A Bottom-Up Algorithm for *t*-Tautologies

Simone Bova

bova@unisi.it

Department of Mathematics and Computer Science University of Siena (Italy)

ESSLLI 2007 Trinity College, Dublin (Ireland)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Outline

- t-Logic
- Decidability of t-Tautologies
- 2 Deciding t-Tautologies
 - Subformulas Orders
 - Brute-Force vs. Bottom-Up

3 Conclusion

- Open Problems
- References

★ E ► ★ E ► E E < 2000</p>

t-Logic Decidability of *t*-Tautologies

Outline

- t-Logic
- Decidability of *t*-Tautologies
- 2 Deciding *t*-Tautologies
 - Subformulas Orders
 - Brute-Force vs. Bottom-Up
- 3 Conclusion
 - Open Problems
 - References

<□> < □> < □> < □> = □ = のへの

Motivation Deciding *t*-Tautologies Conclusion *t*-Logic Decidability

Fuzzy Logics

Fuzzy logics are propositional logics over $\top, \bot, \odot, \rightarrow \text{s.t.:}$

- variables *X*, *Y*,... are interpreted over [0, 1];
- \top and \bot are interpreted over 1 and 0;
- \odot and \rightarrow are interpreted over binary functions on [0, 1];

•
$$\neg X \rightleftharpoons X \to \bot$$
.

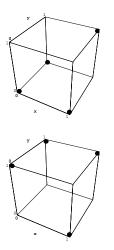
Fuzzy conjunction and implication *must* maintain:

- the behavior of Boolean counterparts over {0, 1}²;
- intuitive properties of Boolean counterparts over [0, 1]²;
- the validity of *fuzzy modus ponens*.

(ロ) (同) (三) (三) (三) (三) (○)

Boolean Logic

Intuitive properties of Boolean conjunction and implication:



Boolean conjunction is commutative, associative, weakly increasing in both arguments, and has 1 as unit.

Boolean implication, *x* implies *y*, is 1 iff $x \le y$, weakly decreasing in *x*, weakly increasing in *y*.

◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ● ●

t-Logic Decidability of *t*-Tautologies

Continuous t-Norms

Definition (Continuous *t*-Norm, Residuum)

A continuous *t*-norm \odot_* is a continuous binary function on [0, 1] that is associative, commutative, monotone $(x \le y \text{ implies } x \odot_* z \le y \odot_* z)$ and has 1 as unit $(x \odot_* 1 = x)$. Given a continuous *t*-norm \odot_* , its *residuum* is the binary function \rightarrow_* on [0, 1] defined by $x \rightarrow_* y = max\{z : x \odot_* z \le y\}$.

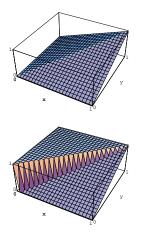
t-norms and their residua provide suitable interpretations for fuzzy conjunction and implication.

(ロ) (同) (三) (三) (三) (三) (○)

t-Logic Decidability of t-Tautologies

Example | Gödel Logic

\odot_G and \rightarrow_G over $[0, 1]^2$:



 \odot_G is a *t*-norm . . .

... and \rightarrow_G is its residuum.

<ロ> <同> <同> <目> <同> <同> <同> <同> <同</p>

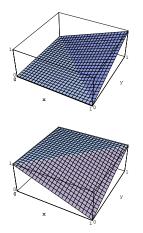
 Motivation
 t-Logic

 Deciding t-Tautologies
 Decidability of t-Tautologi

 Conclusion
 Example

 Łukasiewicz Logic

 \odot_L and \rightarrow_L over $[0, 1]^2$:



 \odot_L is a *t*-norm . . .

... and \rightarrow_L is its residuum.

<□> < 注 > < 注 > < 注 > 三 = の < ⊙

t-Logic Decidability of *t*-Tautologies

Let *A* be a formula over the variables X_1, \ldots, X_m .

Definition (t-Tautology)

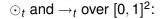
A is a *t*-tautology iff A evaluates identically to 1 for every assignment of the variables in [0, 1] and every interpretation of \odot over a *t*-norm \odot_* and of \rightarrow over its residuum \rightarrow_* .

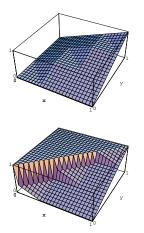
Both assignments and interpretations are infinitely many: is the *t*-tautology problem decidable?

(ロ) (同) (三) (三) (三) (三) (○)

t-Logic Decidability of *t*-Tautologies

t-Logic





 \odot_t is a *t*-norm . . .

... and \rightarrow_t is its residuum.

t-Logic Decidability of t-Tautologies

Decidability of t-Tautologies

Theorem

A formula A is a t-tautology iff A evaluates identically to 1 for every assignment of the variables in [0, 1], interpreting \odot , \rightarrow on \odot_t , \rightarrow_t respectively.

t-Logic captures all continuous *t*-norms and their residua. But, is *t*-Logic exponential-time decidable?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Subformulas Orders Brute-Force vs. Bottom-Up

Outline

- Deciding t-Tautologies
 - Subformulas Orders
 - Brute-Force vs. Bottom-Up
- 3 Conclusion
 - Open Problems
 - References

<□> < □> < □> < □> = □ = のへの

Subformulas Orders Brute-Force vs. Bottom-Up

Subformulas Orders | Idea

 $A \in t$ -TAUT iff, for every $e : \{X_1, \ldots, X_m\} \rightarrow [0, 1], e(A) = 1$, where \odot , \rightarrow are interpreted over \odot_t , \rightarrow_t .

