n+1]}$.
The technical details, along with the other relevant cases, follow. The first lemma deals with variables isolation.

Lemma 71 (Variable Isolation). Let $n \geq 2$ and let $i \in[n]$.
(i) Let $\mathbf{a} \in[0,1]^{n}$ be such that $i \in \operatorname{par}(\mathbf{a})$. There existsterms $r_{(i, \mathbf{a})}, s_{(i, \mathbf{a})} \in$ L_{n} such that, $r_{(i, \mathbf{a})}$ and $s_{(i, \mathbf{a})}$ isolate X_{i} over $D_{(i, \mathbf{a})}$ and $E_{(i, \mathbf{a})}$ respec-
tively, where,

$$
\begin{aligned}
D_{(i, \mathbf{a})} & =\left\{\mathbf{b} \notin[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a}))\right\} \\
E_{(i, \mathbf{a})} & =\left\{\mathbf{b} \in[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a}))\right\} .
\end{aligned}
$$

(ii) Let \tilde{U} be a quasipartition of $[0,1]^{n}$ and let $\mathbf{u} \in \tilde{U}$ be such that $i \in$ $\operatorname{par}(\mathbf{u})$. There exists terms $r_{(i, \mathbf{u})}, s_{(i, \mathbf{u})} \in L_{n}$ such that, $r_{(i, \mathbf{u})}$ and $s_{(i, \mathbf{u})}$ isolate X_{i} over $D_{(i, \mathbf{u})}$ and $E_{(i, \mathbf{u})}$ respectively, where,

$$
\begin{aligned}
D_{(i, \mathbf{u})} & =\left\{\mathbf{b} \notin[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))\right\} \\
E_{(i, \mathbf{u})} & =\left\{\mathbf{b} \in[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))\right\}
\end{aligned}
$$

(iii) There exists terms $v_{i}, w_{i} \in L_{n}$ such that, v_{i} and w_{i} isolate X_{i} over J_{i} and K_{i} respectively, where,

$$
\begin{aligned}
J_{i} & =\left\{\mathbf{b} \notin[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a})), \mathbf{a} \in[0,1]^{n}, i \notin \operatorname{par}(\mathbf{a})\right\} \\
K_{i} & =\left\{\mathbf{b} \in[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a})), \mathbf{a} \in[0,1]^{n}, i \notin \operatorname{par}(\mathbf{a})\right\}
\end{aligned}
$$

Proof. (i) If a is equal to $\mathbf{1}$, then $r_{(i, \mathbf{1})}=s_{(i, \mathbf{1})}=\top$ settles the claim, simply noticing that $\mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{1}))$ if and only if $\mathbf{b}=\mathbf{n}+\mathbf{1}$. Otherwise, we proceed as follows. First, we define the following terms in L_{n}, for $i \neq j \in[n]$:

$$
\begin{align*}
t_{(1, i)} & =\neg \neg X_{i} \tag{2.20}\\
t_{(2, i)} & =t_{(1, i)} \rightarrow X_{i} \tag{2.21}\\
t_{(3, i, j)} & =t_{(1, j)} \rightarrow t_{(2, i)} \tag{2.22}\\
t_{(4, i, j)} & =\left(\left(t_{(2, i)} \rightarrow t_{(2, j)}\right) \rightarrow t_{(2, j)}\right) \vee\left(\left(t_{(2, j)} \rightarrow t_{(2, i)}\right) \rightarrow t_{(2, i)}\right) \tag{2.23}\\
t_{(5, i, j)} & =\left(\left(X_{i} \rightarrow X_{j}\right) \rightarrow X_{j}\right) \rightarrow\left(t_{(2, i)} \vee t_{(2, j)}\right) \tag{2.24}\\
t_{(6, i, j)} & =t_{(1, j)} \wedge\left(t_{(5, j, i)} \rightarrow t_{(3, j, i)}\right) \tag{2.25}
\end{align*}
$$

Claim 72. The following facts hold.
(i) $t_{(1, i)}$ isolates X_{i} over $\left\{\mathbf{b} \mid b_{i}<1\right\}$.
(ii) $t_{(2, i)}$ isolates X_{i} over $\left\{\mathbf{b} \mid 1 \leq b_{i}\right\}$.
(iii) $t_{(3, i, j)}$ isolates X_{i} over $\left\{\mathbf{b} \mid 1 \leq b_{i}, b_{j}\right\}$.
(iv) $t_{(4, i, j)}$ isolates $X_{i} \vee X_{j}$ over $\left\{\mathbf{b} \mid 1 \leq\left\lfloor b_{i}\right\rfloor=\left\lfloor b_{j}\right\rfloor\right\}$.
(v) $t_{(5, i, j)}$ isolates X_{i} over $\left\{\mathbf{b} \mid 1 \leq\left\lfloor b_{j}\right\rfloor<\left\lfloor b_{i}\right\rfloor\right\}$.
(vi) $t_{(6, i, j)}$ isolates X_{j} over $\left\{\mathbf{b} \mid 0 \leq\left\lfloor b_{j}\right\rfloor \leq\left\lfloor b_{i}\right\rfloor\right\}$.

Proof. See Appendix, page 115.

Now, let $\mathbf{a} \in[0,1]^{n}$ be such that $i \in \operatorname{par}(\mathbf{a})$ and $j \in \operatorname{par}(\mathbf{a})^{\prime}=[n] \backslash$ $\operatorname{par}(\mathbf{a})$. We define the terms $r_{(i, \mathbf{a})}, s_{(i, \mathbf{a})} \in L_{n}$ as follows:

$$
\begin{align*}
& r_{(i, \mathbf{a})}=\bigvee_{k \in \operatorname{par}(\mathbf{a})^{\prime}} t_{(1, k)} \vee \bigvee_{k \in \operatorname{par}(\mathbf{a}) \backslash\{i\}} t_{(3, i, k)} \tag{2.26}\\
& s_{(i, \mathbf{a})}=t_{(5, i, j)} \vee \bigvee_{k<k^{\prime} \in \operatorname{par}(\mathbf{a})^{\prime}} t_{\left(4, k, k^{\prime}\right)} \vee \bigvee_{k \in \operatorname{par}(\mathbf{a}) \backslash\{i\}}\left(t_{(6, j, k)} \rightarrow t_{(5, i, j)}\right) \tag{2.27}
\end{align*}
$$

stipulating that, if $\operatorname{par}(\mathbf{a})=\{i\}$, then $t_{(2, i)}$ substitutes $\bigvee_{k \in \operatorname{par}(\mathbf{a}) \backslash\{i\}} t_{(3, i, k)}$ in equation (2.26).

Claim 73. $r_{(i, \mathbf{a})}$ isolates X_{i} over $D_{(i, \mathbf{a})}$, and $s_{(i, \mathbf{a})}$ isolates X_{i} over $E_{(i, \mathbf{a})}$.

Proof. See Appendix, page 117.

The previous claim concludes the proof of the first part.
(ii) If \mathbf{u} is equal to $\mathbf{1}$, then $r_{(i, \mathbf{1})}=s_{(i, \mathbf{1})}=\top$ settles the claim, simply noticing that $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{1}))$ if and only if $\mathbf{b}=\mathbf{n}+\mathbf{1}$. Otherwise, $\operatorname{par}(\mathbf{u})=\left\{i_{1}, \ldots, i_{m}\right\} \subset[n]$, with $i_{1}<\cdots<i_{m}$, and $\operatorname{par}(\mathbf{u})^{\prime}=[n] \backslash$ $\operatorname{par}(\mathbf{u})=\left\{j_{1}, \ldots, j_{n-m}\right\}$, with $j_{1}<\cdots<j_{n-m}$. Suppose w.l.o.g. that $i=i_{1}$.

Recall that $\operatorname{sibl}(\mathbf{u})$ is defined as the relative interior of a face of a simplex in the unimodular triangulation U of $[0,1]^{n}$, so that $\operatorname{sibl}(\mathbf{u})$ has dimension $0 \leq d \leq n$. By induction on d, we show that for every $\operatorname{sibl}(\mathbf{u})$, there exist terms $r_{(i, \mathbf{u})}$ and $s_{(i, \mathbf{u})}$ isolating X_{i} over $D_{(i, \mathbf{u})}$ and $E_{(i, \mathbf{u})}$ respectively.

For the base case, suppose that $\operatorname{sibl}(\mathbf{u})$ has dimension 0 . Then, $\operatorname{sibl}(\mathbf{u})=\{\mathbf{v}\}$, where $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ is a rational vertex of the unimodular triangulation U. The projection of U onto coordinates j_{1}, \ldots, j_{n-m} is a unimodular triangulation, U^{\prime}, of $[0,1]^{m-n}$, such that $\mathbf{v}^{\prime}=\left(v_{j_{1}}, \ldots, v_{j_{m-n}}\right)$ is a vertex of U^{\prime}. Fix $t \in L_{n-m}^{+}$such that $t^{[0,1]}(\mathbf{c})=$

1 if and only if $\mathbf{c}=\mathbf{v}^{\prime}$ or $\mathbf{c}=\mathbf{1}$. Such t exists by Theorem 28 and Corollary 30. Let,

$$
\begin{align*}
r_{(i, \mathbf{u})} & =t_{\left\{1 \backslash j_{1}, \ldots, m-n \backslash j_{m-n}\right\}} \rightarrow r_{(i, \mathbf{a})}, \tag{2.28}\\
s_{(i, \mathbf{u})} & =t_{\left\{1 \backslash j_{1}, \ldots, m-n \backslash j_{m-n}\right\}} \rightarrow s_{(i, \mathbf{a})}, \tag{2.29}
\end{align*}
$$

where $r_{(i, \mathbf{a})}$ and $s_{(i, \mathbf{a})}$ are the terms given by part (i) with $\mathbf{a}=\mathbf{u}$.
Claim 74. $r_{(i, \mathbf{u})}$ isolates X_{i} over $D_{(i, \mathbf{u})}$, and $s_{(i, \mathbf{u})}$ isolates X_{i} over $E_{(i, \mathbf{u})}$.
Proof. See Appendix, page 119.
For the inductive step, suppose that $\operatorname{sibl}(\mathbf{u})$ has dimension $d \geq 1$. In this case, there is a d-dimensional face $F=\operatorname{conv}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{d+1}\right\}$ of some simplex in U, with $\mathbf{v}_{1}=\left(v_{1,1}, \ldots, v_{1, n}\right), \ldots, \mathbf{v}_{d+1}=\left(v_{d+1,1}, \ldots, v_{d+1, n}\right)$ rational vertices, such that $\operatorname{sibl}(\mathbf{u})=\operatorname{relint} F$. Let F_{1}, \ldots, F_{k} be the faces of F of dimension $\leq d-1$, where $k=\sum_{i=1}^{d}\binom{d+1}{i}$, and let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ be respectively the parents in \tilde{U} of $\operatorname{sibl}\left(\mathbf{u}_{1}\right)=\operatorname{relint} F_{1}, \ldots, \operatorname{sibl}\left(\mathbf{u}_{k}\right)=$ relint F_{k}. By the induction hypothesis, for every $\mathbf{u}^{\prime} \in \tilde{U}$ such that $\operatorname{sibl}\left(\mathbf{u}^{\prime}\right)$ has dimension less than or equal to $d-1$, there exist terms $r_{\left(i, \mathbf{u}^{\prime}\right)}$ and $s_{\left(i, \mathbf{u}^{\prime}\right)}$ that isolate X_{i} over $D_{\left(i, \mathbf{u}^{\prime}\right)}$ and $E_{\left(i, \mathbf{u}^{\prime}\right)}$ respectively. Hence, there exist terms $r_{\left(i, \mathbf{u}_{1}\right)}, \ldots, r_{\left(i, \mathbf{u}_{k}\right)}$, and $s_{\left(i, \mathbf{u}_{1}\right)}, \ldots, s_{\left(i, \mathbf{u}_{k}\right)}$ that isolate X_{i} over, respectively, $D_{\left(i, \mathbf{u}_{1}\right)}, \ldots, D_{\left(i, \mathbf{u}_{k}\right)}$, and $E_{\left(i, \mathbf{u}_{1}\right)}, \ldots, E_{\left(i, \mathbf{u}_{k}\right)}$.

The projection of U onto coordinates j_{1}, \ldots, j_{n-m} is a unimodular triangulation, U^{\prime}, of $[0,1]^{m-n}$, such that $\mathbf{v}_{1}^{\prime}=\left(v_{1, j_{1}}, \ldots, v_{1, j_{m-n}}\right), \ldots$, $\mathbf{v}_{d+1}^{\prime}=\left(v_{d+1, j_{1}}, \ldots, v_{d+1, j_{m-n}}\right)$ are vertices of U^{\prime}, and $F^{\prime}=\operatorname{conv}\left\{\mathbf{v}_{1}^{\prime}, \ldots\right.$, $\left.\mathbf{v}_{d+1}^{\prime}\right\}$ is a face of a simplex in U^{\prime}. Hence, by Theorem 28 and Corollary 30 , there exists a term $t \in L_{n-m}^{+}$such that $t^{[0,1]}(\mathbf{c})=1$ if and only if $\mathbf{c} \in F^{\prime}$ or $\mathbf{c}=1$. Let:

$$
\begin{align*}
& r_{(i, \mathbf{u})}=\left(\bigwedge_{j=1}^{k} r_{\left(i, \mathbf{u}_{j}\right)}\right) \rightarrow\left(t_{\left\{1 \backslash j_{1}, \ldots, m-n \backslash j_{m-n}\right\}} \rightarrow r_{(i, \mathbf{a})}\right) \tag{2.30}\\
& s_{(i, \mathbf{u})}=\left(\bigwedge_{j=1}^{k} s_{\left(i, \mathbf{u}_{j}\right)}\right) \rightarrow\left(t_{\left\{1 \backslash j_{1}, \ldots, m-n \backslash j_{m-n}\right\}} \rightarrow s_{(i, \mathbf{a})}\right), \tag{2.31}
\end{align*}
$$

where $r_{(i, \mathbf{a})}$ and $s_{(i, \mathbf{a})}$ are the terms given by part (i) with $\mathbf{a}=\mathbf{u}$.
Claim 75. $r_{(i, \mathbf{u})}$ isolates X_{i} over $D_{(i, \mathbf{u})}$, and $s_{(i, \mathbf{u})}$ isolates X_{i} over $E_{(i, \mathbf{u})}$.

Proof. See Appendix, page 120.
The previous claim concludes the proof of the second part.
(iii) Put,

$$
\begin{align*}
v_{i} & =\neg \neg X_{i} \tag{2.32}\\
w_{i} & =\left(\bigwedge_{\mathbf{a} \in A}\left(r_{(i, \mathbf{a})} \wedge s_{(i, \mathbf{a})}\right)\right) \rightarrow\left(\neg \neg X_{i} \rightarrow X_{i}\right) \tag{2.33}
\end{align*}
$$

where $A=\left\{\mathbf{a} \in[0,1]^{n} \mid i \in \operatorname{par}(\mathbf{a})\right\}$, and $r_{(i, \mathbf{a})}$ and $s_{(i, \mathbf{a})}$ are as in part (i).

Claim 76. v_{i} isolates X_{i} over J_{i}, and w_{i} isolates X_{i} over K_{i}.
Proof. See Appendix, page 121.
The previous claim concludes the proof of the third part.
The second lemma deals with terms isolation.
Lemma 77 (Term Isolation). Let $n \geq 1$.
(i) Let $t \in L_{n}^{+}$, and let \tilde{U} be a quasipartition for t. Then, there exist terms \hat{t} and \check{t} in L_{n} such that, \hat{t} isolates t over:
$\left\{\mathbf{b} \notin[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u})), \mathbf{u} \in \tilde{U}, \mathbf{u} \in[0,1)^{n}\right.$ or $\left.t^{[0,1]}(\mathbf{u})<1\right\}$, and \check{t} isolates t over:
$\left\{\mathbf{b} \in[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u})), \mathbf{u} \in \tilde{U}, \mathbf{u} \in[0,1)^{n}\right.$ or $\left.t^{[0,1]}(\mathbf{u})<1\right\}$.
(ii) Let $t=\neg t^{\prime}$ with $t^{\prime} \in L_{n}^{+}$, and let \tilde{U} be a quasipartition for t. Then, there exists a term \hat{t} in L_{n} such that, \hat{t} isolates t over $[1, n+1]^{n} \cup\left\{\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u})) \mid \mathbf{u} \in \tilde{U}, \mathbf{u} \in[0,1)^{n}\right.$ or $\left.t^{[0,1]}(\mathbf{u})<1\right\}$.
(iii) Let \tilde{U} be a quasipartition of $[0,1]^{n}$, let $\mathbf{u} \in \tilde{U}$ be such that $0<|\operatorname{par}(\mathbf{u})|<$ n, and let t be a 1-reproducing term in $L_{\operatorname{par}(\mathbf{u})}$. Then, there exist terms $\dot{t}_{\mathbf{u}}$ and $\ddot{t}_{\mathbf{u}}$ in L_{n} such that, $\dot{t}_{\mathbf{u}}$ isolates t over:

$$
\left\{\mathbf{b} \notin[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))\right\}
$$

and $\ddot{t}_{\mathbf{u}}$ isolates t over:

$$
\left\{\mathbf{b} \in[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))\right\}
$$

Proof. (i) Put,

$$
\begin{align*}
& \hat{t}=t_{\left\{1 \backslash v_{1}, \ldots, n \backslash v_{n}\right\}}, \tag{2.34}\\
& \tilde{t}=t_{\left\{1 \backslash w_{1}, \ldots, n \backslash w_{n}\right\}} . \tag{2.35}
\end{align*}
$$

Claim 78. \hat{t} and \check{t} satisfy the statement.
Proof. See Appendix, page 122.
The previous claim concludes the proof of the first part.
(ii) Put,

$$
\begin{equation*}
\hat{t}=\neg t_{\left\{1 \backslash v_{1}, \ldots, n \backslash v_{n}\right\}}^{\prime} . \tag{2.36}
\end{equation*}
$$

Claim 79. \hat{t} satisfies the statement.
Proof. See Appendix, page 123.
The previous claim concludes the proof of the second part.
(iii) Let $\operatorname{par}(\mathbf{u})=\left\{i_{1}, \ldots, i_{m}\right\}$, and let $t \in L_{\mathrm{par}(\mathbf{u})}$ be 1-reproducing. Put,

$$
\begin{align*}
& \dot{t}_{\mathbf{u}}=t_{\left\{i_{1} \backslash r_{\left(i_{1}, \mathbf{u}\right)}, \ldots, i_{m} \backslash r_{\left(i_{m}, \mathbf{u}\right)}\right\}} \tag{2.37}\\
& \ddot{t}_{\mathbf{u}}=t_{\left\{i_{1} \backslash s_{\left(i_{1}, \mathbf{u}\right)}, \ldots, i_{m} \backslash s_{\left(i_{m}, \mathbf{u}\right)}\right\}} \tag{2.38}
\end{align*}
$$

where $r_{\left(i_{1}, \mathbf{u}\right)}, \ldots, r_{\left(i_{m}, \mathbf{u}\right)}$, and $s_{\left(i_{1}, \mathbf{u}\right)}, \ldots, s_{\left(i_{m}, \mathbf{u}\right)}$ are the terms in L_{n} given by part (ii).

Claim 80. $\dot{t}_{\mathbf{u}}$ and $\ddot{t}_{\mathbf{u}}$ satisfy the statement.

Proof. See Appendix, page 124.
The previous claim concludes the proof of the third part.
The terms isolation mechanism allows to conclude that $F_{n} \subseteq B_{n}$.
Lemma 81 (Normal Form). For every function $f \in F_{n}$, there exists a term $t \in L_{n}$ such that $f=t^{[0, n+1]}$.

Proof. Let $f \in F_{n}$ be implemented by the system \tilde{r} over the quasipartition \tilde{U}, for $r \in L_{n}$. We distinguish two cases.

First suppose that r is not 1-reproducing. Put,

$$
\begin{equation*}
t=\hat{r} \wedge \bigwedge_{\tilde{r}(\mathbf{u})=p} \dot{p} \tag{2.39}
\end{equation*}
$$

where: \hat{r} is given by the application of Lemma 77(i) to r; u ranges over all the $\mathbf{u}^{\prime} \in \tilde{U}$ such that $\mathbf{u}^{\prime} \notin[0,1)^{n}$ and $r^{[0,1]}\left(\mathbf{u}^{\prime}\right)=1 ; \dot{p}$ is given by the application of Lemma 77(iii) to p. But then, by Lemma 77(i) and (iii), and Definition 35, we have that $t^{[0, n+1]}$ coincides with the function implemented by the system \tilde{r}, that is, $t^{[0, n+1]}=f$.

Next suppose that r is 1-reproducing. By Definition 34, $\tilde{r}(\mathbf{1})=s$ with $s \in L_{n} 1$-reproducing, and, by Definition 35 , there exists an auxiliary system \tilde{s}, say over quasipartition \tilde{V}. Put,

$$
\begin{equation*}
t=\left(\hat{r} \wedge \bigwedge_{\tilde{r}(\mathbf{u})=p} \dot{p}\right) \wedge\left(\check{s} \wedge \bigwedge_{\tilde{s}(\mathbf{v})=q} \ddot{q}\right) \tag{2.40}
\end{equation*}
$$

where: \hat{r} is given by the application of Lemma 77(ii) to r; \mathbf{u} ranges over all the $\mathbf{u}^{\prime} \in \tilde{U}$ such that $\mathbf{u}^{\prime} \notin[0,1)^{n}$ and $r^{[0,1]}\left(\mathbf{u}^{\prime}\right)=1 ; \dot{p}$ is given by the application of Lemma 77(iii) to p; \check{s} is given by the application of Lemma 77(ii) to $s ; \mathbf{v}$ ranges over all the $\mathbf{v}^{\prime} \in \tilde{V}$ such that $\mathbf{v}^{\prime} \notin[0,1)^{n}$ and $s^{[0,1]}\left(\mathbf{v}^{\prime}\right)=1 ; \ddot{q}$ is given by the application of Lemma 77(iii) to q. But then, by Lemma 77(ii) and (iii), and Definition 35, we have that $t^{[0, n+1]}$ coincides with the function implemented by the system \tilde{r} (with the support of the auxiliary system $\tilde{s})$, that is, $t^{[0, n+1]}=f$.

Notice that, as an additional benefit, the construction of the term $t \in L_{n}$ computing a BL-function $f \in F_{n}$, given by its implementing system, is effective.

In the next section, we recast our result in universal algebraic terms.

