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Free n-Generated MV-Algebra

Definition

[0, 1] = ([0, 1],∨[0,1],∧[0,1],�[0,1],→[0,1],¬[0,1],>[0,1],⊥[0,1])

= ([0, 1], max, min, max{0, x + y− 1}, min{1, y + 1− x}, 1− x, 1, 0)

= ([0, 1], max, min,
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Fact
FHSP([0,1])(n) is the subalgebra of [0, 1][0,1]n generated by the projections, with
operations defined pointwise.

Theorem (Chang)
[0, 1] generates the variety of MV-algebras (commutative bounded integral divisible
prelinear involutive residuated lattices), then FHSP([0,1])(n) is FMV(n).
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Fact
FHSP([0,1])(n) is the subalgebra of [0, 1][0,1]n generated by the projections, with
operations defined pointwise.

Theorem (Chang)
[0, 1] generates the variety of MV-algebras (commutative bounded integral divisible
prelinear involutive residuated lattices), then FHSP([0,1])(n) is FMV(n).
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McNaughton Functions

Definition (McNaughton Function)
An n-ary McNaughton function is a
continuous function f : [0, 1]n → [0, 1] such
that there exist linear polynomials with
integer coefficients p1, . . . , pk : Rn → R such
that: for every a ∈ [0, 1]n, there exists
j ∈ {1, . . . , k} such that f (a) = pj(a).

0

1

a_1

0

1

a_2

0

1

0

a_1



BACKGROUND CONTRIBUTION

Idea

Write each McNaughton function
as a finite monoidal combination of Schauder hats.
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Fundamental Triangulation and Primitive Hats on [0, 1]2
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k2 = (y→ x)[0,1] ∈ FMV(2) k4 = (¬y ∨ ¬x)[0,1] ∈ FMV(2)
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k1 = (x ∨ y)[0,1] ∈ FMV(2) k3 = (x→ y)[0,1] ∈ FMV(2)
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Edge Starring and Derived Hats on [0, 1]2
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k2 = (y→ x)[0,1] l3 = (l1 → k4)
[0,1]

0

1

a_1

0

1

a_2

0

1

0

a_1

l1 = (k1 ∨ k4)
[0,1]

0

1

a_1

0

1

a_2

0

1

0

a_1

0

1

a_1

0

1

a_2

0

1

0

a_1

l2 = (l1 → k1)
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Edge Starring and Derived Hats on [0, 1]2
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Completeness Theorem

Theorem (Panti)
Each n-ary McNaughton function is linear on some triangulation of
[0, 1]n reachable from the fundamental triangulation via finitely many
edge starrings.
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Completeness Theorem

Corollary (McNaughton, Mundici)

1. Each n-ary McNaughton function can be written in the form �[0,1]
i∈I hmi

i ,
for some hats hi’s and nonnegative integers mi’s with i ∈ |I| < ω.
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2. FMV(n) is the algebra of n-ary McNaughton functions,
with the operations defined pointwise by the operations of [0, 1].
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Completeness Theorem

Corollary (McNaughton, Mundici)

1. Each n-ary McNaughton function can be written in the form �[0,1]
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2. FMV(n) is the algebra of n-ary McNaughton functions,
with the operations defined pointwise by the operations of [0, 1].
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Completeness Theorem

Corollary (McNaughton, Mundici)

1. Each n-ary McNaughton function can be written in the form �[0,1]
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i ,
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2. FMV(n) is the algebra of n-ary McNaughton functions,
with the operations defined pointwise by the operations of [0, 1].
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Completeness Theorem

Corollary (McNaughton, Mundici)
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Free 2-Generated BL-Algebra

Definition

[0, 3] = ([0, 3],∨[0,3],∧[0,3],�[0,3],→[0,3],¬[0,3],>[0,3],⊥[0,3])

= ([0, 3], max, min,
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Fact
FHSP([0,3])(2) is the subalgebra of [0, 3][0,3]2 generated by the projections,
with operations defined pointwise.

Theorem (Aglianò, Montagna)
[0, 3] generates the variety BL(2) generated by 2-generated BL-algebras
(commutative bounded integral divisible prelinear residuated lattices),
then FHSP([0,3])(2) is FBL(2).
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Free 2-Generated BL-Algebra

Definition
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= ([0, 3], max, min,
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Fact
FHSP([0,3])(2) is the subalgebra of [0, 3][0,3]2 generated by the projections,
with operations defined pointwise.

Theorem (Aglianò, Montagna)
[0, 3] generates the variety BL(2) generated by 2-generated BL-algebras
(commutative bounded integral divisible prelinear residuated lattices),
then FHSP([0,3])(2) is FBL(2).
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Binary BL-Functions

Roughly, f : [0, 3]2 → [0, 3] is a BL-function iff there are McNaughton functions gi,

and maps li, hi from finite rational partitions (blocks are rational points or open

intervals with rational endpoints) of subsets of [0, 1) to McNaughton functions st:

f (x) given by

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

g1(x) x ∈ [0, 1)2

(l1(x2))(x1) x ∈ [1, 3]× [0, 1), g1(1, x2) = 1
g1(1, x2) x ∈ [1, 3]× [0, 1)
(l2(x1))(x2) x ∈ [0, 1)× [1, 3], g1(x1, 1) = 1
g1(x1, 1) x ∈ [0, 1)× [1, 3]
g2(x) x ∈ [1, 2)2 ∪ [2, 3]2

(h1(x2))(x1) x ∈ [2, 3]× [1, 2), g2(1, x2) = 1
g2(1, x2) x ∈ [2, 3]× [1, 2)
(h2(x1))(x2) x ∈ [1, 2)× [2, 3], g2(x1, 1) = 1
g2(x1, 1) x ∈ [1, 2)× [2, 3]
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Binary BL-Functions

