Schauder Hats for the Two-Variable Fragment of Hájek's Basic Logic

Stefano Aguzzoli¹ Simone Bova²

¹Department of Computer Science University of Milan (Milan, Italy) aguzzoli@dsi.unimi.it

²Department of Mathematics Vanderbilt University (Nashville, USA) simone.bova@vanderbilt.edu

ISMVL 2010 May 26-28, 2010, Barcelona (Spain)

Outline

Background

Free MV-Algebra Schauder Hats

Contribution Free BL-Algebra BL-Hats

Free n-Generated MV-Algebra

Definition

$$[0,1] = ([0,1], \vee^{[0,1]}, \wedge^{[0,1]}, \odot^{[0,1]}, \rightarrow^{[0,1]}, \neg^{[0,1]}, \top^{[0,1]}, \bot^{[0,1]}, \bot^{[0,1]})$$

= ([0,1], max, min, max{0, x + y - 1}, min{1, y + 1 - x}, 1 - x, 1, 0)
= ([0,1], max, min, $\int_{1}^{1} \int_{1}^{1} \int_{1}^{$

Free n-Generated MV-Algebra

Definition

Fact

 $\mathbf{F}_{HSP([0,1])}(n)$ is the subalgebra of $[0,1]^{[0,1]^n}$ generated by the projections, with operations defined pointwise.

Theorem (Chang)

[0, 1] generates the variety of MV-algebras (commutative bounded integral divisible prelinear involutive residuated lattices), then $\mathbf{F}_{HSP([0,1])}(n)$ is $\mathbf{F}_{MV}(n)$.

CONTRIBUTION 000 00000000000000000

McNaughton Functions

Definition (McNaughton Function)

An *n*-ary McNaughton function is a continuous function $f: [0,1]^n \to [0,1]$ such that there exist linear polynomials with integer coefficients $p_1, \ldots, p_k \colon \mathbb{R}^n \to \mathbb{R}$ such that: for every $\mathbf{a} \in [0,1]^n$, there exists $j \in \{1,\ldots,k\}$ such that $f(\mathbf{a}) = p_j(\mathbf{a})$.

Idea

Write each McNaughton function as a finite monoidal combination of *Schauder hats*.

CONTRIBUTION 000 000000000000000000

Fundamental Triangulation and Primitive Hats on $[0, 1]^2$

CONTRIBUTION 000 00000000000000000

Edge Starring and Derived Hats on $[0, 1]^2$

CONTRIBUTION 000 000000000000000000

Edge Starring and Derived Hats on $[0, 1]^2$

Completeness Theorem

Theorem (Panti)

Each n-ary McNaughton function is linear on some triangulation of $[0, 1]^n$ reachable from the fundamental triangulation via finitely many edge starrings.

Corollary (McNaughton, Mundici)

1. Each n-ary McNaughton function can be written in the form $\odot_{i\in I}^{[0,1]} h_i^{m_i}$, for some hats h_i 's and nonnegative integers m_i 's with $i \in |I| < \omega$.

Corollary (McNaughton, Mundici)

1. Each n-ary McNaughton function can be written in the form $\bigcirc_{i \in I}^{[0,1]} h_i^{m_i}$, for some hats h_i 's and nonnegative integers m_i 's with $i \in |I| < \omega$.

Corollary (McNaughton, Mundici)

1. Each n-ary McNaughton function can be written in the form $\bigcirc_{i \in I}^{[0,1]} h_i^{m_i}$, for some hats h_i 's and nonnegative integers m_i 's with $i \in |I| < \omega$.

Corollary (McNaughton, Mundici)

1. Each n-ary McNaughton function can be written in the form $\bigcirc_{i \in I}^{[0,1]} h_i^{m_i}$, for some hats h_i 's and nonnegative integers m_i 's with $i \in |I| < \omega$.

 F_{MV}(n) is the algebra of n-ary McNaughton functions, with the operations defined pointwise by the operations of [0, 1].