2.4 Free BL-Algebra

On the basis of the explicit description of the truthfunctions of the n variate fragment of Basic logic, in this section we obtain a functional
representation of the free n-generated BL-algebra in terms of n-ary BLfunctions. This result accounts as the BL-algebraic counterpart (of the constructive version) of the functional representation of the free n-generated MV-algebra in terms of n-ary McNaughton functions.

Let $n \geq 1$. In the introductory discussion of this chapter, we mentioned that the BL-chain $[0, n+1]^{\prime}$ of Definition 12 generates (as a quasivariety) the variety generated by the class of all n-generated BL-algebras (Theorem 13). Thus, by universal algebra, the free n-generated BL-algebra is isomorphic to the smallest subalgebra of n-ary functions over $[0, n+1]$ that contains exactly the n-ary constant functions 0 and $n+1$, the n-ary projections x_{1}, \ldots, x_{n}, and is closed under pointwise applications of the operation $\circ^{[0, n+1]^{\prime}}$ for $\circ \in\{\vee, \wedge, \odot, \rightarrow\}$. This class of functions is exactly the class B_{n}, that contains the n-ary functions over $[0, n+1]$ of the form $t^{[0, n+1]}$ for some $t \in L_{n}$. In the previous section, we defined an explicit class of functions F_{n}, the class of BL-functions (Definition 36), and we proved that F_{n} coincides with B_{n} :

Theorem 82. $B_{n}=F_{n}$ for every $n \geq 1$.
Proof. By Lemma 65 and Lemma 81.
As an immediate consequence, we obtain the following explicit functional representation of the free n-generated BL-algebra in terms of n ary BL-functions.

Theorem 83 (Functional Representation). Let $n \geq 1$. The free n-generated BL-algebra is isomorphic to the algebra,

$$
\left(F_{n}, \vee, \wedge, \odot, \rightarrow, \top, \perp\right),
$$

of type $(2,2,2,2,0,0)$, where \perp and T are realized by the constant functions 0 and $n+1$ respectively, and each $\circ \in\{\mathrm{V}, \wedge, \odot, \rightarrow\}$ is realized by the binary operation $\circ^{[0, n+1]^{\prime}}$ defined pointwise.

In light of the constructiveness of the normal form lemma given in Section 2.3.4, the previous theorem accounts as the BL-algebraic counterpart of Mundici's constructive version of McNaughton's theorem for MV-algebras [Mun94].

3 Conclusion

In this conclusion we summarize the representation of the free n-generated BL-algebra in terms of n-ary BL-functions, collecting some corollaries (Section 3.1). Moreover, we discuss further developments of the present work, namely, the combinatorial representation of locally finite subvarieties of BL-algebras, the identification of tight finite countermodels to BL-equations, and the construction of deductive interpolants in Basic logic (Section 3.2).

A natural development of the present work, not discussed extensively in this conclusion, is the generalization of De Finetti coherence criterion to Basic logic and BL-algebras, by exploiting the recent works of Kühr and Mundici [KM07] on MV-algebras, and of Aguzzoli et al. [AGM] on Gödel algebras.

3.1 Summary

We summarize our functional representation of the free n-generated BL-algebra in terms of n-ary BL-functions, and we relate our result with other known and unknown functional representation results in subvarieties of BL-algebras.

3.1.1 BL-Functions

In this thesis, we provided a functional representation of the free n generated BL-algebra in terms of n-ary BL-functions ($n \geq 1$).

An n-ary BL-function f is a discontinuous function from $[0, n+1]^{n}$ to $[0, n+1]$ such that there exists a polyhedral partition C of $[0, n+$ $1]^{n},{ }^{1}$ each polyhedron in C having rational vertices, that linearizes f in

[^13]the following sense: C is such that f coincides with a linear n-variate real-valued polynomial with integer coefficients over the relative interior of every polyhedron $P \in C$. Therefore, possibly f has discontinuity points at the boundaries of some polyhedron in C.

In Chapter 2, we refined the previous sketch and we attained a complete description of BL-functions, characterizing the general form of the partitions of $[0, n+1]^{n}$ that linearize n-ary BL-functions, and listing the dependencies that link the behavior of n-ary BL-functions over different blocks of such partitions. Below, we summarize our definition of BL-functions, adopting the following terminology.

Definition 84 (Cell). Let $n, k \geq 1$, let $B_{1}<\cdots<B_{k}$ be an ordered partition of $[n]$ into k nonempty blocks, and let $0 \leq j_{1}<\cdots<j_{k} \leq n+1$ be an increasing sequence of k nonnegative integers between 0 and $n+1$. We call,

$$
C_{j_{1}<\cdots<j_{k}}^{B_{1}<\cdots<B_{k}}=\left\{\left(b_{i}\right)_{i \in[n]} \mid i \in B_{l} \text { implies }\left\lfloor b_{i}\right\rfloor=j_{l}, l \in[k]\right\} \subseteq[0, n+1]^{n},
$$

the cell corresponding to $B_{1}<\cdots<B_{k}$ and $j_{1}<\cdots<j_{k}$.
Clearly, the set containing all cells of the form $C_{j_{1}<\cdots<j_{k}}^{B_{1}<\cdots}$, with $k \geq$ $1, B_{1}<\cdots<B_{k}$ ranging over all the ordered partitions of $[n]$ into k nonempty blocks, and $0 \leq j_{1}<\cdots<j_{k} \leq n+1$ ranging over all the increasing sequences of k nonnegative integers between 0 and $n+1$, forms a partition of $[0, n+1]^{n}$ into disjoint blocks. Then, we define BL-functions by specifying their behavior cellwise, as follows.

An n-ary function $f:[0, n+1]^{n} \rightarrow[0, n+1]$ is an n-ary BL-function, that is, f is in the class F_{n} of Definition 36, if and only if the behavior of f satisfies the following two constraints. ${ }^{2}$

Constraint 1. The first constraint links the behavior of $f \in F_{n}$ over cells in $[0, n+1]^{n}$ that correspond to the same ordered partition $B_{1}<$

[^14]$\cdots<B_{k}$ of $[n]$, as follows. Let $B_{1}<\cdots<B_{k}$ be an ordered partition of [n] into $k \geq 1$ nonempty blocks.

Case 1: As regards to cells lying outside $[1, n+1]^{n}$, the behavior of f over the cell,

$$
C_{j_{1}<\cdots<j_{k}}^{B_{1}<\cdots<B_{k}}
$$

with $j_{1}=0, j_{2}=1, \ldots, j_{k-1}=k-2, j_{k} \in\{k-1, n+1\}$, determines the behavior of f over cells of the form,

$$
C_{i_{1}<\cdots<i_{k}}^{B_{1}<\cdots<B_{k}}
$$

with $i_{1}=0$, and $i_{k}=n+1$ if and only if $j_{k}=n+1$, as follows. Let $\mathbf{b} \in C_{j_{1}<\cdots<j_{k}}^{B_{1}<\cdots<B_{k}}$ and $\mathbf{c} \in C_{i_{1}<\cdots<i_{k}}^{B_{1}<\cdots<B_{k}}$, with $j_{1}=i_{1}=0$, and $j_{k}, i_{k}<n+1$ or $j_{k}=i_{k}=n+1$. Then, either $\lfloor f(\mathbf{b})\rfloor \in\left\{j_{k-1}, j_{k}\right\}$ or $f(\mathbf{b}) \in\{0, n+1\}$ and,

$$
f(\mathbf{c})= \begin{cases}f(\mathbf{b})-j_{k-1}+i_{k-1} & \text { if }\lfloor f(\mathbf{b})\rfloor=j_{k-1} \\ f(\mathbf{b})-j_{k}+i_{k} & \text { if }\lfloor f(\mathbf{b})\rfloor=j_{k} \\ f(\mathbf{b}) & \text { otherwise }\end{cases}
$$

Case 2: As regards to cells lying inside $[1, n+1]^{n}$, the behavior of f over the cell,

$$
C_{j_{1}<\cdots<j_{k}}^{B_{1}<\cdots<B_{k}},
$$

with $j_{1}=1, j_{2}=2, \ldots, j_{k-1}=k-1, j_{k} \in\{k, n+1\}$, determines the behavior of f over cells of the form,

$$
C_{i_{1}<\cdots<i_{k}}^{B_{1}<\cdots<B_{k}}
$$

with $i_{1} \geq 1$, and $i_{k}=n+1$ if and only if $j_{k}=n+1$, as follows. Let $\mathbf{b} \in C_{j_{1}<\cdots<j_{k}}^{B_{1}<\cdots<B_{k}}$ and $\mathbf{c} \in C_{i_{1}<\cdots<i_{k}}^{B_{1}<\cdots<B_{k}}$, with $j_{1}=1 \leq i_{1}$, and $j_{k}, i_{k}<n+1$ or $j_{k}=i_{k}=n+1$. Then, either $\lfloor f(\mathbf{b})\rfloor \in\left\{j_{k-1}, j_{k}\right\}$ or $f(\mathbf{b}) \in\{0, n+1\}$ and,

$$
f(\mathbf{c})= \begin{cases}f(\mathbf{b})-j_{k-1}+i_{k-1} & \text { if }\lfloor f(\mathbf{b})\rfloor=j_{k-1} \\ f(\mathbf{b})-j_{k}+i_{k} & \text { if }\lfloor f(\mathbf{b})\rfloor=j_{k} \\ f(\mathbf{b}) & \text { otherwise }\end{cases}
$$

Therefore, by Constraint 1 , it is possible to describe the behavior of f over $[0, n+1]^{n}$ by focusing only on cells outside $[1, n+1]^{n}$ of the form,

$$
\begin{align*}
& C_{0<1<\cdots<k-1}^{B_{1}<B_{2}<\cdots<B_{k}} \text { or } C_{0}^{B_{1}<B_{2}<\cdots<B_{k-1}<B_{k}}, \quad<k-2<n+1 \tag{3.1}
\end{align*}
$$

and on cells inside $[1, n+1]^{n}$ of the form,

$$
\begin{align*}
& C_{1<2<\cdots<k}^{B_{1}<B_{2}<\cdots<B_{k}} \text { or } C_{1<2<\cdots<k-1<n+1}^{B_{1}<B_{2}<\cdots<B_{k-1}<B_{k}}, \tag{3.2}
\end{align*}
$$

where $B_{1}<B_{2}<\cdots<B_{k-1}<B_{k}$ ranges over all the ordered partitions of [n] into k nonempty blocks, for all $k \geq 1$. Cells of the form (3.1) or (3.2) are said unavoidable. ${ }^{3}$

Constraint 2. The second constraint links the behavior of $f \in F_{n}$ over pairs of unavoidable cells, outside or inside $[1, n+1]^{n}$, such that the second cell refines the first, that is, either pairs of cells of the form $(k \geq$ 0),

$$
\left(C_{0<\cdots<k-1}^{B_{1}<\cdots<B_{k} \cup B_{k+1}}, C_{0<\cdots<k-1<j_{k}}^{B_{1}<\cdots<B_{k}<B_{k+1}}\right),
$$

with $j_{k} \in\{k, n+1\}$, or pairs of cells of the form ($k \geq 0$),

$$
\left(C_{1<\cdots<k}^{B_{1}<\cdots<B_{k} \cup B_{k+1}}, C_{1<\cdots<k<j_{k}}^{B_{1}<\cdots<B_{k+1}}\right),
$$

with $j_{k} \in\{k+1, n+1\}$. In this case, the behavior of f over the second cell is partially determined by the behavior of f over the first cell, as follows (we proceed by induction on $k \geq 0$).

Base Case ($k=0$). The behavior of $f \in F_{n}$ over cells $C_{0}^{[n]}, C_{1}^{[n]}$, and $C_{n+1}^{[n]}=\{\mathbf{n}+\mathbf{1}\}$ is defined as follows. There exist a pair of n ary McNaughton function $g, h:[0,1]^{[n]} \rightarrow[0,1]$, such that either $g(\mathbf{1})=h(\mathbf{1})=1$, or $g(\mathbf{1})=0$ and h is the constant 0 function, and a pair of unimodular triangulations U and V of $[0,1]^{[n]}$ that linearize g and h respectively, such that, for every $\mathbf{b}=\left(b_{i}\right)_{i \in[n]} \in$

[^15]\[

$$
\begin{aligned}
& C_{0}^{[n]} \text { and every } \mathbf{c}=\left(c_{i}\right)_{i \in[n]} \in C_{1}^{[n]}, \\
& f(\mathbf{b})= \begin{cases}g\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in[n]}\right)+0 & \text { if } g\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in[n]}\right)<1 \\
n+1 & \text { otherwise }\end{cases} \\
& f(\mathbf{c})= \begin{cases}0 & \text { if } h=0 \\
h\left(\left(c_{i}-\left\lfloor c_{i}\right\rfloor\right)_{i \in[n]}\right)+1 & \text { if } h\left(\left(c_{i}-\left\lfloor c_{i}\right\rfloor\right)_{i \in[n]}\right)<1 \\
n+1 & \text { otherwise }\end{cases}
\end{aligned}
$$
\]

and,

$$
f(\mathbf{n}+\mathbf{1})= \begin{cases}n+1 & \text { if } g(\mathbf{1})=1 \\ 0 & \text { otherwise }\end{cases}
$$

Inductive Case ($k \geq 1$). Let $1 \leq k \leq n$. We define the behavior of $f \in$ F_{n} over the unavoidable cells,

$$
C_{0<\cdots<k-1<k}^{B_{1}<\cdots<B_{k}<B_{k+1}} \text { and } C_{0<\cdots<k-1<n+1}^{B_{1}<\cdots<B_{k}<B_{k+1}},
$$

refining the unavoidable cell $C_{0<\cdots<k-1}^{B_{1}<\cdots<B_{k} \cup B_{k+1}}$, and over the unavoidable cells,

$$
C_{1<\cdots<k<k+1}^{B_{1}<\cdots<B_{k}<B_{k+1}} \text { and } C_{1<\cdots<k<n+1}^{B_{1}<\cdots<B_{k}<B_{k+1}},
$$

refining the unavoidable cell $C_{1<\cdots<k}^{B_{1}<\cdots<B_{k} \cup B_{k+1}}$.
As for the first couple of cells, outside $[1, n+1]^{n}, f$ satisfies the following constraint. By the induction hypothesis, there exist a $\left|B_{k} \cup B_{k+1}\right|$-ary McNaughton function g, and a unimodular triangulation U of $[0,1]^{B_{k} \cup B_{k+1}}$ linearizing g, such that, for every $\mathbf{b} \in C_{0<\cdots<k-1}^{B_{1}<\cdots<B_{k} \cup B_{k+1}}$,

$$
f(\mathbf{b})= \begin{cases}g\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)+(k-1) & \text { if } g\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)<1 \\ n+1 & \text { otherwise }\end{cases}
$$

For every unimodular simplex $S \in U$ such that $\left.g\right|_{S}=1$ and,
relint $S \cap\left\{\left(a_{i}\right)_{i \in B_{k} \cup B_{k+1}} \in[0,1]^{B_{k} \cup B_{k+1}} \mid a_{i}=1\right.$ if $\left.i \in B_{k+1}\right\} \neq \emptyset$,
there exists a $\left|B_{k+1}\right|$-ary McNaughton function $g_{S}:[0,1]^{B_{k+1}} \rightarrow$ $[0,1]$, and a unimodular triangulation U_{S} of $[0,1]^{B_{k+1}}$ linearizing g_{S}, such that, for every $\mathbf{b}=\left(b_{i}\right)_{i \in[n]} \in C_{0<\cdots<k-1<k}^{B_{1}<\cdots<B_{k}<B_{k+1}}$,
$f(\mathbf{b})= \begin{cases}g\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)+(k-1) & \text { if } g\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)<1 \\ g^{\prime}\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k+1}}\right)+k & \text { if } g^{\prime}\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k+1}}\right)<1 \\ n+1 & \text { otherwise }\end{cases}$
and for every $\mathbf{b}=\left(b_{i}\right)_{i \in[n]} \in C_{0<\cdots<k-1<n+1}^{B_{1}<\cdots<B_{k}<B_{k+1}}$,
$f(\mathbf{b})= \begin{cases}g\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)+(k-1) & \text { if } g\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)<1 \\ n+1 & \text { otherwise }\end{cases}$
As for the second couple of cells, that is, inside $[1, n+1]^{n}, f$ satisfies the following constraint. By the induction hypothesis, there exist a $\left|B_{k} \cup B_{k+1}\right|$-ary McNaughton function h, such that $h(\mathbf{1})=1$ of h is the constant 0 function, and a unimodular triangulation V of $[0,1]^{B_{k} \cup B_{k+1}}$ linearizing h, such that, for every $\mathbf{b} \in C_{1<\cdots<k}^{B_{1}<\cdots<B_{k} \cup B_{k+1}}$,
$f(\mathbf{b})= \begin{cases}0 & \text { if } h=0 \\ h\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)+k & \text { if } h\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)<1 \\ n+1 & \text { otherwise }\end{cases}$
For every unimodular simplex $T \in V$ such that $\left.h\right|_{T}=1$ and,
relint $T \cap\left\{\left(a_{i}\right)_{i \in B_{k} \cup B_{k+1}} \in[0,1]^{B_{k} \cup B_{k+1}} \mid a_{i}=1\right.$ if $\left.i \in B_{k+1}\right\} \neq \emptyset$,
there exists a $\left|B_{k+1}\right|$-ary McNaughton function $h_{T}:[0,1]^{B_{k+1}} \rightarrow$ $[0,1]$, and a unimodular triangulation V_{T} of $[0,1]^{B_{k+1}}$ linearizing h_{T}, such that, for every $\mathbf{b}=\left(b_{i}\right)_{i \in[n]} \in C_{1<\cdots<k<k+1}^{B_{1}<\cdots<B_{k}<B_{k+1}}$,
$f(\mathbf{b})= \begin{cases}0 & \text { if } h=0 \\ h\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)+k & \text { if } h\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)<1 \\ h^{\prime}\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k+1}}\right)+(k+1) & \text { if } h^{\prime}\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k+1}}\right)<1 \\ n+1 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& \text { and for every } \mathbf{b}=\left(b_{i}\right)_{i \in[n]} \in C_{1<\cdots<k<n+1}^{B_{1}<\cdots<B_{k}<B_{k+1}}, \\
& f(\mathbf{b})= \begin{cases}0 & \text { if } h=0 \\
h\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)+k & \text { if } h\left(\left(b_{i}-\left\lfloor b_{i}\right\rfloor\right)_{i \in B_{k} \cup B_{k+1}}\right)<1 \\
n+1 & \text { otherwise }\end{cases}
\end{aligned}
$$

The above cellwise definition of $f \in F_{n}$ is clearly explicit in terms of Definition 15, because McNaughton functions are explicit by Fact 19. Moreover, the free n-generated BL-algebra is isomorphic to the algebra of n-ary BL-functions, equipped with pointwise defined operations $\odot^{[0, n+1]}$ and $\rightarrow{ }^{[0, n+1]}$ in Definition 3, indeed we proved that,

$$
F_{n}=B_{n},
$$

that is: for every term $t \in L_{n}$, the term function $t^{[0, n+1]}$, corresponding to t in $[0, n+1]$, is a BL-function (Lemma 65); and conversely, every n-ary BL-function f is equal to the term function $t^{[0, n+1]}$ for some term $t \in L_{n}$ (Lemma 81). As an additional benefit, given a suitable encoding of $f \in F_{n}$, say, a system implementing f, Lemma 81 gives an effective constrution of the term $t \in L_{n}$ such that $f=t^{[0, n+1]}$.

3.1.2 SBL-Functions

In this section, we recover from our functional representation result analogous well known representation results of free algebras in subvarieties of BL-algebras, namely MV-algebras and Gödel algebras. The same method furnishes new functional representations of free algebras in subvarieties of BL-algebras, such as, for instance, the functional representation of the free n-generated SBL-algebra in terms of n-ary SBLfunctions.

As a first exercise, we recover from Theorem 83 the well known explicit representation of the free n-generated MV-algebra in terms of McNaughton functions.

Definition 85 (MV-Algebra). An MV-algebra is an involutive BL-algebra, that is, a BL-algebra $\mathbf{A}=(A, \vee, \wedge, \odot, \rightarrow, \top, \perp)$ such that $(a \rightarrow \perp) \rightarrow \perp=a$ holds for every $a \in A$.

Corollary 86. The free n-generated $M V$-algebra is isomorphic to the algebra,

$$
\left(\left.F_{n}\right|_{[0,1) \cup\{n+1\}}, \vee, \wedge, \odot, \rightarrow, \top, \perp\right),
$$

of type ($2,2,2,2,0,0$), where,

$$
\left.F_{n}\right|_{[0,1) \cup\{n+1\}}=\left\{\left.f\right|_{([0,1) \cup\{n+1\})^{n}} \mid f \in F_{n}\right\},
$$

\perp and T are realized respectively by the constant functions 0 and $n+1$, and each $\circ \in\{\vee, \wedge, \odot, \rightarrow\}$ is realized by the restriction of the binary operation $\circ^{[0, n+1]^{\prime}}$ of Definition 12 to $([0,1) \cup\{n+1\})^{2}$ defined pointwise.

Proof (Sketch). By Theorem 25, the free n-generated MV-algebra is the algebra of n-ary McNaughton functions M_{n} with \perp and \top realized by the constant functions 0 and 1 respectively, and the binary operation $\circ \in\{\vee, \wedge, \odot, \rightarrow\}$ realized by $\circ^{[0,1]}$ defined pointwise. For every $\mathbf{b}=$ $\left(b_{1}, \ldots, b_{n}\right) \in([0,1) \cup\{n+1\})^{n}$, let $\mathbf{b}^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right) \in[0,1]^{n}$ be such that $b_{i}^{\prime}=b_{i}$ if $b_{i}<n+1$ and $b_{i}^{\prime}=1$ otherwise, $i \in[n]$. For every $f \in$ $\left.F_{n}\right|_{0,1) \cup\{n+1\}}$, we let $h(f)$ be the n-ary McNaughton function $g \in M_{n}$ such that,

$$
g\left(\mathbf{b}^{\prime}\right)= \begin{cases}f(\mathbf{b}) & \text { if } f(\mathbf{b})<n+1 \\ 1 & \text { otherwise }\end{cases}
$$

It is possible to check that h is an isomorphism of MV-algebras.
As a second exercise, we recover from Theorem 83 an explicit representation of the n-generated algebra in the variety of Gödel algebras.

Definition 87 (Gödel Algebra). A Gödel algebra is an idempotent $B L-$ algebra, that is, a BL-algebra $\mathbf{A}=(A, \vee, \wedge, \odot, \rightarrow, \top, \perp)$ such that $a \odot a=a$ holds for every $a \in A$.