Definition (Binary BL-Function)
f : [0, 3]2 → [0, 3] is a binary BL-function iff there exist McNaughton functions gi , and maps li, hi from finite
rational partitions of subsets of [0, 1) to McNaughton functions (i = 1, 2), such that:

g1(1) = 0⇒ f(x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

g1(x1, x2) x ∈ [0, 1)2 and g1(x1, x2) < 1
3 x ∈ [0, 1)2

(l1(x2))(x1 − bx1c) + bx1c x ∈ [1, 3]× [0, 1), g1(1, x2) = 1, (l1(x2))(x1 − bx1c) < 1
3 x ∈ [1, 3]× [0, 1), g1(1, x2) = 1
g1(1, x2) x ∈ [1, 3]× [0, 1)
(l2(x1))(x2 − bx2c) + bx2c x ∈ [0, 1)× [1, 3], g1(x1, 1) = 1, (l2(x1))(x2 − bx2c) < 1
3 x ∈ [0, 1)× [1, 3], g1(x1, 1) = 1
g1(x1, 1) x ∈ [0, 1)× [1, 3]
0 x ∈ [1, 3]2

g1(1) = 1⇒ f(x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

. . . . . .

g2(x1 − bx1c, x2 − bx2c) + bx1c x ∈ [1, 2)2 ∪ [2, 3]2 and g2(x1 − bx1c, x2 − bx2c) < 1
3 x ∈ [1, 2)2 ∪ [2, 3]2

(h1(x2))(x1 − bx1c) + bx1c x ∈ [2, 3]× [1, 2), g2(1, x2) = 1, (h1(x2))(x1 − bx1c) < 1
3 x ∈ [2, 3]× [1, 2), g2(1, x2) = 1
g2(1, x2) x ∈ [2, 3]× [1, 2)
(h2(x1))(x2 − bx2c) + bx2c x ∈ [1, 2)× [2, 3], g2(x1, 1) = 1, (h2(x1))(x2 − bx2c) < 1
3 x ∈ [1, 2)× [2, 3], g2(x1, 1) = 1
g2(x1, 1) x ∈ [1, 2)× [2, 3]
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Idea

Generalize Schauder hats to BL-algebras.



BACKGROUND CONTRIBUTION

Preliminaries

Fact
Blocks [2, 3]2, [0, 1)× [2, 3], [2, 3]× [0, 1) are redundant.

Definition

[1, 2]× [0, 1) related to [0, 1)2 via {x | 0 ≤ x2 < 1 = x1};
[0, 1)× [1, 2] to [0, 1)2 via {x | 0 ≤ x1 < 1 = x2};
[2, 3]× [1, 2) to [1, 2)2 via {x | 1 ≤ x2 < 2 = x1};
[1, 2)× [2, 3] to [1, 2)2 via {x | 1 ≤ x1 < 2 = x2}.
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Fact
Blocks [2, 3]2, [0, 1)× [2, 3], [2, 3]× [0, 1) are redundant.

Definition

[1, 2]× [0, 1) related to [0, 1)2 via {x | 0 ≤ x2 < 1 = x1};
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Fundamental BL-Partition of [0, 3]2

The fundamental BL-partition of [0, 3]2 maps:

1. blocks [0, 1)2 and [1, 2)2 to fundamental
triangulations of [0, 1]2;

2. blocks [0, 1)× [1, 2], [1, 2)× [2, 3], and
[1, 2]× [0, 1), [2, 3]× [1, 2) to (pairs of)
fundamental triangulations of [0, 1].
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Edge BL-Starring in [0, 3]2

Edge BL-starring acts on individual triangulations, within blocks,
and affects the partitioning of related blocks.

Example
Starring at (1/2, 1) the fundamental triangulation on [0, 1)2,

affects the BL-partition on [0, 1)× [1, 2]:
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Edge BL-Starring in [0, 3]2

Edge BL-starring acts on individual triangulations, within blocks,
and affects the partitioning of related blocks.

Example
Starring at (1/2, 1) the fundamental triangulation on [0, 1)2,
affects the BL-partition on [0, 1)× [1, 2]:
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Edge BL-Starring in [0, 3]2

Example
Starring a fundamental triangulation within [1, 2]× [0, 1) at (3/2, ε):
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Edge BL-Starring in [0, 3]2

Example
Starring a fundamental triangulation within [1, 2]× [0, 1) at (3/2, ε):
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Edge BL-Starring in [0, 3]2

Example
Starring a fundamental triangulation within [1, 2]× [0, 1) at (3/2, ε):
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Primitive BL-Hats (Sample)
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Primitive BL-Hats (Sample)
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Derived BL-Hats (Sample)
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Derived BL-Hats (Sample)
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Completeness Theorem (n = 2)

Theorem
Each binary BL-function is linear on some BL-partition of [0, 3]2

reachable from the fundamental BL-partition via finitely many edge
BL-starrings.
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Completeness Theorem (n = 2)

Corollary

1. Each binary BL-function can be written in the form �[0,3]
i∈I hmi

i ,
for some BL-hats hi’s and nonnegative integers mi’s with i ∈ |I| < ω.
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).

2. FBL(2) is the algebra of binary BL-functions,
with the operations defined pointwise by the operations of [0, 3].
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Completeness Theorem (n = 2)

Corollary
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Technical Remarks

1. Virtual BL-hats, i.e. not in FBL(2), are necessary to give a
finite family of primitive BL-hats.

2. Elimination of virtual BL-hats yields a construction
of normal forms for FBL(2).

3. The case n = 2 generalizes to the case n < ω.
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