Outline

Background

Free MV-Algebra Schauder Hats

Contribution Free BL-Algebra BL-Hats

Free 2-Generated BL-Algebra

Definition

$$[0,3] = ([0,3], \vee^{[0,3]}, \wedge^{[0,3]}, \odot^{[0,3]}, \rightarrow^{[0,3]}, \neg^{[0,3]}, \top^{[0,3]}, \bot^{[0,3]})$$
$$= ([0,3], \max, \min, 1)$$

Free 2-Generated BL-Algebra

Definition

$$[0,3] = ([0,3], \vee^{[0,3]}, \wedge^{[0,3]}, \odot^{[0,3]}, \rightarrow^{[0,3]}, \neg^{[0,3]}, \top^{[0,3]}, \bot^{[0,3]})$$
$$= ([0,3], \max, \min, 1)$$

Fact

 $F_{\text{HSP}([0,3])}(2)$ is the subalgebra of $[0,3]^{[0,3]^2}$ generated by the projections, with operations defined pointwise.

Theorem (Aglianò, Montagna)

[0,3] generates the variety BL(2) generated by 2-generated BL-algebras (commutative bounded integral divisible prelinear residuated lattices), then $\mathbf{F}_{HSP([0,3])}(2)$ is $\mathbf{F}_{BL}(2)$.

Binary BL-Functions

Roughly, $f : [0,3]^2 \rightarrow [0,3]$ is a BL-function iff there are McNaughton functions g_i , and maps l_i , h_i from finite *rational* partitions (blocks are rational points or open intervals with rational endpoints) of subsets of [0,1) to McNaughton functions st:

	$\int g_1(\mathbf{x})$	$\mathbf{x} \in [0,1)^2$	
$f(\mathbf{x})$ given by \prec	$(l_1(x_2))(x_1)$	$\mathbf{x} \in [1,3] \times [0,1), g_1(1,x_2) = 1$	ATTAC
	$g_1(1, x_2)$	$\mathbf{x} \in [1,3] \times [0,1)$	
	$(l_2(x_1))(x_2)$	$\mathbf{x} \in [0,1) \times [1,3], g_1(x_1,1) = 1$	
	$g_1(x_1, 1)$	$\mathbf{x} \in [0,1) \times [1,3]$	
	$g_2(\mathbf{x})$	$\mathbf{x} \in [1,2)^2 \cup [2,3]^2$	
	$(h_1(x_2))(x_1)$	$\mathbf{x} \in [2,3] \times [1,2), g_2(1,x_2) = 1$	1 a_2
	$g_2(1, x_2)$	$\mathbf{x} \in [2,3] \times [1,2)$	a_1 2
	$(h_2(x_1))(x_2)$	$\mathbf{x} \in [1,2) \times [2,3], g_2(x_1,1) = 1$	30
	$l_{g_2(x_1,1)}$	$\mathbf{x} \in [1,2) \times [2,3]$	

Binary BL-Functions

Definition (Binary BL-Function)

 $f: [0, 3]^2 \rightarrow [0, 3]$ is a binary BL-function iff there exist McNaughton functions g_i , and maps l_i , h_i from finite rational partitions of subsets of [0, 1) to McNaughton functions (i = 1, 2), such that:

$$g_{1}(\mathbf{1}) = 0 \Rightarrow f(\mathbf{x}) = \begin{cases} g_{1}(x_{1}, x_{2}) & \mathbf{x} \in [0, 1]^{2} \text{ and } g_{1}(x_{1}, x_{2}) < 1 \\ 3 & \mathbf{x} \in [0, 1]^{2} \\ (l_{1}(x_{2}))(x_{1} - \lfloor x_{1} \rfloor) + \lfloor x_{1} \rfloor & \mathbf{x} \in [1, 3] \times [0, 1), g_{1}(1, x_{2}) = 1, (l_{1}(x_{2}))(x_{1} - \lfloor x_{1} \rfloor) < 1 \\ 3 & \mathbf{x} \in [1, 3] \times [0, 1), g_{1}(1, x_{2}) = 1 \\ g_{1}(1, x_{2}) & \mathbf{x} \in [1, 3] \times [0, 1) \times [1, 3], g_{1}(x_{1}, 1) = 1, (l_{2}(x_{1}))(x_{2} - \lfloor x_{2} \rfloor) < 1 \\ 3 & \mathbf{x} \in [0, 1) \times [1, 3], g_{1}(x_{1}, 1) = 1, (l_{2}(x_{1}))(x_{2} - \lfloor x_{2} \rfloor) < 1 \\ 3 & \mathbf{x} \in [0, 1) \times [1, 3], g_{1}(x_{1}, 1) = 1 \\ g_{1}(x_{1}, 1) & \mathbf{x} \in [0, 1) \times [1, 3] \\ 0 & \mathbf{x} \in [1, 2]^{2} \cup [2, 3]^{2} \text{ and } g_{2}(x_{1} - \lfloor x_{1} \rfloor, x_{2} - \lfloor x_{2} \rfloor) < 1 \\ 3 & \mathbf{x} \in [1, 2]^{2} \cup [2, 3]^{2} \\ (h_{1}(x_{2}))(x_{1} - \lfloor x_{1} \rfloor) + \lfloor x_{1} \rfloor & \mathbf{x} \in [1, 2]^{2} \cup [2, 3]^{2} \\ (h_{1}(x_{2}))(x_{1} - \lfloor x_{1} \rfloor) + \lfloor x_{1} \rfloor & \mathbf{x} \in [2, 3] \times [1, 2), g_{2}(1, x_{2}) = 1, (h_{1}(x_{2}))(x_{1} - \lfloor x_{1} \rfloor) < 1 \\ 3 & \mathbf{x} \in [2, 3] \times [1, 2), g_{2}(1, x_{2}) = 1 \\ g_{2}(1, x_{2}) & \mathbf{x} \in [2, 3] \times [1, 2), g_{2}(1, x_{2}) = 1 \\ (h_{2}(x_{1}))(x_{2} - \lfloor x_{2} \rfloor) + \lfloor x_{2} \rfloor & \mathbf{x} \in [1, 2) \times [2, 3], g_{2}(x_{1}, 1) = 1, (h_{2}(x_{1}))(x_{2} - \lfloor x_{2} \rfloor) < 1 \\ 3 & \mathbf{x} \in [1, 2) \times [2, 3], g_{2}(x_{1}, 1) = 1, (h_{2}(x_{1}))(x_{2} - \lfloor x_{2} \rfloor) < 1 \\ g_{2}(x_{1}, 1) & \mathbf{x} \in [1, 2) \times [2, 3], g_{2}(x_{1}, 1) = 1, (h_{2}(x_{1}))(x_{2} - \lfloor x_{2} \rfloor) < 1 \\ \end{cases}$$

Idea

Generalize Schauder hats to BL-algebras.

Preliminaries

Fact Blocks $[2,3]^2$, $[0,1) \times [2,3]$, $[2,3] \times [0,1)$ are redundant.

Preliminaries

Fact Blocks $[2,3]^2$, $[0,1) \times [2,3]$, $[2,3] \times [0,1)$ are redundant.

Definition

$$\begin{array}{l} [1,2] \times [0,1) \ related \ \text{to} \ [0,1)^2 \ \text{via} \ \{\mathbf{x} \mid 0 \le x_2 < 1 = x_1\}; \\ [0,1) \times [1,2] \ \text{to} \ [0,1)^2 \ \text{via} \ \{\mathbf{x} \mid 0 \le x_1 < 1 = x_2\}; \\ [2,3] \times [1,2) \ \text{to} \ [1,2)^2 \ \text{via} \ \{\mathbf{x} \mid 1 \le x_2 < 2 = x_1\}; \\ [1,2) \times [2,3] \ \text{to} \ [1,2)^2 \ \text{via} \ \{\mathbf{x} \mid 1 \le x_1 < 2 = x_2\}. \end{array}$$

Fundamental BL-Partition of $[0,3]^2$

The fundamental BL-partition of $[0,3]^2$ maps:

- blocks [0,1)² and [1,2)² to fundamental triangulations of [0,1]²;
- 2. blocks $[0,1) \times [1,2]$, $[1,2) \times [2,3]$, and $[1,2] \times [0,1)$, $[2,3] \times [1,2)$ to (pairs of) fundamental triangulations of [0,1].