It is well known that the variety of Gödel algebras is locally finite, that is, the free n-generated Gödel algebra is finite for every $n \geq 1$. Thus, instead of representing the free n-generated Gödel algebra in terms of suitable n-ary functions over $[0,1]^{n}$ [Ger00], it is natural to embrace a combinatorial representation of the free n-generated Gödel algebra, in terms of maximal antichains in suitable posets [AG08].

Corollary 88. The free n-generated Gödel algebra is isomorphic to the algebra,

$$
\left(\left.F_{n}\right|_{\{0,1, \ldots, n+1\}}, \vee, \wedge, \odot, \rightarrow, \top, \perp\right),
$$

of type ($2,2,2,2,0,0$), where,

$$
\left.F_{n}\right|_{\{0,1, \ldots, n+1\}}=\left\{\left.f\right|_{\{0,1, \ldots, n+1\}^{n}} \mid f \in F_{n}\right\},
$$

\perp and \top are realized respectively by the constant functions 0 and $n+1$, and each $\circ \in\{\vee, \wedge, \odot, \rightarrow\}$ is realized by the restriction of the binary operation $\circ^{[0, n+1]^{\prime}}$ of Definition 12 to $\{0,1, \ldots, n+1\}^{2}$ defined pointwise.
Proof (Sketch). As a sample case, we pick $n=2$ (the general case $n \geq 1$ is similar). As shown in [AG08], the free 2-generated Gödel algebra is isomorphic to the algebra of maximal antichains in the poset P over $\{0=1=2,0=1=2<3,0=1,0=1<2,0=1<2<3,0=2,0=$ $2<1,0=2<1<3,0,0<1=2,0<1=2<3,0<1,0<1<2,0<$ $1<2<3,0<2,0<2<1,0<2<1<3\}$ given by the cover graph in Figure 3.1,

Figure 3.1: Poset representation of the free 2-generated Gödel algebra.
where \perp is realized by the antichain $\{0=1=2,0=1,0=2,0\}, \top$ is realized by the antichain $\{0=1=2<3,0=1<2<3,0=2<1<$ $3,0<1=2<3,0<1<2<3,0<2<1<3\}$, and the operations are defined chainwise, as follows. Let A and A^{\prime} be maximal antichains in P, let $C \subseteq P$ be a maximal chain in P, having $c \in C$ as maximal element, let $a=A \cap C$, and let $a^{\prime}=A^{\prime} \cap C$. Then, $\left(A \odot A^{\prime}\right) \cap C=a$ if $a \leq a^{\prime}$, and $\left(A \odot A^{\prime}\right) \cap C=a^{\prime}$ otherwise; and, $\left(A \rightarrow A^{\prime}\right) \cap C=c$ if $a \leq a^{\prime}$, and $\left(A \odot A^{\prime}\right) \cap C=a^{\prime}$ otherwise.

We define a map h from $\left.F_{2}\right|_{\{0,1,2,3\}}$ to the set of maximal antichains in P. Let $\left.f \in F_{2}\right|_{\{0,1,2,3\}}$. Then, $h(f)$ is the maximal antichain in P
uniquely determined by the following stipulations. Let $\mathbf{b}=\left(b_{1}, b_{2}\right) \in$ $\{0,1,2,3\}^{2}$, so that there exists a unique choice of a pair $\left(\triangleleft_{1}, \triangleleft_{2}\right) \in\{<$ $,=\}^{2}$ and of a lexicographically minimal pair $(i, j) \in\{(1,2),(2,1)\}$ satisfying,

$$
0 \triangleleft_{1} b_{i} \triangleleft_{2} b_{j}
$$

We let $C(\mathbf{b})$ denote the maximal chain in P having as maximal element $0 \triangleleft_{1} i \triangleleft_{2} j<3$. Clearly, $\left\{C(\mathbf{b}) \mid \mathbf{b} \in\{0,1,2,3\}^{2}\right\}$ contains exactly the maximal chains in P. Note that $f(\mathbf{b}) \in\left\{0, b_{1}, b_{2}, 3\right\}$. We let $h(f)$ be the unique maximal antichain in P such that, for every $\mathbf{b} \in\{0,1,2,3\}^{2}$,

$$
h(f) \cap C(\mathbf{b})= \begin{cases}0 \triangleleft_{1} i \triangleleft_{2} j \triangleleft_{3} 3 & \text { if } f(\mathbf{b})=3 \\ 0 \triangleleft_{1} i \triangleleft_{2} j & \text { if } f(\mathbf{b})=b_{j} \\ 0 \triangleleft_{1} i & \text { if } f(\mathbf{b})=0=b_{i}<b_{j} \\ 0 & \text { otherwise }\end{cases}
$$

It is possible to check that h is an isomorphism of Gödel algebras.
As a last corollary of Theorem 83, we obtain an explicit functional representation of the free n-generated SBL-algebra.

Definition 89 (SBL-Algebra). An SBL-algebra is a BL-algebra $\mathbf{A}=(A$, $\vee, \wedge, \odot, \rightarrow, \top, \perp)$ such that $a \wedge(a \rightarrow \perp)=\perp$ holds for every $a \in A$.

The variety of SBL-algebras is not locally finite, hence we aim at a functional representation of the free n-generated SBL-algebra, in terms of n-ary finite piecewise linear discontinuous functions over a certain subset of $[0, n+1]^{n}$.

Definition 90. Let $n \geq 1$. The algebra,

$$
\{0\} \cup[1, n+1]=(\{0\} \cup[1, n+1], \vee, \wedge, \odot, \rightarrow, \top, \perp),
$$

is the algebra of type $(2,2,2,2,0,0)$, where \perp is realized by $0, T$ is realized by $n+1$, and every $\circ \in\{\vee, \wedge, \odot, \rightarrow\}$ is realized by the restriction of the binary operation $\circ^{[0, n+1]^{\prime}}$ in Definition 12 to $(\{0\} \cup[1, n+1])^{2}$. For every $\circ \in\{\vee, \wedge, \odot, \rightarrow, \top, \perp\}$, we let $\circ\{0\} \cup[1, n+1]$ denote the realization of \circ in $\{0\} \cup$ $[1, n+1]$.

It is easy to check that the algebra $\{0\} \cup[1, n+1]$ is an SBL-algebra. Moreover, the algebra $\{0\} \cup[1, n+1]$ singly generates as a quasivariety the variety generated by the class of all n-generated SBL-algebras [AM03].

Theorem 91 (Aglianó and Montagna). Let $n \geq 1$. The algebra $\{0\} \cup$ $[1, n+1]$ generates as a quasivariety the variety generated by the class of all n-generated SBL-algebras.

Hence, by universal algebra, the free n-generated SBL-algebra is isomorphic to the smallest subalgebra of n-ary functions over $\{0\} \cup[1, n+1]$ that contains the constant functions 0 and $n+1$, the projection functions x_{1}, \ldots, x_{n}, and is closed under pointwise application of the basic operation $\circ^{\{0\} \cup[1, n+1]}$ of the generic algebra $\{0\} \cup[1, n+1]$, for every $\circ \in\{\mathrm{V}, \wedge, \odot, \rightarrow\}$. As a direct consequence of Theorem 83, we can improve the previous implicit characterization via the following explicit functional respresentation of the free n-generated SBL-algebra.

Corollary 92. The free n-generated SBL-algebra is isomorphic to the algebra,

$$
\left(\left.F_{n}\right|_{\{0\} \cup[1, n+1]}, \vee, \wedge, \odot, \rightarrow, \top, \perp\right),
$$

of type $(2,2,2,2,0,0)$, where $\left.F_{n}\right|_{\{0\} \cup[1, n+1]}=\left\{\left.f\right|_{(\{0\} \cup[1, n+1])^{2}} \mid f \in F_{n}\right\}, \perp$ and T are realized respectively by the constant functions 0 and $n+1$, and each $\circ \in\{\vee, \wedge, \odot, \rightarrow\}$ is realized by the restriction of the binary operation $\circ^{[0, n+1]^{\prime}}$ of Definition 12 to $\{0\} \cup[1, n+1]$ defined pointwise.

Proof (Sketch). Immediate by Theorem 83.
In the next section, we discuss some natural developments of the work presented in this thesis.

3.2 Future Work

In this section, we discuss some ideas for future work on BL-algebras, namely, the combinatorial representation of locally finite subvarieties of BL-algebras (Section 3.2.1), the identification of tight finite countermodels to BL-equations (Section 3.2.2), and the construction of deductive interpolants in Basic logic (Section 3.2.3).

3.2.1 Locally Finite Subvarieties

In the previous section, we considered a locally finite subvariety of BLalgebras, namely, the well known variety of Gödel algebras. In this section, we introduce a natural locally finite subvariety of BL-algebras, which we call $B L_{k}$-algebras. $B L_{k}$-algebras form the BL-algebraic counterpart of the variety of Grigolia MV_{k}-algebras [Gri73, CDM99], which are the MV-algebras singly generated by the MV-chain,

$$
\begin{equation*}
\mathbf{C}_{k}=(\{0,1 / k, \ldots,(k-1) / k, 1\}, \odot, \rightarrow, \perp), \tag{3.3}
\end{equation*}
$$

defined as the subalgebra of the MV-algebra $[0,1]$ of Definition 16 generated by the rational numbers of denominator k between 0 and 1 . These algebras constitute the natural search space for finite countermodels to BL-quasiequations.

Notation 93. Let A be a BL-algebra. We shall adopt the following abbreviations: $\neg a$ stands for the term operation $a \rightarrow \perp ; a \oplus a^{\prime}$ stands for the term operation $\left(a \rightarrow\left(a \odot a^{\prime}\right)\right) \rightarrow a^{\prime}$; for every $n \geq 0, a^{n}$ stands for the term operation $a \odot \cdots \odot a$, with a occurring n times; for every $n \geq 0$, na stands for the term operation $a \oplus \cdots \oplus a$, with a occurring n times. We stipulate that $a^{0}=\mathrm{T}, 0 a=\perp$, and \odot applies before \oplus.

Definition 94 (BL_{k}-Algebra). Let $k \geq 2$. A BL_{k}-algebra is a BL-algebra $\mathbf{A}=(A, \vee, \wedge, \odot, \rightarrow, \top, \perp)$ satisfying, for every $a \in A$,

$$
k a=(k+1) a,
$$

and for every integer $h \geq 2$ that does not divide k,

$$
\left(h a^{h-1}\right)^{k+1}=(k+1) a^{h} .
$$

Definition 95. Let $n \geq 1$ and let $k \geq 2$. Let,

$$
A_{n, k}=\{a / k \mid 0 \leq a \leq k(n+1)\} \subseteq \mathbb{Q} .
$$

The algebra,

$$
\mathbf{A}_{n, k}=\left(A_{n, k}, \vee, \wedge, \odot, \rightarrow, \top, \perp\right),
$$

is the algebra of type $(2,2,2,2,0,0)$, where \perp is realized by $0, ~ T$ is realized by $n+1$, and every $\circ \in\{\mathrm{\vee}, \wedge, \odot, \rightarrow\}$ is realized by the restriction of the binary operation $\circ^{[0, n+1]^{\prime}}$ in Definition 12 to $A_{n, k}^{2}$. For every $\circ \in\{\vee, \wedge, \odot, \rightarrow$ $, \top, \perp\}$, we let $\circ \mathbf{A}_{n, k}$ denote the realization of \circ in $\mathbf{A}_{n, k}$.

Theorem 96. Let $n \geq 1$ and let $k \geq 2$. The algebra $\mathbf{A}_{n, k}$ generates as a quasivariety the variety generated by the class of all n-generated $B L_{k}$-algebras.

Proof (Sketch). Immediate by Theorem 13.
Again, by universal algebra, the free n-generated BL_{k}-algebra, in symbols $\mathbf{B L}_{k, n}$, is isomorphic to the smallest subalgebra of n-ary functions over $A_{n, k}$ that contains the constant functions 0 and $n+1$, the projection functions x_{1}, \ldots, x_{n}, and is closed under pointwise application of the basic operation $\circ^{\mathbf{A}_{n, k}}$ of the generic algebra $\mathbf{A}_{n, k}$, for every $\circ \in\{\vee, \wedge, \odot, \rightarrow\}$. As a direct consequence of Theorem 83, we can improve the previous implicit characterization via the following explicit functional respresentation of $\mathbf{B L}{ }_{k, n}$.

Corollary 97. Let $n \geq 1$ and let $k \geq 2$. The free n-generated $B L_{k}$-algebra $\mathbf{B L}_{k, n}$ is isomorphic to the algebra,

$$
\left(\left.F_{n}\right|_{A_{n, k}}, \vee, \wedge, \odot, \rightarrow, \top, \perp\right)
$$

of type $(2,2,2,2,0,0)$, where $\left.F_{n}\right|_{A_{n, k}}=\left\{\left.f\right|_{A_{n, k}^{n}} \mid f \in F_{n}\right\}, \perp$ and \top are realized respectively by the constant functions 0 and $n+1$, and each $\circ \in$ $\{\vee, \wedge, \odot, \rightarrow\}$ is realized by the restriction of the binary operation $\circ^{[0, n+1]^{\prime}}$ of Definition 12 to $A_{n, k}^{n}$ defined pointwise.

Proof (Sketch). Immediate by Theorem 83.
Thus, since $\mathrm{BL}_{k, n}$ is finite, the variety of BL_{k}-algebras is locally finite. It is therefore possible, and natural, to provide a combinatorial representation of $\mathbf{B L}{ }_{k, n}$ in terms of (maximal antichains in suitable finite) posets, in the spirit of [dNL03, JM, AG08].

For a fixed $k \geq 2$, we shall consider finite posets having as domain the multiset,

$$
K=\{\mathbf{d} \mid d \geq 1, d \text { divisor of } k\}
$$

We define the following operations over such posets. Let P and Q be posets with cover graph \mathbf{P} and \mathbf{Q}, respectively, with $\mathbf{Q} \neq 1$. The operation $\mathbf{P}+\mathbf{Q}$ returns the cover graph given by juxtaposition of \mathbf{P} and \mathbf{Q}. For $n \geq 1$, we let $n \cdot \mathbf{P}=\sum_{i=1}^{n} \mathbf{P}$. If both \mathbf{P} and \mathbf{Q} have depth 0 , and \mathbf{Q} is a subgraph of \mathbf{P}, then we let $\mathbf{P}-\mathbf{Q}$ denote the cover graph \mathbf{R} such
that $\mathbf{P}+\mathbf{R}=\mathbf{Q}$. Let l_{1}, \ldots, l_{M} be the leaves of \mathbf{P}, and let r_{1}, \ldots, r_{m} be the roots of \mathbf{Q}. The operation,

$$
\left(\begin{array}{c}
\mathbf{Q} \\
\times \\
\mathbf{P}
\end{array}\right)
$$

returns the cover graph given by taking a copy of \mathbf{P} along with M copies $\mathbf{Q}_{1}, \ldots, \mathbf{Q}_{M}$ of \mathbf{Q}, the j th copy having roots $r_{j, 1}, \ldots, r_{j, m}$ for all $j \in[M]$, and adding edges $\left(l_{1}, r_{1,1}\right),\left(l_{1}, r_{1,2}\right), \ldots,\left(l_{M}, r_{M, m-1}\right)$, $\left(l_{M}, r_{M, m}\right)$. We complete the definition by stipulating that,

$$
\left(\begin{array}{c}
\mathbf{1} \\
\times \\
\mathbf{P}
\end{array}\right)=\mathbf{P} .
$$

Below we describe a recursive algorithm that, for every $k \geq 2$ and every $n \geq 1$, constructs (the underlying poset of) $\mathbf{B L}_{k, n}$ and computes its cardinality. We remark that the underlying order structure of any BL-algebra, in particular of $\mathbf{B L}_{k, n}$, is a distributive lattice, hence the ability of counting its elements is not completely trivial, since the general problem of determining the cardinality of the free n-generated distributive lattice is open since Dedekind posed in 1897 [Ded97]. An explicit recursive construction of $\mathbf{B L}_{k, n}$ is motivated by the problem of finding finite countermodels to BL-quasiequations (see Section 3.2.2), and by the problem of (approximating the) classification of locally finite subvarieties of BL-algebras.

For every integer $d \geq 1$, let \mathbf{C}_{d} be the subalgebra of the MV-chain $[0,1]$ with subdomain $\{0,1 / d, \ldots, 1\}$. It is well known that the free n generated MV_{k}-algebra, in symbols $\mathrm{MV}_{k, n}$, is isomorphic to the direct product of a finite number of subalgebras of the MV-chain \mathbf{C}_{k} in (3.3), namely,

$$
\mathbf{M V}_{k, n}=\prod_{d \mid k} \mathbf{C}_{d}^{\mathbf{d}_{n}}
$$

where $\mathbf{d}_{k, n}$ is the multiplicity of factor \mathbf{C}_{d} in the direct product representation of $\mathbf{M V}_{k, n}$, as computed in [CDM99, Theorem 6.8.1], that is, letting D be the set of coatoms in the lattice of divisors of d,

$$
\mathbf{d}_{n}=(d+1)^{n}+\sum_{\emptyset \neq X \subseteq D}(-1)^{|X|}(\operatorname{gcd}(X)+1)^{n} .
$$

Adopting the previous notation, for every $k \geq 2$ and $n \geq 1$, we represent $\mathbf{M V}_{k, n}$ by the poset with cover graph,

$$
\sum_{d \mid k} \mathbf{d}_{n} \cdot \mathbf{d}
$$

We stipulate that for every $k \geq 2$, the poset representation of $\mathbf{M V}_{k, 0}$ is the poset with cover graph,

In the sequel, with a slight abuse of notation, we write $\mathbf{M V}_{k, n}$ for the cover graph of $\mathbf{M V}_{k, n}$.

Example 98. Let $k=4$. The poset representation of $\mathbf{M V}_{4,1}$ is given by the cover graph,

$$
\begin{array}{lllll}
1 & 1 & 2 & 4 & 4
\end{array}
$$

and the poset representation of $\mathbf{M V}_{4,2}$ is given by the cover graph,

$$
\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 16 \cdot 4
\end{array}
$$

where $16=\mathbf{4}_{2}$.
Fix $k \geq 2$, let P be any poset over the multiset K defined above, and let A be a maximal antichain in P. A map l from A to $\{0, \ldots, k\}$ is a maximal labelled antichain in P if, for every $\mathbf{d} \in A$,

$$
l(\mathbf{d}) \in \begin{cases}\{0, \ldots, d\} & \text { if } \mathbf{d} \text { is maximal in } P \\ \{0, \ldots, d-1\} & \text { otherwise }\end{cases}
$$

By induction on $n \geq 1$, we shall compute a poset $S_{k, n}$ over K, as follows. Stipulate that $P_{k, 0}$ is the poset with cover graph 1, and that the number of maximal labelled antichains in $P_{k, 0}$, in symbols $\left|A\left(P_{k, 0}\right)\right|$, is equal to 1 .

For the base case, let $n=1$. The poset $S_{k, 1}$ is defined as follows. Let $P_{k, 1}$ be the poset with cover graph $\mathbf{P}_{k, 1}=\mathbf{M V}_{k, 1}-\mathbf{M V}_{k, 0}$, that is,

$$
\mathbf{P}_{k, 1}=\left(\mathbf{1}_{1}-1\right) \cdot \mathbf{1}+\sum_{d \mid k, d \geq 2} \mathbf{d}_{1} \cdot \mathbf{d}
$$

Let $\left|A\left(P_{k, 1}\right)\right|$ denote the number of maximal labelled antichains in $P_{k, 1}$. We have,

$$
\left|A\left(P_{k, 1}\right)\right|=(1+1)^{\mathbf{1}_{1}-1} \cdot \prod_{d \mid k, d \geq 2}(d+1)^{\mathbf{d}_{1}} .
$$

We let $S_{k, 1}$ be the poset with cover graph,

$$
\mathbf{S}_{k, 1}=\left(\begin{array}{c}
\mathbf{P}_{k, 1} \\
\times \\
\mathbf{1}
\end{array}\right)+\mathbf{P}_{k, 1}
$$

where $\left|A\left(S_{k, 1}\right)\right|=\left(1+\left|A\left(P_{k, 1}\right)\right|\right) \cdot\left|A\left(P_{k, 1}\right)\right|$. The base case is settled.
Example 99. Let $k=4$. Then, $P_{4,1}$ is the poset with cover graph,

$1 \begin{array}{lll}1 & 2 & 4\end{array}$

where $\left|A\left(P_{k, 1}\right)\right|=2 \cdot 3 \cdot 5^{2}=150$. So, $S_{4,1}$ is the poset with cover graph,

$$
\left(\begin{array}{cccc}
1 & 2 & 4 & 4 \\
& \times & \\
& 1 &
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 4 & 4
\end{array}\right.
$$

where $\left|A\left(S_{4,1}\right)\right|=150 \cdot(1+150)=22650$.
For the inductive step, let $n \geq 2$ and suppose that $P_{k, 0}, \ldots, P_{k, n-1}$, along with $\left|A\left(P_{k, 0}\right)\right|, \ldots,\left|A\left(P_{k, n-1}\right)\right|$, have already been computed. Notice that, letting,

$$
\mathbf{d}_{n}^{\prime}=d^{n}+\sum_{\emptyset \neq X \subseteq D}(-1)^{|X|} \operatorname{gcd}(X)^{n}
$$

where D is the set of coatoms in the lattice of divisors of d, we have that, for every $1 \leq i \leq n$,

$$
\mathbf{M V}_{k, i}+\sum_{j=1}^{i}(-1)^{j}\binom{n}{i-j} \cdot \mathbf{M} \mathbf{V}_{k, i-j}=\sum_{d \mid k} \mathbf{d}_{i}^{\prime} \cdot \mathbf{d} .
$$

We let $P_{k, n}$ be the poset with cover graph,

$$
\mathbf{P}_{k, n}=\sum_{i=1}^{n}\binom{n}{i} \cdot\left(\begin{array}{c}
P_{k, n-i} \\
\times \\
\sum_{d \mid k} \mathbf{d}_{i}^{\prime} \cdot \mathbf{d}
\end{array}\right)
$$

The number of maximal labelled antichains in $P_{k, n}$ is exactly,

$$
\left|A\left(P_{k, n}\right)\right|=\prod_{i=1}^{n} \prod_{d \mid k}\left(d+\left|A\left(P_{k, n-i}\right)\right|\right)^{\binom{n}{i} \mathbf{d}_{i}^{\prime}}
$$

We let $S_{k, n}$ be the poset with cover graph,

$$
\mathbf{S}_{k, n}=\left(\begin{array}{c}
\mathbf{P}_{k, n} \\
\times \\
\mathbf{1}
\end{array}\right)+\mathbf{P}_{k, n}
$$

where $\left|A\left(S_{k, n}\right)\right|=\left(1+\left|A\left(P_{k, n}\right)\right|\right) \cdot\left|A\left(P_{k, n}\right)\right|$. The inductive step is settled.