Problem: The assignments are infinitely many.

Idea: For every A, there is a *finite* set \mathcal{O} of *finite* objects o s.t.:

- o covers (possibly zero) assignments;
- the union of all o's covers all the assignments;
- *o* is labeled $A = \top$ iff, for every *e* covered by *o*, e(A) = 1;

• *o* is labeled $A < \top$ iff, for every *e* covered by *o*, e(A) < 1. If there exist *o* and *e* such that *o* is labeled $A < \top$, and *o* covers *e*, then $A \notin t$ -TAUT.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

Subformulas Orders Brute-Force vs. Bottom-Up

Subformulas Orders | Definition

Definition (Subformulas Order)

Let *A* be a formula of size *n* over *m* variables. A *subformulas order* for *A* is a partition of the subformulas of *A*, \perp and \top into $\leq m + 2$ blocks. For j = 0, ..., m + 1, the block B_j forms a chain with least element $\perp_j = j/(m + 1)$, and holds a linear program of O(n) constraints over the variables of its formulas. The order is *semantically consistent* if and only if there exists an assignment *e* of the variables in [0, 1]

that *respects* the chains and satisfies the linear programs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Subformulas Orders Brute-Force vs. Bottom-Up

Subformulas Orders | Application

Fact (i) Orders are exponentially many in size(A). (ii) Orders may be semantically consistent or inconsistent, and this can be decided in polynomial-time in size(A). (iii) The union of consistent orders covers all the assignments. (iv) A < ⊤ holds in a consistent order iff, for some e, e(A) < 1.

t-TAUT ∈ **EXPTIME**:

Search for a *consistent* order containing $A < \top$, and output 0 if and only if such order is found.

Inconsistent orders are useless for deciding A.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Subformulas Orders Brute-Force vs. Bottom-Up

Brute-Force vs. Bottom-Up

Instance: $A \in t$ -TAUT?

Brute-Force Version: List all the orders for *A* via a *purely combinatorial* procedure.

Bottom-Up Version: Build the orders for *A* via a *semantically oriented* procedure, avoiding a *certain* amount of useless orders.

Does the bottom-up significantly shrink the search space?

Subformulas Orders Brute-Force vs. Bottom-Up

Brute-Force vs. Bottom-Up

Example: $A \rightleftharpoons (((X_1 \to X_2) \to X_2) \to X_2) \to X_2)$.

 $A \notin t$ -TAUT

Subformulas Orders Brute-Force vs. Bottom-Up

Brute-Force vs. Bottom-Up

Search space shrinkage phenomenon:

Brute-Force:

23, 651 orders where $\bot < X_2 < X_1 < \top$ 23, 651 orders where $\bot < X_1 < X_2 < \top$

Bottom-Up:

523 orders where $\bot < X_2 < X_1 < \top$ 1 order where $\bot < X_1 < X_2 < \top$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Open Problems References

Outline

- t-Logic
- Decidability of *t*-Tautologies
- 2 Deciding t-Tautologies
 - Subformulas Orders
 - Brute-Force vs. Bottom-Up

3 Conclusion

- Open Problems
- References

<□> < □> < □> < □> = □ = のへの

Open Problems References

Open Problems

- Characterize classes of easy formulas for the bottom-up method.
- Checking 2^{3n/2} orders suffices.
 Can the bottom-up method match this bound?

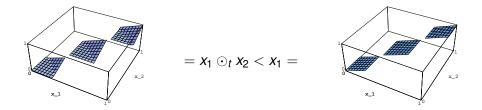
◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

References

 M. Baaz, P. Hájek, F. Montagna and H. Veith. Complexity of *t*-Tautologies. *Annals of Pure and Applied Logic*, 113:3–11, 2002.
 S. Bova and F. Montagna. Proof Search in Hájek's Basic Logic. To appear in ACM Transactions on Computational Logic.

<□> < E> < E> < E > E| = のへ⊙

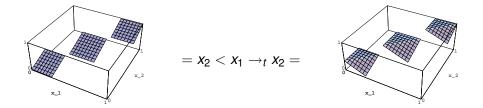
Example (m = 2): If $\lfloor 3x_1 \rfloor = \lfloor 3x_2 \rfloor$, then:



Hence, $X_1 \leq X_1 \odot X_2$ determines a *semantic inconsistency*.

<□> < => < => < => < =| = <0 < 0

Example (m = 2): If $\lfloor 3x_1 \rfloor = \lfloor 3x_2 \rfloor$, then:



Hence, $X_1 \rightarrow X_2 \leq X_2$ determines a *semantic inconsistency*.