Edge BL-Starring in $[0,3]^2$

Edge BL-starring acts on individual triangulations, within blocks, and affects the partitioning of related blocks.

Example

Starring at (1/2, 1) the fundamental triangulation on $[0, 1)^2$,

Edge BL-Starring in $[0,3]^2$

Edge BL-starring acts on individual triangulations, within blocks, and affects the partitioning of related blocks.

Example

Starring at (1/2, 1) the fundamental triangulation on $[0, 1)^2$, affects the BL-partition on $[0, 1) \times [1, 2]$:

Edge BL-Starring in $[0,3]^2$

Edge BL-starring acts on individual triangulations, within blocks, and affects the partitioning of related blocks.

Example

Starring at (1/2, 1) the fundamental triangulation on $[0, 1)^2$, affects the BL-partition on $[0, 1) \times [1, 2]$:

Edge BL-Starring in $[0,3]^2$

Example

Starring a fundamental triangulation within $[1,2] \times [0,1)$ at $(3/2,\epsilon)$:

Edge BL-Starring in $[0,3]^2$

Example

Starring a fundamental triangulation within $[1,2] \times [0,1)$ at $(3/2,\epsilon)$:

Edge BL-Starring in $[0,3]^2$

Example

Starring a fundamental triangulation within $[1,2] \times [0,1)$ at $(3/2,\epsilon)$:

Primitive BL-Hats (Sample)

Primitive BL-Hats (Sample)

Derived BL-Hats (Sample)

Derived BL-Hats (Sample)

Completeness Theorem (n = 2)

Theorem

Each binary BL-function is linear on some BL-partition of $[0,3]^2$ reachable from the fundamental BL-partition via finitely many edge BL-starrings.

Completeness Theorem (n = 2)

Corollary

1. Each binary BL-function can be written in the form $\bigoplus_{i\in I}^{[0,3]} h_i^{m_i}$, for some BL-hats h_i 's and nonnegative integers m_i 's with $i \in |I| < \omega$.

Completeness Theorem (n = 2)

Corollary

1. Each binary BL-function can be written in the form $\bigoplus_{i \in I}^{[0,3]} h_i^{m_i}$, for some BL-hats h_i 's and nonnegative integers m_i 's with $i \in |I| < \omega$.

Completeness Theorem (n = 2)

Corollary

1. Each binary BL-function can be written in the form $\bigoplus_{i\in I}^{[0,3]} h_i^{m_i}$, for some BL-hats h_i 's and nonnegative integers m_i 's with $i \in |I| < \omega$.

Completeness Theorem (n = 2)

Corollary

1. Each binary BL-function can be written in the form $\bigoplus_{i\in I}^{[0,3]} h_i^{m_i}$, for some BL-hats h_i 's and nonnegative integers m_i 's with $i \in |I| < \omega$.

Example

 F_{BL}(2) is the algebra of binary BL-functions, with the operations defined pointwise by the operations of [0,3].

Technical Remarks

- 1. *Virtual* BL-hats, i.e. not in $\mathbf{F}_{BL}(2)$, are necessary to give a *finite* family of primitive BL-hats.
- 2. Elimination of virtual BL-hats yields a construction of normal forms for $\mathbf{F}_{BL}(2)$.
- 3. The case n = 2 generalizes to the case $n < \omega$.

References

P. Aglianò and F. Montagna.

Varieties of BL-Algebras I: General Properties. Journal of Pure and Applied Algebra, 181:105–129, 2003.

S. Aguzzoli and S. Bova.

The Free *n*-Generated BL-Algebra. Annals of Pure and Applied Logic, 161(9):1097–1194, 2010.

D. Mundici.

A Constructive Proof of McNaughton's Theorem in Infinite-Valued Logics. *The Journal of Symbolic Logic*, 59:596–602, 1994.

G. Panti.

A Geometric Proof of the Completeness Theorem of the Łukasiewicz Calculus. *The Journal of Symbolic Logic*, 60(2):563–578, 1995.

Thank you!