Example 100. Let $k=4$. On the basis of $P_{4,1}$ and $\left|A\left(P_{4,1}\right)\right|$, we compute $S_{4,2}$ and $\left|A\left(S_{4,2}\right)\right|$. First, $P_{4,2}$ is the poset with cover graph,

$$
\binom{2}{1} \cdot\left(\begin{array}{c}
\mathbf{P}_{4,1} \\
\times \\
\sum_{d \mid 4} \mathbf{d}_{1}^{\prime} \cdot \mathbf{d}
\end{array}\right)+\binom{2}{2} \cdot\left(\begin{array}{c}
\mathbf{P}_{4,0} \\
\times \\
\sum_{d \mid 4} \mathbf{d}_{2}^{\prime} \cdot \mathbf{d}
\end{array}\right)
$$

that is,

$$
2 \cdot\left(\begin{array}{cccc}
1 & 2 & 4 & 4 \\
& \times & & \\
1 & 2 & 4 & 4
\end{array}\right)+1 \cdot\left(\begin{array}{ccccccc}
& & & 1 & & & \\
& & & & & & \\
1 & 2 & 2 & 2 & 4 & \ldots & 4
\end{array}\right)
$$

that is,

$$
2 \cdot\left(\begin{array}{ccc}
\mathbf{1} & \mathbf{2} & 2 \cdot \mathbf{4} \\
& \times & \\
\mathbf{1} & \mathbf{2} & 2 \cdot \mathbf{4}
\end{array}\right) \quad \mathbf{1} \quad 3 \cdot \mathbf{2} \quad 12 \cdot \mathbf{4}
$$

Here,

$$
\begin{aligned}
\left|A\left(P_{4,2}\right)\right| & =\prod_{i=1,2} \prod_{d=1,2,4}\left(d+\left|A\left(P_{4,2-i}\right)\right|\right)^{\binom{2}{i} \mathbf{d}_{i}^{\prime}} \\
& =\prod_{d=1,2,4}\left(d+\left|A\left(P_{4,1}\right)\right|\right)^{2 \mathbf{d}_{1}^{\prime}} \cdot \prod_{d=1,2,4}\left(d+\left|A\left(P_{4,0}\right)\right|\right)^{\mathbf{d}_{2}^{\prime}} \\
& =\prod_{d=1,2,4}(d+150)^{2 \mathbf{d}_{1}^{\prime}} \cdot \prod_{d=1,2,4}(d+1)^{\mathbf{d}_{2}^{\prime}} \\
& =151^{2 \cdot \mathbf{1}_{1}^{\prime}} \cdot 152^{2 \cdot \mathbf{2}_{1}^{\prime}} \cdot 154^{2 \cdot \mathbf{4}_{1}^{\prime}} \cdot 2^{\mathbf{1}_{2}^{\prime}} \cdot 3^{\mathbf{2}_{2}^{\prime}} \cdot 5^{\mathbf{4}_{2}^{\prime}} \\
& =151^{2 \cdot 1} \cdot 152^{2 \cdot 1} \cdot 154^{2 \cdot 2} \cdot 2^{1} \cdot 3^{3} \cdot 5^{12} \\
& =39062295914931135 \cdot 10^{11}
\end{aligned}
$$

So, $S_{4,2}$ is the poset with cover graph,
where,

$$
\begin{aligned}
\left|A\left(S_{4,2}\right)\right| & =\left(1+\left|A\left(P_{4,2}\right)\right|\right) \cdot\left|A\left(P_{4,2}\right)\right| \\
& =152586296214564563720863179277884795914931135 \cdot 10^{11}
\end{aligned}
$$

It is easy to realize that, if k is a prime number, the previous construction trivializes. Indeed, for $n=1,2, \ldots$, the above $P_{k, n}$ reduces to the poset with cover graph,

$$
\sum_{i=1}^{n}\binom{n}{i} \cdot\left(\begin{array}{c}
P_{k, n-i} \\
\\
\mathbf{1} \\
\mathbf{1} \\
\left(k^{i}-1\right) \cdot \mathbf{k}
\end{array}\right)
$$

with,

$$
\left|A\left(P_{k, n}\right)\right|=\prod_{i=1}^{n}\left(1+\left|A\left(P_{k, n-i}\right)\right|\right)^{\binom{n}{i}} \cdot\left(k+\left|A\left(P_{k, n-i}\right)\right|\right)^{\binom{n}{i}\left(k^{i}-1\right)} .
$$

On this basis, $S_{k, n}$, along with $\left|A\left(S_{k, n}\right)\right|$, are defined as above.
It turns out that the algebra of maximal labelled antichains $A\left(S_{k, n}\right)$ in $S_{k, n}$, with suitably defined operations, is a BL-algebra, and is in fact isomorphic to the free n-generated BL_{k}-algebra $\mathbf{B L}_{k, n}$.

Definition 101. The algebra,

$$
\mathbf{F}_{k, n}=\left(A\left(S_{k, n}\right), \vee, \wedge, \odot, \rightarrow, \top, \perp\right),
$$

is the algebra of type $(2,2,2,2,0,0)$, where constants and operations are realized as follows.

The constant \perp is realized by sending each element in the antichain over the minimal elements of $S_{k, n}$ to 0 . The constant T is realized by sending each element in the antichain over the maximal elements of $S_{k, n}$, say the element \mathbf{d}, to d.

The operations are defined chainwise, as follows. Let l and l^{\prime} be maximal labelled antichains in $A\left(S_{k, n}\right)$, with underlying antichain A and A^{\prime} in $S_{k, n}$. We let $l \vee l^{\prime}$ be the maximal labelled antichain in $A\left(S_{k, n}\right)$ having underlying antichain $A \vee A^{\prime}$ such that, for every maximal chain C in $S_{k, n}$,

$$
l \vee l^{\prime}\left(\left(A \vee A^{\prime}\right) \cap C\right)= \begin{cases}\max \left(l(A \cap C), l^{\prime}\left(A^{\prime} \cap C\right)\right) & \text { if } A \cap C=A^{\prime} \cap C \\ l(A \cap C) & \text { if } A \cap C>A^{\prime} \cap C \\ l^{\prime}\left(A^{\prime} \cap C\right) & \text { otherwise }\end{cases}
$$

We define $l \wedge l^{\prime}$ analogously. We let $l \odot l^{\prime}$ be the maximal labelled antichain in $A\left(S_{k, n}\right)$ having underlying antichain $A \wedge A^{\prime}$ such that, for every maximal chain C in $S_{k, n}$, say with \mathbf{c} as maximal element,

$$
l \odot l^{\prime}\left(\left(A \wedge A^{\prime}\right) \cap C\right)= \begin{cases}\max \left(l(A \cap C)+l^{\prime}\left(A^{\prime} \cap C\right)-d, \mathbf{c}\right) & \text { if } A \cap C=A^{\prime} \cap C=\mathbf{d} \\ l^{\prime}\left(A^{\prime} \cap C\right) & \text { if } A \cap C>A^{\prime} \cap C \\ l(A \cap C) & \text { otherwise }\end{cases}
$$

We let $l \rightarrow l^{\prime}$ be the maximal labelled antichain in $A\left(S_{k, n}\right)$ having underlying antichain $A \rightarrow A^{\prime}$ such that, for every maximal chain C in $S_{k, n}$, say with \mathbf{c} as maximal element,
$\left(A \rightarrow A^{\prime}\right) \cap C= \begin{cases}\mathbf{c} & \text { if } A \cap C<A^{\prime} \cap C \text { or, } A \cap C=A^{\prime} \cap C \text { and } l(A \cap C) \leq l^{\prime}\left(A^{\prime} \cap C\right) \\ A^{\prime} \cap C & \text { otherwise }\end{cases}$
and,
$l \rightarrow l^{\prime}\left(\left(A \rightarrow A^{\prime}\right) \cap C\right)= \begin{cases}\min \left(l^{\prime}\left(A^{\prime} \cap C\right)+d-l(A \cap C), \mathbf{c}\right) & \text { if } A \cap C=A^{\prime} \cap C=\mathbf{d} \\ l^{\prime}\left(A^{\prime} \cap C\right) & \text { if } A \cap C>A^{\prime} \cap C \\ \mathbf{c} & \text { otherwise }\end{cases}$

For every $\circ \in\{\vee, \wedge, \odot, \rightarrow, \top, \perp\}$, we let $\circ \mathbf{F}_{k, n}$ denote the realization of \circ $\operatorname{in} \mathbf{F}_{k, n}$.

Theorem 102. $\mathbf{S}_{k, n}$ is isomorphic to the free n-generated $B L_{k}$-algebra $\mathbf{B L}_{k, n}$.
Proof (Sketch). It is easy to check that $\mathbf{F}_{k, n}$ is a BL-algebra. Moreover, it is possible to define an isomorphism of BL-algebras from $\left.F_{n}\right|_{A_{n, k}}$ to $A\left(S_{n, k}\right)$.

3.2.2 Tight Countermodels

In this section, we shall consider the problem of deciding the validity of BL-equations: given a BL-equation of the form $t=T,{ }^{4}$ built upon variables X_{1}, \ldots, X_{n}, we are to decide whether or not $t^{\mathbf{A}}(\mathbf{a})=T^{\mathbf{A}}$ for every BL-algebra A and every assignment $\mathbf{a} \in A^{n}$.

By the representation result of Aglianó and Montagna, stated in Theorem $13, t=\mathrm{T}$ is valid in all BL-algebras if and only if there not exists a countermodel to $t=\mathrm{T}$ in the algebra $[0, n+1]$, that is, there not exists an assignment $\mathbf{b} \in[0, n+1]^{n}$ such that,

$$
\begin{equation*}
t^{[0, n+1]}(\mathbf{b})<\top^{[0, n+1]} . \tag{3.4}
\end{equation*}
$$

As we already mentioned in the introduction, the problem of deciding BL-equations (and BL-quasiequations) is in coNP. In fact, it is possible to prove that a BL-equation $t=\mathrm{T}$ has a countermodel in $[0, n+1]$ if and only if $t=\mathrm{T}$ has a countermodel $\mathbf{b} \in[0, n+1]^{n}$ such that \mathbf{b} is a point with rational coordinates of denominator upper bounded in $O\left(\exp \left(n^{c}\right)\right)$, for some $c \geq 1$. Therefore, a nondeterministic approach consists in guessing a rational point \mathbf{b} having a small denominator (relative to the size of the input), and in checking that inequality (3.4) holds with respect to \mathbf{b}.

In the rest of this section, exploiting the explicit description of BLfunctions given in Chapter 2, we approach the problem of finding tight countermodels to BL-equations, that is, countermodels to BL-equations that are as small as possible, in a formally defensible sense. We expect that, with minor modifications, the sketched approach generalizes to the quasiequational case. ${ }^{5}$

Let,

$$
\begin{equation*}
b(n, l)=\left\lfloor(l / n)^{n}\right\rfloor, \tag{3.5}
\end{equation*}
$$

where $n, l \geq 1$ are integers. In [AG02], the following result is shown.

[^16]Theorem 103. Let t be a term over l occurrences of n distinct variables. The BL-equation $t=\mathrm{T}$ is not valid if and only if there exist a positive integer $k \leq$ $b(n, l)$ and a variable assignment $\mathbf{a} \in\left(A_{n, k}\right)^{n}$ such that $t^{\mathbf{A}_{n, k}}(\mathbf{a})<\top^{\mathbf{A}_{n, k}}$, where $\mathbf{A}_{n, k}$ is as in Definition 94.

In [Agu06], Aguzzoli proved that, as regards to MV-equations, the bound (3.5) is asymptotically tight. Roughly, for every fixed integer k significantly lower than $b(n, l)$, there exists a term t with l occurrences of n distinct variables, where l is chosen sufficiently large, such that t succeeds over every rational point in $[0,1]^{n}$ with denominator less than k and fails over a rational point in $[0,1]^{n}$ with denominator between k and $b(n, l)$. Aguzzoli remarks that an explicit functional representation of the free n-generated BL-algebra, in the spirit of [Mon00], is necessary to generalize tightness results to the case of BL-equations. In this vein, we discuss below an approach to obtain tightness results on countermodels to BL-equations.

The initial observation is that the statement of Theorem 103 is sufficient to establish the coNP membership of BL-equations, but does not guarantee the optimality of the corresponding deterministic algorithm. Precisely, the statement of Theorem 103 ensures that a deterministic search for a countermodel to a BL-equation $t=\mathrm{T}$, specified as above, is complete only if its search space includes all the rational points in $[0, n+1]^{n}$ having denominator $\leq b(n, l)$. In light of the explicit descriptions of BL-functions given in Theorem 82, we can shrink such search space preserving the completeness of the procedure. As a strengthening, it is possible to prove that the resulting search space is optimal, in the sense that any further shrink breaks the completeness of the countermodel search procedure.

Let $n \geq 1$ and let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in[0, n+1)^{n}$ be an integer point. We let,

$$
C(\mathbf{p})=\left\{\mathbf{b} \mid p_{1} \leq b_{1}<p_{1}+1, \ldots, p_{n} \leq b_{n}<p_{n}+1\right\} \subseteq[0, n+1]^{n},
$$

denote the cell having \mathbf{p} as origin. The search space of the decision algorithm suggested by Theorem 103 contains all the $(n+1)^{n}$ distinct cells in $[0, n+1]^{n}$. As a first refinement of Theorem 103, we shall minimize the number of cells that are to be checked to accomplish a complete
countermodel search. In particular, it turns out that a number of cells asymptotically equivalent to n !, thus growing asymptotically slower than n^{n}, suffices.

For every $n \geq 0$, the nth Fubini number (or ordered Bell number), that is, the number of ordered partitions of a set of n elements into nonempty subsets, is equal to,

$$
F(n)=\sum_{k=0}^{n} k!\cdot S(n, k),
$$

where $S(n, k)$ denotes the Stirling set number, that is, the number of partitions of a set of n elements into k nonempty subsets. It is known [Wil90] that,

$$
\lim _{n \rightarrow \infty} \frac{F(n)}{\frac{n!}{2 \cdot(\ln 2)^{n+1}}}=1
$$

thus,

$$
\lim _{n \rightarrow \infty} \frac{F(n)}{(n+1)^{n}}=\lim _{n \rightarrow \infty} \frac{\frac{n!}{2 \cdot(\ln 2)^{n+1}}}{(n+1)^{n}}=0,
$$

that is, $(n+1)^{n}$ grows asymptotically faster than $F(n)$, which in fact grows asymptotically as n !.

Example 104. We have $2 \cdot F(4)=150<625=4^{5}, 2 \cdot F(6)=1,082<$ $7,776=5^{6}, 2 \cdot F(7)=9,366<117,649=6^{7}, 2 \cdot F(8)=94,586<$ $2,097,152=7^{8}, 2 \cdot F(9)=1,091,670<43,046,721=8^{9}$.

It turns out that t has a countermodel in $[0, n+1]^{n}$ if and only if t has a countermodel inside a subset of $2 \cdot F(n)$ suitably chosen cells in $[0, n+$ $1]^{n}$. Precisely, for $j \in[F(n)]$, let P_{j} be the j th ordered partition of $[n]$, say into the k nonempty blocks $B_{1}<\cdots<B_{k}$. We let the points $\mathbf{p}_{j}=$ $\left(p_{1}, \ldots, p_{n}\right)$ and $\mathbf{q}_{j}=\left(q_{1}, \ldots, q_{n}\right)$ in $[0, n+1]^{n}$ be defined by putting,

$$
\begin{aligned}
p_{l} & =i-1, \\
q_{l} & =i,
\end{aligned}
$$

for every $i \in[k]$ and every $l \in B_{i}$.
Claim 105. Let t be a term over n distinct variables. The BL-equation $t=\top$ is not valid if and only if there exists,

$$
\mathbf{b} \in \bigcup_{j \in[F(n)]} C\left(\mathbf{p}_{j}\right) \cup C\left(\mathbf{q}_{j}\right),
$$

such that $t^{[0, n+1]}(\mathbf{b})<T^{[0, n+1]}$.

The previous claim allows to shrink the search space for deciding BL-equations to a number of cells, $2 \cdot F(n)$, which is significantly lower than the total number of cells in $[0, n+1]^{n}$. Moreover, let C be a cell of the form $C\left(\mathbf{p}_{j}\right)$ or $C\left(\mathbf{q}_{j}\right)$, for $j \in[F(n)]$. As an application of Theorem 82, there exists a term t over n variables that succeeds over $[0, n+1]^{n} \backslash C$, but fails inside C. Therefore, with respect to the completeness of a countermodel search algorithm, Claim 105 characterizes a minimal set of u navoidable cells in $[0, n+1]^{n}$.

Figure 3.2: The case $n=3$ (see also Example 106). (a) The unavoidable cells in $[0,4]^{3}$. (b) The unavoidable cells outside $[1,4]^{3}$. (c) The unavoidable cells inside $[1,4]^{3}$.

As a second refinement of Theorem 103, for each unavoidable cell C, we shall minimize the largest denominator of the rational points inside C that a complete countermodel search has to check. For every $j \in[F(n)]$, let P_{j} be the j th ordered partition of $[n]$ in some arbitrary fixed total ordering of the ordered partitions of $[n]$, let M_{j} be the maximal block in P_{j}, and let m_{j} be the block covered by M_{j} in P_{j}. For every rational number $a \in \mathbb{Q}$, let $\operatorname{den}(a) \geq 1$ be the denominator of the reduced form of a. We put,
$D_{j}=\left\{\left(b_{i}\right)_{i \in[n]} \in C\left(\mathbf{p}_{j}\right) \cap \mathbb{Q}^{n} \left\lvert\, \operatorname{den}\left(b_{i}\right) \leq\left\{\begin{array}{ll}b\left(l,\left|m_{j}\right|\right) & \text { if } i \in m_{j} \\ b\left(l,\left|M_{j}\right|\right) & \text { if } i \in M_{j} \\ 1 & \text { otherwise }\end{array}\right\}\right.\right.$,
$E_{j}=\left\{\left(b_{i}\right)_{i \in[n]} \in C\left(\mathbf{q}_{j}\right) \cap \mathbb{Q}^{n} \left\lvert\, \operatorname{den}\left(b_{i}\right) \leq\left\{\begin{array}{ll}b\left(l,\left|m_{j}\right|\right) & \text { if } i \in m_{j} \\ b\left(l,\left|M_{j}\right|\right) & \text { if } i \in M_{j} \\ 1 & \text { otherwise }\end{array}\right\}\right.\right.$.
Example 106. Let $n=3$ and let t be a term over l occurrences of variables X_{1}, X_{2}, X_{3}. We have the following $P_{1}, \ldots, P_{13}=P_{F(3)}$ ordered partitions of [3]: P_{1} is $\{1,2,3\}, P_{2}$ is $\{1\}<\{2,3\}, P_{3}$ is $\{2,3\}<\{1\}, P_{4}$ is $\{1,2\}<$ $\{3\}, P_{5}$ is $\{3\}<\{1,2\}, P_{6}$ is $\{1,3\}<\{2\}, P_{7}$ is $\{2\}<\{1,3\}, P_{8}$ is $\{1\}<\{2\}<\{3\}, P_{9}$ is $\{1\}<\{3\}<\{2\}, P_{10}$ is $\{2\}<\{1\}<\{3\}, P_{11}$ is $\{2\}<\{3\}<\{1\}, P_{12}$ is $\{3\}<\{1\}<\{2\}, P_{13}$ is $\{3\}<\{2\}<\{1\}$. Each ordered partition corresponds to a pair \mathbf{p}_{j} and \mathbf{q}_{j} of integer points in $[0,3]^{2}$, precisely: $\mathbf{p}_{1}=(0,0,0)$ and $\mathbf{q}_{1}=(1,1,1) ; \mathbf{p}_{2}=(0,1,1)$ and $\mathbf{q}_{2}=(1,2,2)$; $\mathbf{p}_{3}=(1,0,0)$ and $\mathbf{q}_{3}=(2,1,1) ; \mathbf{p}_{4}=(0,1,1)$ and $\mathbf{q}_{4}=(1,1,2) ; \mathbf{p}_{5}=$ $(1,1,0)$ and $\mathbf{q}_{5}=(2,2,1) ; \mathbf{p}_{6}=(0,1,0)$ and $\mathbf{q}_{6}=(1,2,1) ; \mathbf{p}_{7}=(1,0,1)$ and $\mathbf{q}_{7}=(2,1,2) ; \mathbf{p}_{8}=(0,1,2)$ and $\mathbf{q}_{8}=(1,2,3) ; \mathbf{p}_{9}=(0,2,1)$ and $\mathbf{q}_{9}=(1,3,2) ; \mathbf{p}_{10}=(1,0,2)$ and $\mathbf{q}_{10}=(2,1,3) ; \mathbf{p}_{11}=(2,0,1)$ and $\mathbf{q}_{11}=(3,1,2) ; \mathbf{p}_{12}=(1,2,0)$ and $\mathbf{q}_{12}=(2,3,1) ; \mathbf{p}_{13}=(2,1,0)$ and $\mathbf{q}_{13}=(3,2,1)$. Eventually, we sample D_{j} for $j=1,2,3,8$:
$D_{1}=\left\{\mathbf{b} \in C\left(\mathbf{p}_{1}\right) \cap \mathbb{Q}^{n} \mid \operatorname{den}\left(b_{1}\right), \operatorname{den}\left(b_{2}\right), \operatorname{den}\left(b_{3}\right) \leq b(l, 3)\right\}$,
$D_{2}=\left\{\mathbf{b} \in C\left(\mathbf{p}_{2}\right) \cap \mathbb{Q}^{n} \mid \operatorname{den}\left(b_{1}\right) \leq b(l, 1), \operatorname{den}\left(b_{2}\right), \operatorname{den}\left(b_{3}\right) \leq b(l, 2)\right\}$,
$D_{3}=\left\{\mathbf{b} \in C\left(\mathbf{p}_{3}\right) \cap \mathbb{Q}^{n} \mid \operatorname{den}\left(b_{2}\right), \operatorname{den}\left(b_{3}\right) \leq b(l, 2), \operatorname{den}\left(b_{1}\right) \leq b(l, 1)\right\}$,
$D_{8}=\left\{\mathbf{b} \in C\left(\mathbf{p}_{8}\right) \cap \mathbb{Q}^{n} \mid \operatorname{den}\left(b_{1}\right) \leq 1, \operatorname{den}\left(b_{2}\right) \leq b(l, 1), \operatorname{den}\left(b_{3}\right) \leq b(l, 1)\right\}$.
Claim 107. Let t be a term with l occurrences of n distinct variables. The BL-equation $t=\mathrm{T}$ is not valid if and only if there exists,

$$
\mathbf{b} \in \bigcup_{j \in[F(n)]} D_{j} \cup E_{j},
$$

such that $t^{[0, n+1]}(\mathbf{b})<T^{[0, n+1]}$.
Example 108. Continuing Example 106 , let $l=15$, so that $b(3,15)=125$, $b(2,15)=56$ and $b(1,15)=15$. As a rough estimation, the number of points to check by Claim 107 is,

$$
\begin{aligned}
& \leq 2\left(\sum_{k=1}^{125} k^{3}+3\left(\sum_{k=1}^{56} \sum_{h=1}^{15} k^{2} h\right)+3\left(\sum_{k=1}^{56} \sum_{h=1}^{15} k h^{2}\right)+6\left(\sum_{k=1}^{15} 2 k^{2}\right)\right) \\
& =179,218,770,
\end{aligned}
$$

whereas the number of points to check by Theorem 103 is $\leq \sum_{k=1}^{125}(4 k+1)^{3}=$ $4,000,720,625$.

For every $j \in[F(n)]$, every rational point \mathbf{b} inside either D_{j} or E_{j}, and every coordinate $i \in[n]$, the upper bound on the denominator $\operatorname{den}\left(b_{i}\right)$ is tight, in the following sense. Suppose to admit a significantly lower upper bound k on $\operatorname{den}\left(b_{i}\right)$ in D_{j} (the case of E_{j} is similar), for some $j \in[F(n)]$ and $i \in[n]$. Then, by combining constructions in Theorem 82 and in [Agu06], it is possible to construct a term t over a sufficiently large number l of occurrences of variables in $\left\{X_{l} \mid l \in M_{j}\right\}$ if $i \in M_{j}$, or in $\left\{X_{l} \mid l \in m_{j}\right\}$ if $i \in m_{j}$, such that t succeeds over each unavoidable cell distinct from D_{j}, t succeeds over each rational point in D_{j} of denominator less than k on coordinate i, but t fails over a rational point in D_{j} with denominator between k and den $\left(b_{i}\right)$ on coordinate i.

Therefore, roughly, Claim 107 suggests a countermodel search which is optimal in the sense that it checks only unavoidable cells, and inside each unavoidable cell, only unavoidable rational points, where unavoidability stems from the fact that checking either less cells, or less points inside a cell, breaks the completeness of the procedure.

3.2.3 Deductive Interpolation

It is known that Basic logic has the deductive interpolation property: for $I, K \subseteq[n]$, if r is a term over variables $\left\{X_{i} \mid i \in I\right\}, t$ is a term over variables $\left\{X_{k} \mid k \in K\right\}$, and $r \vdash_{B L} t$, then there exists a deductive interpolant of r and t, that is, term s over variables $\left\{X_{j} \mid j \in I \cap K\right\}$ such that $r \vdash_{B L} s$ and $s \vdash_{B L} t$ [Mon06]. ${ }^{6}$

In [Mon06], Montagna raised the problem of providing an effective construction of deductive interpolants in Basic logic. In this section, we discuss a geometrical approach to the problem, enlightened by the representation of the Lindenbaum-Tarski algebra of Basic logic in terms of BL-functions presented in Chapter 2.

[^17]Let $n \geq 1$, let $I, K \subseteq[n]$ with $I \cup K=[n]$, and let r and t be terms in L_{n}, with $r \in L_{I}$ and $t \in L_{K}$, such that $r \vdash_{B L} t$. For every n-ary BL-function $f:[0, n+1]^{n} \rightarrow[0, n+1]$ in F_{n}, let,

$$
\mathbf{1}_{f}=\left\{\mathbf{b} \in[0, n+1]^{n} \mid f(\mathbf{b})=n+1\right\},
$$

denote the oneset of f; for every $u \in L_{n}$, we write in short $\mathbf{1}_{u}$ instead of $\mathbf{1}_{u^{[0, n+1]}}$. Note that,

$$
\mathbf{1}_{u}=\left\{\mathbf{b} \in[0, n+1]^{n} \mid u^{[0, n+1]}(\mathbf{b})=\mathrm{T}^{[0, n+1]}\right\} .
$$

As we discussed in the introduction to Chapter 2, the LindenbaumTarski algebra of the n-variate fragment of Basic logic is isomorphic to the free n-generated BL-algebra, which has been explicitly described in terms of BL-functions in Theorem 82. Therefore, $r \vdash_{B L} t$ if and only if the BL-functions $r^{[0, n+1]}:[0, n+1]^{n} \rightarrow[0, n+1]$ and $t^{[0, n+1]}:[0, n+1]^{n} \rightarrow$ $[0, n+1]$, respectively essentially at most $|I|$-ary over the coordinates indexed in I and essentially at most $|K|$-ary over the coordinates indexed in K, satisfy the relation,

$$
\mathbf{1}_{r} \subseteq \mathbf{1}_{t}
$$

In this setting, the logical problem of constructing a deductive interpolant s to r and t is equivalent to the following geometrical problem: given explicit descriptions (say, the implementing systems) of the above BL-functions $r^{[0, n+1]}$ and $t^{[0, n+1]}$ in F_{n}, compute an explicit description (say, the implementing system) of a BL-function $f:[0, n+$ $1]^{n} \rightarrow[0, n+1]$ in F_{n}, essentially at most $|I \cap K|$-ary over the coordinates indexed in $I \cap K$, such that f satisfies the relation,

$$
\begin{equation*}
\mathbf{1}_{r} \subseteq \mathbf{1}_{f} \subseteq \mathbf{1}_{t} \tag{3.6}
\end{equation*}
$$

Indeed, upon availability of the implementing system of f, the explicit construction of Lemma 81 furnishes a term s in L_{n} such that ${ }^{[0, n+1]}=$ f, so that in particular,

$$
\mathbf{1}_{r} \subseteq \mathbf{1}_{s} \subseteq \mathbf{1}_{t}
$$

moreover, we can suppose that s contains only variables indexed in $K \cap I$: for otherwise, for every $j \notin K \cap I$, replace every occurrence of variable X_{j} in s with \perp, and notice that the function computed by the resulting term coincides with $s^{[0, n+1]}$.

Therefore, we reduced to the problem of specifying a function $f \in$ F_{n} satisfying (3.6), given the specifications of the above functions $r^{[0, n+1]}$ and $t^{[0, n+1]}$ in F_{n}. In the rest of this section, we sketch a solution method to this problem.

The intuition underlying our solution is the following. By the explicit descriptions of BL-functions, we know that, for every function f in F_{n}, there exists a finite family P_{1}, \ldots, P_{q} of rational polyhedra in $[0, n+1]^{n}$, such that,

$$
\mathbf{1}_{f}=\bigcup_{i \in[q]} \operatorname{relint} P_{i} .
$$

Moreover, $\mathbf{1}_{f}$ satisfies the following constraints. Let $B_{1}<\cdots<B_{k}$ be an ordered partition of $[n]$ into $k \geq 1$ nonempty blocks, and let,

$$
C_{0<\cdots<k-1}^{B_{1}<\cdots<B_{k}} \text { and } C_{1<\cdots<k}^{B_{1}<\cdots<B_{k}},
$$

be the unavoidable cells, respectively outside and inside $[1, n+1]^{n}$, corresponding to $B_{1}<\cdots<B_{k}$, as in Definition 84 .

Constraint 1: If $\mathbf{b}=\left(b_{i}\right)_{i \in[n]} \in \mathbf{1}_{f} \cap C_{0<\cdots<k-1}^{B_{1}<\cdots<B_{k}}$, then,

$$
\bigcup_{C}\left\{\left(a_{i}\right)_{i \in[n]} \in C \mid a_{i}-\left\lfloor a_{i}\right\rfloor=b_{i}-\left\lfloor b_{i}\right\rfloor\right\} \subseteq \mathbf{1}_{f},
$$

where C ranges over the cells outside $[1, n+1]^{n}$ corresponding to the ordered partition $B_{1}<\cdots<B_{k}$.

Constraint 2: If $\mathbf{b}=\left(b_{i}\right)_{i \in[n]} \in \mathbf{1}_{f} \cap C_{1<\cdots<k}^{B_{1}<\cdots<B_{k}}$, then,

$$
\bigcup_{C}\left\{\left(a_{i}\right)_{i \in[n]} \in C \mid a_{i}-\left\lfloor a_{i}\right\rfloor=b_{i}-\left\lfloor b_{i}\right\rfloor\right\} \subseteq \mathbf{1}_{f},
$$

where C ranges over the cells inside $[1, n+1]^{n}$ corresponding to the ordered partition $B_{1}<\cdots<B_{k}$.

In particular, if $f \in F_{n}$ is essentially at most $|I \cap K|$-ary over the coordinates indexed in $I \cap K$, then $\mathbf{1}_{f}$ is encoded at most by the coordinates indexed in $I \cap K$, that is,
$\mathbf{1}_{f}=\bigcup_{\left(b_{i}\right)_{i \in[n]} \in \mathbf{1}_{f}}\left\{\left(a_{i}\right)_{i \in[n]} \mid a_{i}=b_{i}\right.$ if $i \in I \cap K$, otherwise $\left.0 \leq a_{i} \leq n+1\right\}$.

The idea of the construction is to attain a set $S^{\prime} \subseteq[0, n+1]^{n}$, encoded by the coordinates indexed in $I \cap K$, such that on the one hand,

$$
\mathbf{1}_{r} \subseteq S^{\prime} \subseteq \mathbf{1}_{t}
$$

and on the other hand, S^{\prime} satisfies Constraint 1 and Constraint 2. The latter property turns out to be equivalent to the possibility of specifying a function f in F_{n}, essentially at most $|I \cap K|$-ary over the coordinates indexed in $I \cap K$, such that $S^{\prime}=\mathbf{1}_{f}$. By Lemma 81 , this is sufficient to construct a deductive interpolant to r and t in Basic logic.

We provide some additional details on the construction. It is easy to observe that, since $r^{[0, n+1]}$ is essentially at most $|I|$-ary over the coordinates indexed in $I, t^{[0, n+1]}$ is essentially at most $|K|$-ary over the coordinates indexed in K, and $\mathbf{1}_{r} \subseteq \mathbf{1}_{t}$, the following fact holds.

Claim 109 (Initialization). Let $S \subseteq[0, n+1]^{n}$ be defined by,

$$
S=\bigcup_{\left(b_{i}\right)_{i \in[n]} \in \mathbf{1}_{r}}\left\{\left(a_{i}\right)_{i \in[n]} \mid a_{i}=b_{i} \text { if } i \in I \cap K, \text { otherwise } 0 \leq a_{i} \leq n+1\right\}
$$

Then,

$$
\mathbf{1}_{r} \subseteq S \subseteq \mathbf{1}_{t}
$$

By construction, S is the smallest set that is encoded by the coordinates indexed in $I \cap K$ and includes $\mathbf{1}_{r}$. Therefore a natural question is whether or not it is possible to specify a function f in F_{n} such that $\mathbf{1}_{f}=S$. Note that the restriction of any such f to S is essentially at most $|I \cap K|$-ary over the coordinates indexed in $I \cap K$. It turns out that the answer to this question is, in general, negative. Nevertheless, it is possible to extend the set S to a set $S^{\prime} \subseteq \mathbf{1}_{t}$ that suits the scope in the following sense.

Claim 110 (Normalization). Let S be as in Claim 109 and let $S^{\prime} \subseteq[0, n+$ $1]^{n}$ be the smallest superset of S satisfying Constraints 1 and 2 . Then,

$$
\mathbf{1}_{r} \subseteq S^{\prime} \subseteq \mathbf{1}_{t}
$$

and S^{\prime} is encoded by the coordinates indexed in $I \cap K$.
We remark that, appealing to the decomposition of $\mathbf{1}_{r}$ and $\mathbf{1}_{t}$ as finite unions of rational polyhedra, it is possible to compute effectively
a specification of the set S^{\prime}. Then, the construction of normal forms in Lemma 81 gives the conclusion.

Claim 111 (Specification). Let S^{\prime} be as in Claim 110. Then, it is possible to specify a function f in F_{n}, essentially at most $|I \cap K|$-ary over the coordinates indexed in $I \cap K$, such that,

$$
\mathbf{1}_{f}=S^{\prime} .
$$

Claim 112 (Construction). Let f be specified as in Claim 111. Then, it is possible to construct a term $s \in L_{I \cap K}$, such that,

$$
s^{[0, n+1]}=f .
$$

The formal proof of the previous facts is left as a future work. In the rest of this section, we sample the general construction in the case $n=3$. Consider the following instance of the constructive deductive interpolation problem of Basic logic. The input is a pair of terms r and t in L_{3}, over variables X_{1}, X_{2} and X_{2}, X_{3} respectively, such that,

$$
\mathbf{1}_{r}=\left\{\mathbf{b} \in[0,4]^{3} \mid r^{[0,4]}(\mathbf{b})=4\right\} \subseteq\left\{\mathbf{b} \in[0,4]^{3} \mid t^{[0,4]}(\mathbf{b})=4\right\}=\mathbf{1}_{t} .
$$

The expected output is a term s in L_{3}, over the variable X_{2}, such that $\mathbf{1}_{s}=\left\{\mathbf{b} \in[0,4]^{3} \mid s^{[0,4]}(\mathbf{b})=4\right\}$ satisfies,

$$
\mathbf{1}_{r} \subseteq \mathbf{1}_{s} \subseteq \mathbf{1}_{t} .
$$

To solve the problem, it is sufficient to specify a ternary BL-function $f:[0,4]^{3} \rightarrow[0,4]$, essentially unary over the second coordinate, such that $\mathbf{1}_{r} \subseteq \mathbf{1}_{f} \subseteq \mathbf{1}_{t}$. The output term s, w.l.o.g. over variable X_{2}, such that $s^{[0,4]}=f$, is then given by the construction in Lemma 81 (in this case, Lemma 46 is sufficient).

By the explicit description of BL-functions, we know that $\mathbf{1}_{r}$ can be displayed as the union of a finite number of rational polyhedra in $[0,4]^{3}$, satisfying Constraint 1 and Constraint 2. For concreteness, suppose that $\mathbf{1}_{r}$ is as in Figure 3.3(a). Since $r^{[0,4]}$ is essentially at most binary on the first and second coordinate, $t^{[0,4]}$ is essentially at most binary on the second and third coordinate, and $\mathbf{1}_{r} \subseteq \mathbf{1}_{t}$, for every point $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ in $\mathbf{1}_{r}$, the set $\left\{\left(a_{1}, b_{2}, a_{3}\right) \mid 0 \leq a_{1}, a_{3} \leq 4\right\}$ is included in $\mathbf{1}_{t}$. Hence letting,

$$
\begin{equation*}
S=\bigcup_{\left(b_{1}, b_{2}, b_{3}\right) \in \mathbf{1}_{r}}\left\{\left(a_{1}, b_{2}, a_{3}\right) \mid 0 \leq a_{1}, a_{3} \leq 4\right\}, \tag{3.7}
\end{equation*}
$$

we have $\mathbf{1}_{r} \subseteq S \subseteq \mathbf{1}_{t}$. Compare Figure 3.3(b)-(c).

Figure 3.3: Let $r \in L_{3}$ over variables X_{1} and X_{2} be such that figure (a) shows the projection $\left\{\left(b_{1}, b_{2}, 0\right) \mid\left(b_{1}, b_{2}, b_{3}\right) \in \mathbf{1}_{r}\right\}$ of $\mathbf{1}_{r}$. Note that $\left(b_{1}, b_{2}, 0\right) \in \mathbf{1}_{r}$ implies $\left\{\left(b_{1}, b_{2}, a_{3}\right) \mid 0 \leq a_{3} \leq 4\right\} \subseteq \mathbf{1}_{r}$, because $r^{[0,4]}$ is essentially at most binary over the first and second coordinate. Note also that $\mathbf{1}_{r}$ is the union of a finite number of rational polyhedra in $[0,4]^{3}$, that satisfy Constraint 1 and Constraint 2. Figure (b) shows the projection $\left\{\left(0, b_{2}, b_{3}\right) \mid\left(b_{1}, b_{2}, b_{3}\right) \in S\right\}$ of the set S defined in (3.7). For every $\left(b_{1}, b_{2}, b_{3}\right) \in \mathbf{1}_{r}$, we have $\left\{\left(a_{1}, b_{2}, a_{3}\right) \mid\right.$ $\left.0 \leq a_{1}, a_{3} \leq 4\right\} \subseteq \mathbf{1}_{t}$, so that the set S in (3.7) is contained in $\mathbf{1}_{t}$. Figure (c) displaces the projections above in $[0,4]^{3}$.

It is easy to realize that there not exists a function f in F_{3} such that $\mathbf{1}_{f}=S$. Indeed, suppose that there exists $f \in F_{3}$ such that $S=\mathbf{1}_{f}$. Then, for instance, by Constraint 1 , if $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right) \in S$ and $\mathbf{b} \in$ $C_{0<3}^{\{1\}<\{2,3\}}$, then,

$$
\left\{\left(a_{i}\right)_{i \in[n]} \in \bigcup_{j_{2} \in[3]} C_{0<j_{2}}^{\{1\}<2,3\}} \mid a_{i}-\left\lfloor a_{i}\right\rfloor=b_{i}-\left\lfloor b_{i}\right\rfloor\right\} \subseteq S .
$$

But, in the example under consideration, by inspection of Figure 3.4, we have for instance $(0,3+1 / 2,3+1 / 2) \in S$ and $(0,1+1 / 2,1+1 / 2) \notin S$. Thus, there not exists $f \in F_{3}$ such that $S=\mathbf{1}_{f}$.

The next step consists in the normalization of S. We extend S to the smallest superset $S^{\prime} \supseteq S$ that satisfies Constraints 1 and 2. In the example under consideration, we normalize S applying iteratively Constraint 1, as shown in Figure 3.5. The resulting set S^{\prime} is depicted in Figure 3.6(a).

Figure 3.4: The set S defined in (3.7) is constructed by projecting the set $\mathbf{1}_{r}$ onto the first coordinate. Compare (a) and (b). In general, there not exists $f \in F_{3}$ such that $\mathbf{1}_{f}=S$, because S violates either Constraint 1 or Constraint 2. In the example under consideration, the points highlighted in (c) should be in $S=\mathbf{1}_{f}$ by Constraint 1 , but they are not.

(a)

(b)

(c)

(d)

Figure 3.5: The normalization of the set S, defined in (3.7), consists in extending S to a superset $S^{\prime} \supseteq S$, by adding to S the minimal set of points such that the resulting S^{\prime} satisfies both Constraint 1 and Constraint 2. In figures (a)-(d), the light color marks points $\left(0, b_{2}, b_{3}\right) \in[0,4]^{3}$ that are in S, and the dark color marks points $\left(0, b_{2}, b_{3}\right) \in[0,4]^{3}$ that are not in S. It is easy to realize that, applying Constraint 1 to the light points, the dark points have to be added to S in order to obtain a normalized $S^{\prime} \supseteq S$. For instance, in (a), the light points $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right) \in C_{0<2}^{\{1\}<\{2,3\}}$, which are in S, ask for adding the dark points in $\left\{\left(a_{i}\right)_{i \in[n]} \in C_{0<1}^{\{1\}<\{2,3\}} \cup C_{0<3}^{\{1\}<\{2,3\}} \mid a_{i}-\left\lfloor a_{i}\right\rfloor=b_{i}-\left\lfloor b_{i}\right\rfloor\right\}$ to S.

Figure 3.6: (a) depicts the projection $\left\{\left(0, b_{2}, b_{3}\right) \mid\left(b_{1}, b_{2}, b_{3}\right) \in S^{\prime}\right\}$ of the set S^{\prime} that results from the normalization of S. (b) and (c) depict a pair of unary McNaughton functions, g_{1} and g_{2}. By Theorem 28, let t_{1} and t_{2} be the terms, w.l.o.g. in $L_{\{2\}}^{+}$, such that $t_{1}^{[0,1]}=g_{1}$ and $t_{2}^{[0,1]}=g_{2}$. By Lemma 81, the term $s=\left(\neg \neg t_{1}\right) \wedge\left(\neg \neg t_{2} \rightarrow t_{2}\right)$ is such that $\mathbf{1}_{f}=S^{\prime}$, and contains only variable X_{2}. Therefore, s is a deductive interpolant of r and t in Basic logic.

The normalization step guarantees that $\mathbf{1}_{r} \subseteq S^{\prime} \subseteq \mathbf{1}_{t}$: the former inclusion is trivial; the latter follows from the fact that $S \subseteq \mathbf{1}_{t}$ and $\mathbf{1}_{t}$ satisfies Constraints 1 and 2 . Given S^{\prime}, we are in the position to specify a function $f \in F_{3}$, essentially at most unary on the second coordinate, such that $\mathbf{1}_{f}=S^{\prime}$. In the example under consideration, the function $f \in F_{3}$ is specified in terms of the pair of unary McNaughton functions g_{1} and g_{2} plotted in Figure 3.6(b)-(c). An appeal to Lemma 81 concludes the construction.

Appendix

We collect in this appendix a number of technical proofs.

Proofs of Claims in Lemma 71 on Page 74

To prove Claim 72 on Page 75 and Claim 73 on Page 76, we introduce a bunch of terminology and notation.

Consider the partition of $[0, n+1]^{n}$ into $(n+1)^{n}$ blocks, whose i th block $B_{\mathbf{i}}$, indexed by the i th element $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right)$ in the lexicographical order on $\{0, \ldots, n\}^{n}$, is defined as follows:

$$
B_{\mathbf{i}}=\left\{\left(b_{1}, \ldots, b_{n}\right) \in[0, n+1]^{n} \mid \mathbf{i}_{j} \leq b_{j} \triangleleft \mathbf{i}_{j}+1 \text { for all } j \in[n]\right\},
$$

where \triangleleft is for $<$ if $i_{j}<n$ and for \leq if $i_{j}=n$. We let $\left(B_{\mathbf{i}}\right)_{j}$ denote the j th component of \mathbf{i}, that is, $\left(B_{\mathbf{i}}\right)_{j}=i_{j}$. Hence the equation,

$$
\left(B_{\mathbf{i}}\right)_{j}=k,
$$

states that every $\mathbf{b} \in B_{\mathbf{i}}$ is such that $k \leq b_{j} \triangleleft k+1$, with \triangleleft settled as above. The map enc: $L_{n} \rightarrow L_{n}^{(n+1)^{n}}$ is such that, for every $t \in L_{n}$, $\operatorname{enc}(t)=\left(t_{1}, \ldots, t_{(n+1)^{n}}\right)$ if and only if for every $i \in\left[(n+1)^{n}\right]$ and every $\mathbf{b} \in B_{\mathbf{i}}$,

$$
t^{[n+1]}(\mathbf{b})=t_{i}^{[n+1]}(\mathbf{b}) .
$$

We call enc (t) the encoding of the term t. We let enc $(t)_{i}$ denote the i th component of enc (t), that is, enc $(t)_{i}=t_{i}$.

Proof of Claim 72 on Page 75

Proof. We appeal repeatedly to Definition 3 and Fact 63 without explicit mention.
(i) We have to prove that the term $t_{(1, i)}$ given in equation (2.20) isolates X_{i} over $\left\{\mathbf{b} \mid b_{i}<1\right\}$. Let $k \in\left[(n+1)^{n}\right]$. By definition, enc $\left(X_{i}\right)_{k}=$ X_{i}. Then, enc $\left(\neg \neg X_{i}\right)_{k}=X_{i}$ if $\left(B_{\mathbf{k}}\right)_{i}=0$ and $\operatorname{enc}\left(\neg \neg X_{i}\right)_{k}=\top$ if $\left(B_{\mathbf{k}}\right)_{i}>1$. That is, $t_{(1, i)}$ isolates X_{i} over $\left\{\mathbf{b} \mid b_{i}<1\right\}$.
(ii) We have to prove that the term $t_{(2, i)}$ given in equation (2.21) isolates X_{i} over $\left\{\mathbf{b} \mid 1 \leq b_{i}\right\}$. Let $k \in\left[(n+1)^{n}\right]$. By (i), enc $\left(t_{(1, i)}\right)_{k}=X_{i}$ if $\left(B_{\mathbf{k}}\right)_{i}=0$ and $\operatorname{enc}\left(t_{(1, i)}\right)_{k}=\mathrm{T}$ otherwise. Then, $\operatorname{enc}\left(t_{(2, i)}\right)_{k}=\mathrm{T}$ if $\operatorname{enc}\left(t_{(1, i)}\right)_{k}=X_{i}$, and $\operatorname{enc}\left(t_{(2, i)}\right)_{k}=X_{i}$ if $\operatorname{enc}\left(t_{(1, i)}\right)_{k}=T$. So, Then, $\operatorname{enc}\left(t_{(2, i)}\right)_{k}=X_{i}$ if $\left(B_{\mathbf{k}}\right)_{i}>0$ and enc $\left(t_{(2, i)}\right)_{k}=\mathrm{T}$ otherwise. That is, $t_{(2, i)}$ isolates X_{i} over $\left\{\mathbf{b} \mid 1 \leq b_{i}\right\}$.
(iii) We have to prove that the term $t_{(3, i, j)}$ given in equation (2.22) isolates X_{i} over $\left\{\mathbf{b} \mid 1 \leq b_{i}, b_{j}\right\}$. Let $k \in\left[(n+1)^{n}\right]$. By (i), enc $\left(t_{(1, j)}\right)_{k}=$ X_{j} if $\left(B_{\mathbf{k}}\right)_{j}=0$ and enc $\left(t_{(1, j)}\right)_{k}=\top$ otherwise. By (ii), enc $\left(t_{(2, i)}\right)_{k}=\top$ if $\left(B_{\mathbf{k}}\right)_{i}=0$ and $\operatorname{enc}\left(t_{(2, i)}\right)_{k}=X_{i}$ otherwise. Then, enc $\left(t_{(3, i, j)}\right)_{k}$ is as follows: if $\left(B_{\mathbf{k}}\right)_{i}=\left(B_{\mathbf{k}}\right)_{j}=0$, then $\operatorname{enc}\left(t_{(3, i, j)}\right)_{k}=\mathrm{T}$; if $\left(B_{\mathbf{k}}\right)_{i}=0$ and $\left(B_{\mathbf{k}}\right)_{j}>0$, then enc $\left(t_{(3, i, j)}\right)_{k}=\mathrm{T}$; if $\left(B_{\mathbf{k}}\right)_{i}>0$ and $\left(B_{\mathbf{k}}\right)_{j}=0$, then $\operatorname{enc}\left(t_{(3, i, j)}\right)_{k}=\mathrm{T}$; if $\left(B_{\mathbf{k}}\right)_{i},\left(B_{\mathbf{k}}\right)_{j}>0$, then $\operatorname{enc}\left(t_{(3, i, j)}\right)_{k}=X_{i}$. Hence, $\operatorname{enc}\left(t_{(3, i, j)}\right)_{k}=X_{i}$ if $\left(B_{\mathbf{k}}\right)_{i},\left(B_{\mathbf{k}}\right)_{j}>0$, and $\operatorname{enc}\left(t_{(3, i, j)}\right)_{k}=\mathrm{T}$ otherwise, that is, $t_{(3, i, j)}$ isolates X_{i} over $\left\{\mathbf{b} \mid 1 \leq b_{i}, b_{j}\right\}$.
(iv) We have to prove that the term $t_{(4, i, j)}$ given in equation (2.23) isolates $X_{i} \vee X_{j}$ over $\left\{\mathbf{b} \mid 1 \leq\left\lfloor b_{i}\right\rfloor=\left\lfloor b_{j}\right\rfloor\right\}$. Let $k \in\left[(n+1)^{n}\right]$. By (ii), enc $\left(t_{(2, i)}\right)_{k}=\mathrm{T}$ if $\left(B_{\mathbf{k}}\right)_{i}=0$ and $\operatorname{enc}\left(t_{(2, i)}\right)_{k}=X_{i}$ otherwise, and $\operatorname{enc}\left(t_{(2, j)}\right)_{k}=\top$ if $\left(B_{\mathbf{k}}\right)_{j}=0$ and $\operatorname{enc}\left(t_{(2, j)}\right)_{k}=X_{j}$ otherwise. So, for $s_{1}=\left(\left(t_{(2, i)} \rightarrow t_{(2, j)}\right) \rightarrow t_{(2, j)}\right)$, enc $\left(s_{1}\right)$ is as follows: if $\left(B_{\mathbf{k}}\right)_{i}=$ $\left(B_{\mathbf{k}}\right)_{j}=0$, then enc $\left(s_{1}\right)_{k}=\mathrm{T}$ (via $\left.(\top \rightarrow \mathrm{T}) \rightarrow \mathrm{T}\right)$; if $\left(B_{\mathbf{k}}\right)_{i}=0$ and $\left(B_{\mathbf{k}}\right)_{j}>0$, then enc $\left(s_{1}\right)_{k}=\top$ (via $\left.\left(\top \rightarrow X_{j}\right) \rightarrow X_{j}\right)$; if $\left(B_{\mathbf{k}}\right)_{i}>0$ and $\left(B_{\mathbf{k}}\right)_{j}=0$, then enc $\left(s_{1}\right)_{k}=\mathrm{T}\left(\operatorname{via}\left(X_{i} \rightarrow \mathrm{~T}\right) \rightarrow \mathrm{T}\right)$; if $\left(B_{\mathbf{k}}\right)_{i},\left(B_{\mathbf{k}}\right)_{j}>$ 0 , there are three cases (via $\left(X_{i} \rightarrow X_{j}\right) \rightarrow X_{j}$): if $\left(B_{\mathbf{k}}\right)_{i}<\left(B_{\mathbf{k}}\right)_{j}$, then enc $\left(s_{1}\right)_{k}=X_{j}$; if $\left(B_{\mathbf{k}}\right)_{i}=\left(B_{\mathbf{k}}\right)_{j}$, then enc $\left(s_{1}\right)_{k}=X_{i} \vee X_{j}$; if $\left(B_{\mathbf{k}}\right)_{i}>\left(B_{\mathbf{k}}\right)_{j}$, then enc $\left(s_{1}\right)_{k}=\mathrm{T}$. Hence, enc $\left(s_{1}\right)_{k}=X_{i} \vee X_{j}$ if $\left(B_{\mathbf{k}}\right)_{i}=\left(B_{\mathbf{k}}\right)_{j}>0, \operatorname{enc}\left(s_{1}\right)_{k}=X_{j}$ if $0<\left(B_{\mathbf{k}}\right)_{i}<\left(B_{\mathbf{k}}\right)_{j}, \operatorname{enc}\left(s_{1}\right)_{k}=\mathrm{T}$ if $\left(B_{\mathbf{k}}\right)_{i}>\left(B_{\mathbf{k}}\right)_{j}>0$, and enc $\left(s_{1}\right)_{k}=\top$ otherwise. Similarly, for $s_{2}=\left(\left(t_{(2, j)} \rightarrow t_{(2, i)}\right) \rightarrow t_{(2, i)}\right), \operatorname{enc}\left(s_{2}\right)_{k}=X_{i} \vee X_{j}$ if $\left(B_{\mathbf{k}}\right)_{i}=\left(B_{\mathbf{k}}\right)_{j}>0$, $\operatorname{enc}\left(s_{2}\right)_{k}=\mathrm{T}$ if $0<\left(B_{\mathbf{k}}\right)_{i}<\left(B_{\mathbf{k}}\right)_{j}, \operatorname{enc}\left(s_{2}\right)_{k}=X_{i}$ if $\left(B_{\mathbf{k}}\right)_{i}>\left(B_{\mathbf{k}}\right)_{j}>0$, and enc $\left(s_{2}\right)_{k}=T$ otherwise. Therefore, enc $\left(\theta_{4, i, j}\right)_{k}=X_{i} \vee X_{j}$ if $\left(B_{\mathbf{k}}\right)_{i}=$ $\left(B_{\mathbf{k}}\right)_{j}>0$ and $\operatorname{enc}\left(\theta_{4, i, j}\right)_{k}=\mathrm{T}$ otherwise, that is, $\theta_{4, i, j}$ isolates $X_{i} \vee X_{j}$
over $\left\{\mathbf{b} \mid 1 \leq\left\lfloor b_{i}\right\rfloor=\left\lfloor b_{j}\right\rfloor\right\}$.
(v) We have to prove that the term $t_{(5, i, j)}$ given in equation (2.24) isolates X_{i} over $\left\{\mathbf{b} \mid 1 \leq\left\lfloor b_{j}\right\rfloor<\left\lfloor b_{i}\right\rfloor\right\}$. Let $k \in\left[(n+1)^{n}\right]$. We have: $\operatorname{enc}\left(\left(X_{i} \rightarrow X_{j}\right) \rightarrow X_{j}\right)_{k}=X_{i} \vee X_{j}$ if $\left(B_{\mathbf{k}}\right)_{i}=\left(B_{\mathbf{k}}\right)_{j}, \operatorname{enc}\left(\left(X_{i} \rightarrow X_{j}\right) \rightarrow\right.$ $\left.X_{j}\right)_{k}=\top$ if $\left(B_{\mathbf{k}}\right)_{i}>\left(B_{\mathbf{k}}\right)_{j}$ and $\operatorname{enc}\left(\left(X_{i} \rightarrow X_{j}\right) \rightarrow X_{j}\right)_{k}=X_{j}$ if $\left(B_{\mathbf{k}}\right)_{i}<$ $\left(B_{\mathbf{k}}\right)_{j} ; \operatorname{enc}\left(t_{(2, i)} \vee t_{(2, j)}\right)_{k}=X_{i} \vee X_{j}$ if $\left(B_{\mathbf{k}}\right)_{i}=\left(B_{\mathbf{k}}\right)_{j}>0$ and enc $\left(t_{(2, i)} \vee\right.$ $\left.t_{(2, j)}\right)_{k}=\mathrm{T}$ otherwise. Hence, enc $\left(t_{(5, i, j)}\right)_{k}=X_{i}$ if $\left(B_{\mathbf{k}}\right)_{i}>\left(B_{\mathbf{k}}\right)_{j}>0$, and $\operatorname{enc}\left(t_{(5, i, j)}\right)_{k}=\mathrm{T}$ otherwise, that is, $t_{(5, i, j)}$ isolates X_{i} over $\{\mathbf{b} \mid 1 \leq$ $\left.\left\lfloor b_{j}\right\rfloor<\left\lfloor b_{i}\right\rfloor\right\}$.
(vi) We have to prove that the term $t_{(6, i, j)}$ given in equation (2.25) isolates X_{j} over $\left\{\mathbf{b} \mid 0 \leq\left\lfloor b_{j}\right\rfloor \leq\left\lfloor b_{i}\right\rfloor\right\}$. Let $k \in\left[(n+1)^{n}\right]$. By (iii) and (v), for all k, enc $\left(t_{(5, j, i)} \rightarrow t_{(3, j, i)}\right)_{k}=X_{j}$ if $\left(B_{\mathbf{k}}\right)_{j}=\left(B_{\mathbf{k}}\right)_{i}>0$ or $\left(B_{\mathbf{k}}\right)_{j}>\left(B_{\mathbf{k}}\right)_{i}>0$, and $\operatorname{enc}\left(t_{(5, j, i)} \rightarrow t_{(3, j, i)}\right)_{k}=T$ otherwise. Hence, by (i), for all k, enc $\left(t_{(6, i, j)}\right)_{k}=X_{j}$ if $\left(B_{\mathbf{k}}\right)_{j}=\left(B_{\mathbf{k}}\right)_{i}>0$ or $\left(B_{\mathbf{k}}\right)_{j}>\left(B_{\mathbf{k}}\right)_{i}>0$ or $\left(B_{\mathbf{k}}\right)_{j}=0$, and $\operatorname{enc}\left(t_{(6, i, j)}\right)_{k}=\mathrm{T}$ otherwise, that is, $t_{(6, i, j)}$ isolates X_{j} over $\left\{\mathbf{b} \mid 0 \leq\left\lfloor b_{j}\right\rfloor \leq\left\lfloor b_{i}\right\rfloor\right\}$.

The claim is proved.

Proof of Claim 73 on Page 76

Proof. By hypothesis, $\mathbf{a} \in[0,1]^{n}$ is such that $i \in \operatorname{par}(\mathbf{a})$ and $j \in \operatorname{par}(\mathbf{a})^{\prime}=$ $[n] \backslash \operatorname{par}(\mathbf{a})$. We appeal repeatedly to Claim 72, Definition 3 and Fact 63 without explicit mention. For $n=2$, Lemma 58(i) settles the claim. So, we assume $n \geq 3$. We split the proof of the claim in two parts.

Part 1: We prove that the term,

$$
r_{(i, \mathbf{a})}=\bigvee_{j^{\prime} \in \operatorname{par}(\mathbf{a})^{\prime}} t_{\left(1, j^{\prime}\right)} \vee \bigvee_{i^{\prime} \in \operatorname{par}(\mathbf{a} \backslash \backslash\{i\}} t_{\left(3, i, i^{\prime}\right)},
$$

with the stipulation that $t_{(2, i)}$ substitutes $\bigvee_{i^{\prime} \in \operatorname{par}(\mathbf{a}) \backslash\{i\}} t_{\left(3, i, i^{\prime}\right)}$ if $\operatorname{par}(\mathbf{a})=$ $\{i\}$, isolates X_{i} over,

$$
\begin{aligned}
D_{(i, \mathbf{a})} & =\left\{\mathbf{b} \notin[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a}))\right\} \\
& =\left\{\mathbf{b} \mid b_{j^{\prime}}<1 \leq b_{i^{\prime}} \text { for all }\left(j^{\prime}, i^{\prime}\right) \in \operatorname{par}(\mathbf{a})^{\prime} \times \operatorname{par}(\mathbf{a})\right\} .
\end{aligned}
$$

First suppose that $\operatorname{par}(\mathbf{a})=\{i\}$, so that $\operatorname{par}(\mathbf{a})^{\prime}=\left\{j, j^{\prime}, \ldots\right\}$. We have $r_{(i, \mathbf{a})}=t_{(1, j)} \vee t_{\left(1, j^{\prime}\right)} \vee \cdots \vee t_{(2, i)}$. Let $k \in\left[(n+1)^{n}\right]$. Let $B_{\mathbf{k}} \in D_{(i, \mathbf{a})}$,
that is, $0=\left(B_{\mathbf{k}}\right)_{j},\left(B_{\mathbf{k}}\right)_{j^{\prime}}, \cdots<1 \leq\left(B_{\mathbf{k}}\right)_{i}$. Hence, enc $\left(t_{(1, j)}\right)_{k}=X_{j}$, $\operatorname{enc}\left(t_{\left(1, j^{\prime}\right)}\right)_{k}=X_{j^{\prime}}, \ldots, \operatorname{enc}\left(t_{(2, i)}\right)_{k}=X_{i}$. But then, $\operatorname{enc}\left(r_{(i, \mathbf{a})}\right)_{k}=X_{i}$. Otherwise, let $B_{\mathbf{k}} \notin D_{(i, \mathbf{a})}$, that is, either $1 \leq\left(B_{\mathbf{k}}\right)_{j}$, or $1 \leq\left(B_{\mathbf{k}}\right)_{j^{\prime}}, \ldots$, or $\left(B_{\mathbf{k}}\right)_{i}=0$. Hence, either $\operatorname{enc}\left(t_{(1, j)}\right)_{k}=\mathrm{T}$, or $\operatorname{enc}\left(t_{\left(1, j^{\prime}\right)}\right)_{k}=\top, \ldots$, or $\operatorname{enc}\left(t_{(2, i)}\right)_{k}=\mathrm{T}$. But then, enc $\left(r_{(i, \mathbf{a})}\right)_{k}=\mathrm{T}$. Noticing that $B_{\mathbf{k}}$ lies entirely inside or entirely outside $D_{(i, \mathbf{a})}$, we conclude that if $\operatorname{par}(\mathbf{a})=$ $\{i\}$, then $r_{(i, \mathbf{a})}$ isolates X_{i} over $D_{(i, \mathbf{a})}$.

Next suppose that $\operatorname{par}(\mathbf{a})=\left\{i, i^{\prime}, \ldots\right\}$ and $\operatorname{par}(\mathbf{a})^{\prime}=\left\{j, j^{\prime}, \ldots\right\}$. We have $r_{(i, \mathbf{a})}=t_{(1, j)} \vee t_{\left(1, j^{\prime}\right)} \vee \cdots \vee t_{\left(3, i, i^{\prime}\right)} \vee \ldots$ Let $k \in\left[(n+1)^{n}\right]$. Let $B_{\mathbf{k}} \in D_{(i, \mathbf{a})}$, that is, $0=\left(B_{\mathbf{k}}\right)_{j},\left(B_{\mathbf{k}}\right)_{j^{\prime}}, \cdots<1 \leq\left(B_{\mathbf{k}}\right)_{i},\left(B_{\mathbf{k}}\right)_{i^{\prime}}, \ldots$, so that, $\operatorname{enc}\left(t_{(1, j)}\right)_{k}=X_{j}, \operatorname{enc}\left(t_{\left(1, j^{\prime}\right)}\right)_{k}=X_{j^{\prime}}, \ldots, \operatorname{enc}\left(t_{\left(3, i, i^{\prime}\right)}\right)_{k}=X_{i}, \ldots$ But then, enc $\left(r_{(i, \mathbf{a})}\right)_{k}=X_{i}$. Otherwise, let $B_{\mathbf{k}} \notin D_{(i, \mathbf{a})}$, that is, either $1 \leq\left(B_{\mathbf{k}}\right)_{j}$, or $1 \leq\left(B_{\mathbf{k}}\right)_{j^{\prime}}, \ldots$, or $\left(B_{\mathbf{k}}\right)_{i}=0$, or $\left(B_{\mathbf{k}}\right)_{i^{\prime}}=0, \ldots$. Hence, either $\operatorname{enc}\left(t_{(1, j)}\right)_{k}=\mathrm{T}$, or $\operatorname{enc}\left(t_{\left(1, j^{\prime}\right)}\right)_{k}=\mathrm{T}, \ldots$, or $\operatorname{enc}\left(t_{\left(3, i, i^{\prime}\right)}\right)_{k}=\mathrm{T}$, \ldots.. But then, $\operatorname{enc}\left(r_{(i, \mathbf{a})}\right)_{k}=\top$. Noticing that $B_{\mathbf{k}}$ lies entirely inside or entirely outside $D_{(i, \mathbf{a})}$, we conclude that if $\operatorname{par}(\mathbf{a})=\left\{i, i^{\prime}, \ldots\right\}$ and $\operatorname{par}(\mathbf{a})^{\prime}=\left\{j, j^{\prime}, \ldots\right\}$, then $r_{(i, \mathbf{a})}$ isolates X_{i} over $D_{(i, \mathbf{a})}$.

The case $\operatorname{par}(\mathbf{a})=\left\{i, i^{\prime}, \ldots\right\}$ and $\operatorname{par}(\mathbf{a})^{\prime}=\{j\}$ is similar.

Part 2: We prove that the term,

$$
s_{(i, \mathbf{a})}=t_{(5, i, j)} \vee \bigvee_{j^{\prime}<j^{\prime \prime} \in \operatorname{par}(\mathbf{a})^{\prime}} t_{\left(4, j^{\prime}, j^{\prime \prime}\right)} \vee \bigvee_{i^{\prime} \in \operatorname{par}(\mathbf{a}) \backslash\{i\}}\left(t_{\left(6, j, i^{\prime}\right)} \rightarrow t_{(5, i, j)}\right)
$$

isolates X_{i} over,

$$
\begin{aligned}
E_{(i, \mathbf{a})} & =\left\{\mathbf{b} \in[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a}))\right\} \\
& =\bigcup_{m \in[n]}\left\{\mathbf{b} \mid m \leq b_{j^{\prime}}<m+1 \leq b_{i^{\prime}} \text { for all }\left(j^{\prime}, i^{\prime}\right) \in \operatorname{par}(\mathbf{a})^{\prime} \times \operatorname{par}(\mathbf{a})\right\} .
\end{aligned}
$$

First suppose that $\operatorname{par}(\mathbf{a})=\left\{i, i^{\prime}, \ldots\right\}$ and $\operatorname{par}(\mathbf{a})^{\prime}=\left\{j, j^{\prime}, j^{\prime \prime}, \ldots\right\}$. We have $s_{(i, \mathbf{a})}=t_{(5, i, j)} \vee t_{\left(4, j^{\prime}, j^{\prime \prime}\right)} \vee \cdots \vee\left(t_{\left(6, j, i^{\prime}\right)} \rightarrow t_{(5, i, j)}\right) \vee \ldots$ Let $k \in\left[(n+1)^{n}\right]$. Let $B_{\mathbf{k}} \in E_{(i, \mathbf{a})}$, that is, there exists $1 \leq m \leq n$ such that $m=\left(B_{\mathbf{k}}\right)_{j},\left(B_{\mathbf{k}}\right)_{j^{\prime}},\left(B_{\mathbf{k}}\right)_{j^{\prime \prime}}, \cdots<m+1 \leq\left(B_{\mathbf{k}}\right)_{i},\left(B_{\mathbf{k}}\right)_{i^{\prime}}, \ldots$, so that, $\operatorname{enc}\left(t_{(5, i, j)}\right)_{k}=X_{i}, \operatorname{enc}\left(t_{\left(4, j^{\prime}, j^{\prime \prime}\right)}\right)_{k}=X_{j^{\prime}} \vee X_{j^{\prime \prime}}, \ldots, \operatorname{enc}\left(t_{\left(6, j, i^{\prime}\right)}\right)_{k}=\top, \ldots$. Hence, enc $\left(X_{i} \vee\left(X_{j^{\prime}} \vee X_{j^{\prime \prime}}\right) \vee \cdots \vee\left(\top \rightarrow X_{i}\right) \vee \ldots\right)_{k}=\operatorname{enc}\left(s_{(i, \mathbf{a})}\right)_{k}=X_{i}$. Otherwise, let $B_{\mathbf{k}} \notin E_{(i, \mathbf{a})}$. Let $\left(B_{\mathbf{k}}\right)_{j}=m$. If $m=0$, then $\operatorname{enc}\left(t_{(5, i, j)}\right)_{k}=$ T . Otherwise, $1 \leq m \leq n+1$. Since we are assuming $B_{\mathbf{k}} \notin E_{(i, \mathbf{a})}$, either
$\left(B_{\mathbf{k}}\right)_{j^{\prime}} \neq m$, or $\left(B_{\mathbf{k}}\right)_{j^{\prime \prime}} \neq m, \ldots$, or $\left(B_{\mathbf{k}}\right)_{i}<m+1$, or $\left(B_{\mathbf{k}}\right)_{i^{\prime}}<m+1$, \ldots. If $1<\left|\left\{\lfloor j\rfloor,\left\lfloor j^{\prime}\right\rfloor,\left\lfloor j^{\prime \prime}\right\rfloor, \ldots\right\}\right|$, then if w.l.o.g. $\left\lfloor j^{\prime}\right\rfloor \neq\left\lfloor j^{\prime \prime}\right\rfloor$, we have $\operatorname{enc}\left(t_{\left(4, j^{\prime}, j^{\prime \prime}\right)}\right)_{k}=T$. Otherwise, $\{m\}=\left\{\lfloor j\rfloor,\left\lfloor j^{\prime}\right\rfloor,\left\lfloor j^{\prime \prime}\right\rfloor, \ldots\right\}$. But then, either $\left(B_{\mathbf{k}}\right)_{i}<m+1$, or $\left(B_{\mathbf{k}}\right)_{i^{\prime}}<m+1, \ldots$, say w.l.o.g. $\left(B_{\mathbf{k}}\right)_{i^{\prime}}<m+1$, and we have enc $\left(t_{\left(6, j, i^{\prime}\right)}\right)_{k}=X_{i^{\prime}}$. But we also have, enc $\left(t_{(5, i, j)}\right)_{k}=\mathrm{T}$, so that enc $\left(t_{\left(6, j, i^{\prime}\right)} \rightarrow t_{(5, i, j)}\right)_{k}=T$. Hence, in all cases, enc $\left(s_{(i, \mathbf{a})}\right)_{k}=$ T. Noticing that $B_{\mathbf{k}}$ lies entirely inside or entirely outside $E_{(i, \mathbf{a})}$, we conclude that if $\operatorname{par}(\mathbf{a})=\left\{i, i^{\prime}, \ldots\right\}$ and $\operatorname{par}(\mathbf{a})^{\prime}=\left\{j, j_{1}^{\prime}, \ldots\right\}$, then $s_{(i, \mathbf{a})}$ isolates X_{i} over $E_{(i, \mathbf{a})}$.

The cases where either $\operatorname{par}(\mathbf{a})=\{i\}$ or (exclusively) $\operatorname{par}(\mathbf{a})^{\prime}=\{j\}$ are subsumed by the previous argument. Indeed, if $\operatorname{par}(\mathbf{a})=\{i\}$, we have $s_{(i, \mathbf{a})}=t_{(5, i, j)} \vee t_{\left(4, j^{\prime}, j^{\prime \prime}\right)} \vee \ldots$, and if $\operatorname{par}(\mathbf{a})^{\prime}=\{j\}$, we have $s_{(i, \mathbf{a})}=$ $t_{(5, i, j)} \vee\left(t_{\left(6, j, i^{\prime}\right)} \rightarrow t_{(5, i, j)}\right) \vee \ldots$

The claim is proved.

Proof of Claim 74 on Page 77

Proof. We have to prove that the term $r_{(i, \mathbf{u})}$ in equation (2.28) isolates X_{i} over $D_{(i, \mathbf{u})}$, and the term $s_{(i, \mathbf{u})}$ in equation (2.29) isolates X_{i} over $E_{(i, \mathbf{u})}$. We repeatedly apply Definitions 31 and 32 without explicit mention.

For the first statement, if $\mathbf{b} \in[1, n+1]^{n}$, then $r_{(i, \mathbf{a})}(\mathbf{b})=T^{[0, n+1]}$ by Lemma 71(i), so that $r_{(i, \mathbf{u})}^{[0, n+1]}(\mathbf{b})=T^{[0, n+1]}$ by Definition 3, as required. Otherwise, let $\mathbf{b} \notin[1, n+1]^{n}$ such that $\mathbf{b} \in \operatorname{realm}($ neigh $(\mathbf{a}))$. Note that realm(sibl $(\mathbf{u})) \subseteq \operatorname{realm}($ neigh $(\mathbf{a}))$, since we settled $\mathbf{a}=\mathbf{u}$. If $\mathbf{b} \notin$ realm $(\operatorname{sibl}(\mathbf{u}))$, then by construction,

$$
t_{\left\{1 \backslash j_{1}, \ldots, m-n \backslash j_{m-n}\right\}}^{[0, n+1]}(\mathbf{b})<1 .
$$

Thus, since $1 \leq r_{(i, \mathbf{a})}(\mathbf{b})$ by Lemma 71(i), we have that $r_{(i, \mathbf{u})}^{[0, n+1]}(\mathbf{b})=$ $T^{[0, n+1]}$ by Definition 3, as required. Otherwise, if $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$, then by construction,

$$
t_{\left\{1 \backslash j_{1}, \ldots, m-n \backslash j_{m-n}\right\}}^{[0, n+1]}(\mathbf{b})=T^{[0, n+1]},
$$

so that $r_{(i, \mathbf{u})}^{[0, n+1]}(\mathbf{b})=X_{i}^{[0, n+1]}$ by Definition 3, as required.

For the second statement, if $\mathbf{b} \notin[1, n+1]^{n}$, then $s_{(i, \mathbf{a})}(\mathbf{b})=\top^{[0, n+1]}$ by Lemma $71(\mathbf{i})$, so that $s_{(i, \mathbf{u})}^{[0, n+1]}(\mathbf{b})=\top^{[0, n+1]}$ by Definition 3, as required. Otherwise, let $\mathbf{b} \in[1, n+1]^{n}$ such that $\mathbf{b} \in \operatorname{realm}($ neigh $(\mathbf{a}))$. Note that $\operatorname{realm}(\operatorname{sibl}(\mathbf{u})) \subseteq \operatorname{realm}(\operatorname{neigh}(\mathbf{a}))$, since we settled $\mathbf{a}=\mathbf{u}$. If $\mathbf{b} \notin \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$, then by construction,

$$
m \leq t_{\left\{1 \backslash j_{1}, \ldots, m-n \backslash j_{m-n}\right\}}^{[0, n+1]}(\mathbf{b})<m+1
$$

where $m=\min \left\{\left\lfloor b_{i}\right\rfloor \mid i \in[n]\right\}$. But, by Lemma 71(i), $m \leq s_{(i, \mathbf{a})}(\mathbf{b})$. Thus, $s_{(i, \mathbf{u})}^{[0, n+1]}(\mathbf{b})=\top^{[0, n+1]}$ by Definition 3, as required. Otherwise, if $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$, then by construction,

$$
t_{\left\{1 \backslash j_{1}, \ldots, m-n \backslash j_{m-n}\right\}}^{[0, n+1]}(\mathbf{b})=\top^{[0, n+1]}
$$

so that $s_{(i, \mathbf{u})}^{[0, n+1]}(\mathbf{b})=X_{i}^{[0, n+1]}$ by Definition 3, as required.
The claim is proved.

Proof of Claim 75 on Page 77

Proof. We have to prove that the term $r_{(i, \mathbf{u})}$ in equation (2.30) isolates X_{i} over $D_{(i, \mathbf{u})}$, and the term $s_{(i, \mathbf{u})}$ in equation (2.31) isolates X_{i} over $E_{(i, \mathbf{u})}$. We repeatedly apply Definitions 31 and 32 without explicit mention.

As regards to $r_{(i, \mathbf{u})}$, let $s=t_{\left\{1 \backslash j_{1}, \ldots, m-n \backslash j_{m-n}\right\}} \rightarrow r_{(i, \mathbf{a})}$, and let $s^{\prime}=$ $\bigwedge_{j=1}^{k} r_{\left(i, \mathbf{u}_{j}\right)}$. Reasoning along the lines of Claim 74, we observe that by construction s isolates X_{i} over $\left\{\mathbf{b} \notin[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(F)\right\}$. By the induction hypothesis, for all $j \in[k], r_{\left(i, \mathbf{u}_{j}\right)}$ isolates X_{i} over $\{\mathbf{b} \notin$ $\left.[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}\left(\operatorname{sibl}\left(\mathbf{u}_{j}\right)\right)\right\}$. Note that,

$$
\left\{\operatorname{realm}(\operatorname{sibl}(\mathbf{u})), \operatorname{realm}\left(\operatorname{sibl}\left(\mathbf{u}_{1}\right)\right), \ldots, \operatorname{realm}\left(\operatorname{sibl}\left(\mathbf{u}_{k}\right)\right)\right\}
$$

form a partition of $\operatorname{realm}(F)$. Now, if $\mathbf{b} \in[1, n+1]^{n}$ or $\mathbf{b} \notin \operatorname{realm}(F)$, then $s^{[0, n+1]}(\mathbf{b})=\top^{[0, n+1]}$ and $r_{(i, \mathbf{u})}^{[0, n+1]}(\mathbf{b})=\top^{[0, n+1]}$, as required. Otherwise, let $\mathbf{b} \notin[1, n+1]^{n} \cap \operatorname{realm}(F)$. If $\mathbf{b} \in \operatorname{realm}\left(\operatorname{sibl}\left(\mathbf{u}_{j}\right)\right)$ for some $j \in$ $[k]$, then $s^{[0, n+1]}(\mathbf{b})=X_{i}^{[0, n+1]}$, so that since $s^{[0, n+1]}(\mathbf{b})=X_{i}^{[0, n+1]}(\mathbf{b})$, we have $r_{(i, \mathbf{u})}^{[0, n+1]}(\mathbf{b})=\top^{[0, n+1]}$ by Definition 3, as required. Otherwise, if $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$, then $s^{[0, n+1]}(\mathbf{b})=T^{[0, n+1]}$, so that since $s^{[0, n+1]}(\mathbf{b})=X_{i}^{[0, n+1]}(\mathbf{b})$, we have $r_{(i, \mathbf{u})}^{[0, n+1]}(\mathbf{b})=X_{i}^{[0, n+1]}$ by Definition 3, as required. Hence, $r_{(i, \mathbf{u})}$ isolates X_{i} over $D_{(i, \mathbf{u})}$. As regards to $s_{(i, \mathbf{u})}$, a similar argument shows that $s_{(i, \mathbf{u})}$ isolates X_{i} over $E_{(i, \mathbf{u})}$.

The claim is proved.

Proof of Claim 76 on Page 78

Proof. Let $i \in[n]$. For every $\mathbf{a} \in[0,1]^{n}$, we let $\operatorname{par}(\mathbf{a})^{\prime}=[n] \backslash \operatorname{par}(\mathbf{a})$. We split the proof of the claim in two parts. We repeatedly apply Definitions 31 and 32 without explicit mention.

Part 1: We have to prove that the term $v_{i}=\neg \neg X_{i}$ isolates X_{i} over,

$$
J_{i}=\left\{\mathbf{b} \notin[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a})), \mathbf{a} \in[0,1]^{n}, i \in \operatorname{par}(\mathbf{a})^{\prime}\right\} .
$$

By Claim 72(i), $\neg \neg X_{i}$ isolates X_{i} over $H_{i}=\left\{\mathbf{b} \mid b_{i}<1\right\}$. Hence, it is sufficient to prove that $J_{i}=H_{i}$. If $\mathbf{b} \in J_{i}$, then $b_{j}<1$ for every $j \in \operatorname{par}(\mathbf{a})^{\prime}$, hence $\mathbf{b} \in H_{i}$. Conversely, let $\mathbf{b} \in H_{i}$ (so that $\mathbf{b} \notin[1, n+1]^{n}$), and let $\mathbf{a}=\operatorname{controller}(\mathbf{b})$. Then, $i \notin \operatorname{par}(\mathbf{a})$ and $\mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a}))$. Hence, $\mathbf{b} \in J_{i}$.

Part 2: We have to prove that the term,

$$
w_{i}=\left(\bigwedge_{\mathbf{a} \in A}\left(r_{(i, \mathbf{a})} \wedge s_{(i, \mathbf{a})}\right)\right) \rightarrow\left(\neg \neg X_{i} \rightarrow X_{i}\right),
$$

where $A=\left\{\mathbf{a} \in[0,1]^{n} \mid i \in \operatorname{par}(\mathbf{a})\right\}$, and $r_{(i, \mathbf{a})}$ and $s_{(i, \mathbf{a})}$ are as in Lemma 71(i), isolates X_{i} over,

$$
K_{i}=\left\{\mathbf{b} \in[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a})), \mathbf{a} \in[0,1]^{n}, i \in \operatorname{par}(\mathbf{a})^{\prime}\right\} .
$$

By Claim 72(ii), $\neg \neg X_{i} \rightarrow X_{i}$ isolates X_{i} over $H_{i}=\left\{\mathbf{b} \mid 1 \leq b_{i}\right\}$. Clearly, $K_{i} \subseteq H_{i}$. Let $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in H_{i}$, so that $1 \leq b_{i}$. If $\mathbf{b} \notin K_{i}$, then either there exists $\mathbf{a} \in[0,1]^{n}$ such that $\mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a}))$ and $i \in \operatorname{par}(\mathbf{a})$, or else $\mathbf{b} \notin[1, n+1]^{n}$, so that there exists $j \neq i$ such that $b_{j}<1$, and again there exists $\mathbf{a} \in[0,1]^{n}$ such that $\mathbf{b} \in \operatorname{realm}($ neigh $(\mathbf{a}))$ and $i \in \operatorname{par}(\mathbf{a})$. Hence, by Lemma 71(i), $r_{(i, \mathbf{a})}^{[0, n+1]}(\mathbf{b})=X_{i}^{[0, n+1]}(\mathbf{b})$ or $s_{(i, \mathbf{a})}^{[0, n+1]}(\mathbf{b})=X_{i}^{[0, n+1]}(\mathbf{b})$. Therefore, if $\mathbf{b} \notin K_{i}$, then $w_{i}^{[0, n+1]}(\mathbf{b})=$ $\mathrm{T}^{[0, n+1]}$, as required. Otherwise, if $\mathbf{b} \in K_{i}$, then there not exists $\mathbf{a} \in A$ such that $\mathbf{b} \in \operatorname{realm}(\operatorname{neigh}(\mathbf{a}))$ and $i \in \operatorname{par}(\mathbf{a})$, and then, by Lemma 71(i), we have that $r_{(i, \mathbf{a})}^{[0, n+1]}(\mathbf{b})=s_{(i, \mathbf{a})}^{[0, n+1]}(\mathbf{b})=\top^{[0, n+1]}$ for every $\mathbf{a} \in A$. Therefore, if $\mathbf{b} \in K_{i}$, then $w_{i}^{[0, n+1]}(\mathbf{b})=X_{i}$, as required.

The claim is proved.

Proofs of Claims in Lemma 77 on Page 78

We collect below the proofs of the claims in Lemma 77.

Proof of Claim 78 on Page 79

Proof. We prove that \hat{t} satisfies the claim, that is, \hat{t} isolates t over $\{\mathbf{b} \notin$ $[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u})), \mathbf{u} \in \tilde{U}, \mathbf{u} \in[0,1)^{n}$ or $\left.t^{[0,1]}(\mathbf{u})<1\right\}$.

Let $\mathbf{b} \in[0, n+1]^{n}$. If $\mathbf{b} \in[1, n+1]^{n}$, then since $v_{1}^{[0, n+1]}(\mathbf{b})=\cdots=$ $v_{n}^{[0, n+1]}(\mathbf{b})=\top^{[0, n+1]}$ by Lemma 71(iii), and $t \in L_{n}^{+}$by hypothesis, we have that $\hat{t}(\mathbf{b})=\top^{[0, n+1]}$, as required. Otherwise, if $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$ for some $\mathbf{u} \in \tilde{U}$ such that $\mathbf{u} \in[0,1)^{n}$, then since $v_{1}^{[0, n+1]}(\mathbf{b})=X_{1}^{[0, n+1]}(\mathbf{b})$, $\ldots, v_{n}^{[0, n+1]}(\mathbf{b})=X_{n}^{[0, n+1]}(\mathbf{b})$ by Lemma 71(iii), we have that $\hat{t}(\mathbf{b})=$ $t^{[0, n+1]}(\mathbf{b})$, as required. Otherwise, let $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$ for some $\mathbf{u} \in \tilde{U}$ such that $\emptyset \subset \operatorname{par}(\mathbf{u}) \subset[n]$. We distinguish two cases. As a first case, suppose that $t^{[0,1]}(\mathbf{u})<1$. By the third clause of equation (2.18) in Lemma 68, $t^{[0, n+1]}(\mathbf{b})=t^{[0,1]}($ controller $(\mathbf{b}))+j$, where in this case, since $\mathbf{b} \notin[1, n+1]^{n}$ we have $j=0$. Hence,

$$
\begin{aligned}
\hat{t}^{[0, n+1]}(\mathbf{b}) & =t_{\left\{\left\{\backslash v_{1}, \ldots, n \backslash v_{n}\right\}\right.}^{[0, n)}(\mathbf{b}) \\
& =t_{\{\{, n+1] \mid k \in \operatorname{par}(\mathbf{u})\} \cup\{k \backslash k \mid k \notin \operatorname{par}(\mathbf{u})\}}^{[0,}(\mathbf{b}) \\
& =t_{\{k T \mid}^{[0,1]}(k \in \operatorname{par}(\mathbf{u})\} \cup\{k \backslash k \mid k \notin \operatorname{par}(\mathbf{u})\} \\
& =t^{[0, n+1]}(\mathbf{b}),
\end{aligned}
$$

as required. As a second case, suppose that $t^{[0,1]}(\mathbf{u})=1$. By the fourth clause of equation (2.18) in Lemma 68, there exists a 1-reproducing term $\bar{t} \in L_{\mathrm{par}(\mathbf{u})}$ such that $t^{[0, n+1]}(\mathbf{b})=\bar{t}^{[0, n+1]}(\mathbf{b})$. Hence,

$$
\begin{aligned}
\hat{t}^{[0, n+1]}(\mathbf{b}) & =t_{\left\{\left\{\backslash 1, \ldots, \ldots, n \backslash v_{n}\right\}\right.}^{[0, n+1]}(\mathbf{b}) \\
& =t_{\{k|1| k \in \operatorname{par}(\mathbf{u})\} \cup\{k \backslash k \mid k \notin \operatorname{par}(\mathbf{u})\}}^{[0, n+1]}(\mathbf{b}) \quad \text { Lemma 71(iii) } \\
& =\bar{t}_{\{j \backslash T \mid j \in \operatorname{par}(\mathbf{u})\} \cup\{j \backslash j \mid j \notin \operatorname{par}(\mathbf{u})\}}^{[0,1]} \\
& =\mathrm{T}^{[0, n+1]},
\end{aligned}
$$

as required (the last equality holds because \bar{t} is 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$). Hence, \hat{t} satisfies the claim.

A similar argument shows that \check{t} satisfies the claim.

Proof of Claim 79 on Page 79

Proof. We prove that \hat{t} isolates t over the union of $[1, n+1]^{n}$ and $\{\mathbf{b} \in$ $\operatorname{realm}(\operatorname{sibl}(\mathbf{u})) \mid \mathbf{u} \in \tilde{U}, \mathbf{u} \in[0,1)^{n}$ or $\left.t^{[0,1]}(\mathbf{u})<1\right\}$. Since $t=\neg t^{\prime}$ with $t^{\prime} \in L_{n}^{+}$by hypothesis, we can apply Claim 78 to t^{\prime}. Let $\mathbf{b} \in[0, n+1]^{n}$. If $\mathbf{b} \in[1, n+1]^{n}$, then,

$$
\begin{array}{rlr}
\hat{t}^{[0, n+1]}(\mathbf{b}) & =\left(\neg t^{\prime}\right)_{\left\{1 \backslash v_{1}, \ldots, n \backslash v_{n}\right\}}^{[0, n+1]}(\mathbf{b}) & \\
& =\neg^{[0, n+1]}\left(t_{\left\{1 \backslash v_{1}, \ldots, n \backslash v_{n}\right\}}^{\prime[0, n+1]}(\mathbf{b})\right) & \\
& =\neg^{[0, n+1]} \top^{[0, n+1]} & \\
& =0 & \\
& =t^{[0, n+1]}(\mathbf{b}), & \text { Lemmaim } 78
\end{array}
$$

as required. Otherwise, let $\mathbf{b} \notin[1, n+1]^{n}$, and suppose that $\mathbf{u} \in \tilde{U}$ is such that $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$. If $\mathbf{u} \notin[0,1)^{n}$ and $t^{[0,1]}(\mathbf{u})=1$, then $t^{\prime[0,1]}(\mathbf{u})=0$ and,

$$
\begin{array}{rlr}
\hat{t}^{[0, n+1]}(\mathbf{b}) & =\left(\neg t^{\prime}\right)_{\left\{1 \backslash v_{1}, \ldots, n \backslash v_{n}\right\}}^{[0, n+1]}(\mathbf{b}) \\
& =\neg^{[0, n+1]}\left(t_{\left\{1 \backslash v_{1}, \ldots, n \backslash v_{n}\right\}}^{[0, n+1]}(\mathbf{b})\right) & \\
& =\neg^{[0, n+1]}\left(t^{\prime[0, n+1]}(\mathbf{b})\right) & \text { Lemma 71(iii) } \\
& =\neg^{[0, n+1]}\left(t^{\prime[0,1]}(\operatorname{controller}(\mathbf{b}))+j\right) & \text { Lemma } 68 \text { with } j=0 \\
& =\neg^{[0, n+1]}\left(t^{\prime[0,1]}(\mathbf{u})\right) & \\
& =\top^{[0, n+1]}, &
\end{array}
$$

as required. Otherwise, if $\mathbf{u} \in[0,1)^{n}$ or $t^{[0,1]}(\mathbf{u})<1$, then,

$$
\begin{array}{rlr}
\hat{t}^{[0, n+1]}(\mathbf{b}) & =\left(\neg t^{\prime}\right)_{\left\{1 \backslash v_{1}, \ldots, n \backslash v_{n}\right\}}^{[0, n+1]}(\mathbf{b}) & \\
& =\neg^{[0, n+1]}\left(t_{\left\{1 \backslash v_{1}, \ldots, n \backslash v_{n}\right\}}^{\prime[0, n+1]}(\mathbf{b})\right) & \\
& =\neg^{[0, n+1]}\left(t^{\prime[0, n+1]}(\mathbf{b})\right) & \\
& =\left(\neg t^{\prime}\right)^{[0, n+1]}(\mathbf{b}) & \\
& =t^{[0, n+1]}(\mathbf{b}), & \text { Lemmaim } 78
\end{array}
$$

as required. Hence, \hat{t} satisfies the claim.

Proof of Claim 80 on Page 79

Proof. We prove that $\dot{t}_{\mathbf{u}}$ isolates t over $\left\{\mathbf{b} \notin[1, n+1]^{n} \mid \mathbf{b} \in\right.$ $\operatorname{realm}(\operatorname{sibl}(\mathbf{u}))\}$. The argument for proving that $\ddot{t}_{\mathbf{u}}$ isolates t over $\{\mathbf{b} \in$ $\left.[1, n+1]^{n} \mid \mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))\right\}$ is similar.

Let $\mathbf{b} \in[0, n+1]^{n}$. If either $\mathbf{b} \in[1, n+1]^{n}$ or $\mathbf{b} \notin \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$, then since $r_{\left(i_{1}, \mathbf{u}\right)}^{[0, n+1]}(\mathbf{b})=T^{[0, n+1]}, \ldots, r_{\left(i_{m}, \mathbf{u}\right)}^{[0, n+1]}(\mathbf{b})=T^{[0, n+1]}$ by Lemma 71(ii), and t is 1-reproducing in $L_{\mathrm{par}(\mathbf{u})}$ by hypothesis, we have that $\dot{t}_{\mathbf{u}}(\mathbf{b})=$ $T^{[0, n+1]}$, as required. If $\mathbf{b} \notin[1, n+1]^{n}$ and $\mathbf{b} \in \operatorname{realm}(\operatorname{sibl}(\mathbf{u}))$, then since $r_{\left(i_{1}, \mathbf{u}\right)}^{[0, n+1]}(\mathbf{b})=X_{i_{1}}(\mathbf{b})^{[0, n+1]}, \ldots, r_{\left(i_{m}, \mathbf{u}\right)}^{[0, n+1]}(\mathbf{b})=X_{i_{m}}(\mathbf{b})^{[0, n+1]}$ by Lemma 71(ii), we have that,

$$
t_{\left\{i_{1} \backslash r_{\left(i_{1}, \mathbf{u}\right)}, \ldots, i_{m} \backslash r_{\left(i_{m}, \mathbf{u}\right)}\right\}}^{[0, n+1]}(\mathbf{b})=t_{\left\{i_{1} \backslash i_{1}, \ldots, i_{m} \backslash i_{m}\right\}}^{[0, n+1]}(\mathbf{b})=t^{[0, n+1]}(\mathbf{b})
$$

as required. Hence, $\dot{t}_{\mathbf{u}}$ satisfies the claim.

References

[AFM07] P. Aglianó, I. M. A. Ferreirim, and F. Montagna. Basic Hoops: an Algebraic Study of Continuous t-Norms. Studia Logica, 87(1):73-98, 2007.
[AG02] S. Aguzzoli and B. Gerla. On Countermodels in Basic Logic. Neural Network World, 12:407-420, 2002.
[AG05] S. Aguzzoli and B. Gerla. Normal Forms for the OneVariable Fragment of Hájek's Basic Logic. In Proceedings of ISMVL'05, pages 284-289. IEEE Computer Society, 2005.
[AG08] S. Aguzzoli and B. Gerla. Normal Forms and Free Algebras for Some Extensions of MTL. Fuzzy Sets and Systems, 159(10):1131-1152, 2008.
[AGM] S. Aguzzoli, B. Gerla, and V. Marra. De Finetti's No-DutchBook Criterion for Gödel Logic. Studia Logica. To appear.
[Agu06] S. Aguzzoli. An Asymptotically Tight Bound on Countermodels for Łukasiewicz Logic. International Journal of Approximate Reasoning, 43(1):76-89, 2006.
[AM03] P. Aglianó and F. Montagna. Varieties of BL-Algebras I: General Properties. Journal of Pure and Applied Algebra, 181:105-129, 2003.
[BHMV02] M. Baaz, P. Hájek, F. Montagna, and H. Veith. Complexity of t-Tautologies. Annals of Pure and Applied Logic, 113:3-11, 2002.
[BM08] S. Bova and F. Montagna. Proof Search in Hájek's Basic Logic. ACM Transactions on Computational Logic, 9(3), 2008.
[BP89] W. J. Blok and D. Pigozzi. Algebraizable Logics. In Memoirs of the American Mathematical Society, volume 77, 1989.
[CDM99] R. L. O. Cignoli, I. M. L. D'Ottaviano, and D. Mundici. Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 1999.
[CEGT00] R. Cignoli, F. Esteva, L. Godo, and A. Torrens. Basic Fuzzy Logic is the Logic of Continuous t -Norms and their Residua. Soft Computing, 4(2):106-112, 2000.
[CFM04] A. Ciabattoni, C. G. Fermüller, and G. Metcalfe. Uniform Rules and Dialogue Games for Fuzzy Logics. In Proceedings of LPAR`04, pages 496-510. Springer, 2004.
[Cha58] C. C. Chang. Algebraic Analysis of Many Valued Logics. Transactions of the American Mathematical Society, 88:467490, 1958.
[Cin05] P. Cintula. Short Note: On the Redundancy of Axiom (A3) in BL and MTL. Soft Computing, 9(12):942-942, 2005.
[CR73] S. Cook and R. A. Reckhow. Time Bounded Random Access Machines. Journal of Computer and System Sciences, 7(4):354375, 1973.
[Ded97] R. Dedekind. Ueber Zerlegungen von Zahlen durch ihre grössten gemeinsamen Teiler. Gesammelte Werke, 1:103-148, 1897.
[dNL03] A. di Nola and A. Lettieri. Finite BL-algebras. Discrete Mathematics, 269(1-3):93-112, 2003.
[EG01] F. Esteva and L. Godo. Monoidal t-Norm Based Logic: Towards a Logic for Left-Continuous t-Norms. Fuzzy Sets and Systems, 124(3):271-288, 2001.
[Ger00] B. Gerla. A Note on Functions Associated with Gödel Formulas. Soft Computing, 4(4):206-209, 2000.
[GH99] L. Godo and P. Hájek. A Note on Fuzzy Inference as Deduction. In D. Dubois, H. Prade, and E. P. Klement, editors, Fuzzy Sets, Logics and Reasoning about Knowledge, pages 237242. Kluwer, Dordrecht, 1999.
[GO06] N. Galatos and H. Ono. Algebraization, Parametrized Local Deduction Theorem and Interpolation for Substructural Logics over FL. Studia Logica, 83:132, 2006.
[Göd32] K. Gödel. Zum Intuitionistischen Aussagenkalkül. Ergebnisse eines Mathematischen Kolloquiums, 4:40, 1932.
[Got01] S. Gottwald. A Treatise on Many-Valued Logics. Research Studies Press, Baldock, 2001.
[Gri73] R. S. Grigolia. An Algebraic Analysis of n-Valued Systems of Łukasiewicz-Tarski. Proceedings of the University of Tbilisi, 6-7:121-132, 1973.
[Háj98] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
[HGE96] P. Hájek, L. Godo, and F. Esteva. A Complete Many-Valued Logic with Product Conjunction. Archive for Mathematical Logic, 35:191-208, 1996.
[JM] P. Jipsen and F. Montagna. The Blok-Ferreirim Theorem for Normal GBL-Algebras and its Applications. Algebra Universalis. To appear.
[KM07] J. Kühr and D. Mundici. De Finetti Theorem and Borel States in $[0,1]$-Valued Algebraic Logic. International Journal of Approximate Reasoning, 46(3):605-616, 2007.
[LHdG08] J. Larrosa, F. Heras, and S. de Givry. A Logical Approach to Efficient Max-SAT Solving. Artificial Intelligence, 172(2-3):204-233, 2008.
[Łuk20] J. Łukasiewicz. O Logice Trójwarkościowej. Ruch Filozoficzny, 6:170-171, 1920.
[McN51] R. McNaughton. A Theorem About Infinite-Valued Sentential Logic. The Journal of Symbolic Logic, 16:1-13, 1951.
[MMT81] R. N. McKenzie, G. F. McNulty, and W. F. Taylor. Algebras, Lattices, Varieties. Volume I. Wadsworth, Monterey, 1981.
[MOG] G. Metcalfe, N. Olivetti, and D. Gabbay. Proof Theory for Fuzzy Logics. Research Studies Press, Baldock. To appear.
[Mon00] F. Montagna. The Free BL-Algebra on One Generator. Neural Network World, 5:837-844, 2000.
[Mon01] F. Montagna. Free BL_{Δ}-Algebras. In A. Di Nola and G. Gerla, editors, Lectures on Soft Computing and Fuzzy Logic, pages 159-171. Physica-Verlag, 2001.
[Mon06] F. Montagna. Interpolation and Beth's Property in Propositional Many-Valued Logics: A Semantic Investigation. Annals of Pure and Applied Logic, 141:148-179, 2006.
[MPT03] F. Montagna, G. M. Pinna, and E. B. P. Tiezzi. A Tableau Calculus for Hájek's Logic BL. Journal of Logic and Computation, 13(2):241-259, 2003.
[MS57] P. S. Mostert and A. L. Shields. On the Structure of Semigroups on a Compact Manifold With Boundary. Annals of Mathematics, 65:117-143, 1957.
[Mun87] D. Mundici. Satisfiability in Many-Valued Sentential Logic is NP-Complete. Theoretical Computer Science, 52:145-153, 1987.
[Mun93] D. Mundici. Ulam Games, Lukasiewicz Logic, and AF C*Algebras. Fundamenta Informaticae, 18:151-161, 1993.
[Mun94] D. Mundici. A Constructive Proof of McNaughton's Theorem in Infinite-Valued Logics. The Journal of Symbolic Logic, 59:596-602, 1994.
[Mun99] D. Mundici. Ulam Game, the Logic of MaxSat, and ManyValued Partitions. In D. Dubois, H. Prade, and E. P. Klement, editors, Fuzzy Sets, Logics and Reasoning about Knowledge, pages 121-138. Kluwer, Dordrecht, 1999.
[Wil90] H. S. Wilf. Generatingfunctionology. Academic Press, New York, 1990.

Index

[n], 17
$\lfloor a\rfloor, 17$
1, 18
n $+\mathbf{1}, 18$
Łukasiewicz logic
$Ł_{n}, 28$
n-variate truthfunction, 28
defined, 27
algebraic semantics
A, 19
completeness, 19
defined, 19
tautologousness, 19
validity, 19
Basic logic
$B_{n}, 25$
$\mathbf{A}_{n}, 21$
n-variate truthfunction, 24
defined, 11
Lindenbaum-Tarski algebra, 21
BL_{k}-algebra, 94
BL-algebra
[0,2], 38
$[0,3], 47$
$[0, n+1], 13$
defined, 22
divisibility, 23
prelinearity, 23
residuation, 23
BL-function, 22
$F_{n}, 37$
$F_{1}, 39$
$F_{2}, 48$
n-ary, 37
binary, 48
geometrical definition, 84
technical definition, 37
unary, 39
cell
$C_{j_{1}<\cdots<j_{k}}^{B_{1}<\cdots<B_{k}}, 84$
defined, 84
refinement, 86
unavoidable, 86
continuous t-norm
defined, 10
logic, 10
residuum, 10
countermodel
defined, 102
tight, 107
deductive interpolation
amalgamation, 107
defined, 107
description
explicit, 26
implicit, 26
encoding
enc, 115
defined, 115
fuzziness
defined, 8
fuzzy conjunction, 9
fuzzy implication, 9
fuzzy modus ponens, 9
Gödel algebra, 90
labelled antichain, 97
language
$L, L_{n}, L_{I}, L^{+}, 18$
n-variate fragment, 18
defined, 18
logical calculus
$\vdash, 19$
defined, 19
proof, 19
McNaughton function
$M_{n}, 28$
defined, 28
MV-algebra
$[0,1], 28$
defined, 27
involutiveness, 27
neighborhood
neigh, 33
defined, 33
oneset
$\mathbf{1}_{f}, 108$
defined, 108
parameter
par, 33
defined, 33
quasipartition
$\mathbf{u}, \mathbf{v}, \ldots, 35$
$\tilde{U}, \tilde{V}, \ldots, 35$
sibl, 35
defined, 35
parent, 35
siblings, 35
realm
realm, 33
defined, 33
SBL-algebra, 92
substitution
$t_{\left\{i_{1} \backslash 1, \ldots, i_{m} \backslash m\right\}}, 18$
$t_{\left\{i_{1} \backslash t_{1}, \ldots, i_{m} \backslash t_{m}\right\}}, 18$
defined, 18
system
$\tilde{r}, \tilde{s}, \ldots, 36$
auxiliary, 37
defined, 36
implementing, 37
term
1-reproducing, 32
$r, s, t, \ldots, t_{1}, t_{2}, \ldots, 18$
alias formula, 18
defined, 18
term operation
$t^{\mathbf{A}}, 19$
alias interpretation, 19
defined, 19
truthfunctionality, 8
unimodular triangulation
$U, V, \ldots, 30$
defined, 30
face, 30
linearizing, 30
refinement, 30
simplex, 30
vertex, 30
variable
$X_{1}, X_{2}, \ldots, 18$
defined, 18
variety
locally finite, 90

[^0]: ${ }^{1}$ Suppose, for contradiction, that the assignment a makes all the axioms true. Then, each line of the reasoning contains a statement that is true under a. Indeed, each line is either an axiom, which is true under a by hypothesis, or the conclusion B of an inference having premises A and $A \rightarrow B$ which are true under a by construction (note that by our definition of \rightarrow, if both A and $A \rightarrow B$ true under a, then B is true under a). This fact is traditionally known as the sorite's paradox.

[^1]: ${ }^{2}$ The solution we adopt follows [Háj98, Example 3.3.21].

[^2]: ${ }^{3}$ If a models the revised theory, in particular X_{N} holds with truthvalue 1 under a, and $X_{N} \rightarrow X_{N-1}$ holds with truthvalue $(N-1) / N$ under a. Then, by definition, the truthvalue of X_{N-1} under a is equal to the truthvalue of X_{N} under a minus $1 / N$, that is $(N-1) / N$. Iterating, we get that, for all $0 \leq i<N, X_{i}$ holds with truthvalue i / N under \mathbf{a}. The converse is immediate to check, applying the definitions.
 ${ }^{4}$ Technically, we rely on the completeness theorem of Rational Pavelka logic [Háj98, Theorem 3.3.5].

[^3]: ${ }^{5}$ As conjectured by Hájek [Háj98, Remark 2.3.23]. We mention that Hájek's version of the calculus included the commutativity of \odot as an axiom [Háj 98 , Definition 2.2.4]. This axiom has been proved redundant by Cintula [Cin05].

[^4]: ${ }^{6}$ In particular, Basic logic forms a common fragment of Łukasiewicz [Łuk20], Gödel [Göd32], and Product logics [HGE96], which are fundamental in the sense of the Mostert-Shields theorem [MS57]. In this introduction, we are attempting to articulate a direct justification of Basic logic as an autonomous object, a defensible generalization of Boolean logic, instead of as a common fragment of the most important fuzzy logics. We refer the reader to [Háj98, Got01] for alternative authoritative introductions to Basic logic.
 ${ }^{7}$ A possible objection to this affirmation is that the continuity of t-norms is not necessary, because left-continuity suffices to attain a residuum. However, continuity may be asked as a natural requirement for a conjunction operation over $[0,1]^{2}$.
 ${ }^{8}$ For instance, Łukasiewicz logic can be presented as the logic of Rényi-Ulam games with lies [Mun93].

[^5]: ${ }^{9}$ In contrast with the Boolean case, an instance of the consequence problem does not reduce to an instance of the tautology problem, due to the lack of the deduction theorem in its classical form. In fact, in general Basic logic does not satisfy: $r_{1}, \ldots, r_{i} \vdash_{B L} s$ if and only if $r_{1}, \ldots, r_{i-1} \vdash_{B L} r \rightarrow s$, but only: $r \vdash_{B L} s$ if and only if there exists $n \geq 0$ such that $r_{1}, \ldots, r_{i-1} \vdash_{B L} r_{i}^{n} \rightarrow s$ [Háj98].

[^6]: ${ }^{10}$ The fact that the domain is $[0, n+1]$ instead of $[0,1]$ is immaterial, modulo a resizing. We adopt this technical trick to streamline notations and computations.

[^7]: ${ }^{11}$ Adopting the terminology and the notation in [BM08], Basic logic proves s from r_{1}, \ldots, r_{i} if and only if all the leaves of the reduction tree having the root labeled by, $\bar{T} r_{1} \odot \cdots \odot r_{i} \mid T \preccurlyeq s$, are axioms. In particular, Basic logic proves s if and only if all the leaves of the reduction tree having the root labeled by, $\top \preccurlyeq s$, are axioms.

[^8]: ${ }^{12}$ The computational cost of renouncing to the right-continuity of fuzzy conjunction is not clear. Indeed, it is still unknown if the logic of all left-continuous t-norms and their residua, called MTL [EG01], is in coNP.

[^9]: ${ }^{1}$ It is possible to prove that the definitions of the operations \odot and \rightarrow over pairs of classes of equiprovable terms are independent of the choice of the representatives [Háj98, Lemma 2.2.16].

[^10]: ${ }^{2}$ Basic logic proves $r \rightarrow s$ and $s \rightarrow r$ if and only if, $(r \rightarrow s)^{[0, n+1]}(\mathbf{a})=\top^{[0, n+1]}$ and $(s \rightarrow r)^{[0, n+1]}(\mathbf{a})=\top^{[0, n+1]}$ for every $\mathbf{a} \in[0, n+1]^{n}$, if and only if $r^{[0, n+1]}(\mathbf{a}) \leq$ $s^{[0, n+1]}(\mathbf{a})$ and $s^{[0, n+1]}(\mathbf{a}) \leq r^{[0, n+1]}(\mathbf{a})$ for every $\mathbf{a} \in[0, n+1]^{n}$, if and only if $r^{[0, n+1]}=$ $s^{[0, n+1]}$.

[^11]: ${ }^{3}$ The residuation equivalence (2.1) can be written equivalently by equations [Háj98, Lemma 2.3.10]. Hence, BL-algebras form a variety.

[^12]: ${ }^{4}$ Let $u, n \geq 1$ be fixed. The n-ary constant function $0:[0, u]^{n} \rightarrow[0, u]$ is such that $0(\mathbf{a})=0$ for every $\mathbf{a} \in[0, u]^{n}$. Similarly, the n-ary constant function $u:[0, u]^{n} \rightarrow[0, u]$ is such that $0(\mathbf{a})=u$ for every $\mathbf{a} \in[0, u]^{n}$. For $i=1, \ldots, n$, the n-ary projection function $x_{i}:[0, u]^{n} \rightarrow[0, u]$ is such that $x_{i}(\mathbf{a})=a_{i}$ for every $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in[0, u]^{n}$.

[^13]: ${ }^{1}$ A polyhedral complex in $[0, n+1]^{n}$ is a finite set C of polyhedra in $[0, n+1]^{n}$ such

[^14]: that each face of each polyhedron in C belongs to C, and any two polyhedra of C intersect in a common face. A polyhedral complex C in $[0, n+1]^{n}$ forms a polyhedral partition of $[0, n+1]^{n}$, if $[0, n+1]^{n}$ is the union of all polyhedra in C. By Definition 26, a unimodular triangulation of $[0, n+1]^{n}$ is a polyhedral partition of $[0, n+1]^{n}$ such that each polyhedron in C is a unimodular simplex.
 ${ }^{2}$ The definition of BL-functions given in this section is alternative, but equivalent, to Definition 36.

[^15]: ${ }^{3}$ Figure 3.2 depicts unavoidable cells in the case $n=3$.

[^16]: ${ }^{4}$ W.l.o.g., indeed a BL-equation of the form $r=s$, with r and s arbitrary terms, holds in all BL-algebras if and only if $(r \rightarrow s) \odot(s \rightarrow r)=\top$ holds in all BL-algebras.
 ${ }^{5}$ A BL-quasiequation is a tuple ($t_{1}=\mathrm{T}, \ldots, t_{k}=\mathrm{T}, t=\mathrm{T}$) of BL-equations, built upon variables X_{1}, \ldots, X_{n}, and we are to decide if $r_{i}^{\mathbf{A}}(\mathbf{a})=s_{i}^{\mathbf{A}}(\mathbf{a})$ for all $i \in[k]$ implies $r^{\mathbf{A}}(\mathbf{a})=s^{\mathbf{A}}(\mathbf{a})$, for every BL-algebra \mathbf{A} and every assignment $\mathbf{a} \in A^{n}$.

[^17]: ${ }^{6}$ If a variety of commutative residuated lattices forms the equivalent algebraic semantics of a propositional logic, as BL-algebras do with respect to Basic logic, then the deductive interpolation property of the logic is equivalent to the amalgamation property of the variety [GO06].

