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Unification Types

Let P = (P,≤) be a preorder.

A complete set for P is a set M ⊆ P such that:

(i) x ‖ y for all x, y ∈ M such that x 6= y;

(ii) for every x ∈ P there exists y ∈ M such that x ≤ y.

The type of a preorder P is defined by:

type(P) =

8><>:
0, if P has no complete set,
∞, if P has a complete set of infinite cardinality,
p, if P has a finite complete set of cardinality p.
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Symbolic Unification

Problem SYMBEQUNIF(V)

Instance A finite set E ⊆ TV(n)2.

Solution ζ : {x1, . . . , xn} → TV such that for all A ∈ V ,

A |=
^

(s,t)∈E

s(ζ(x1), . . . , ζ(xn)) = t(ζ(x1), . . . , ζ(xn)).

Type typeV(E) = type(UV(E)),
where preorder UV(E) = (UV(E),≤) is defined by:

(i) UV(E) = {ζ | ζ solution to E};
(ii) ζ1 ≤ ζ2 iff there exists ς : TV → TV st for all A ∈ V ,

A |=
^

i∈[n]

ζ1(xi) = ς ◦ ζ2(xi).
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Ghilardi Algebraic Unification

Problem ALGEQUNIF(V)

Instance A finitely presented algebra A ∈ V .

Solution A σ-homomorphism h : A→ P such that
P ∈ V is finitely presented projective.

Type typeV(A) = type(UV(A)),
where preorder UV(A) = (UV(A),≤) is defined by:

(i) UV(A) = {h | h solution to A};
(ii) h1 ≤ h2 iff there exists σ-hom f st h1 = f ◦ h2.
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Ghilardi Algebraic Unification

Theorem (Ghilardi [6])
If E ⊆ TV(n)2 finitely presents A ∈ V , then typeV(E) = typeV(A).

Proof (Idea).
Using that P ∈ V is finitely presented projective iff
P is a retract of FV(n) for some n < ω,
prove that UV(E) and UV(A) are equivalent categories.

Proof (Sketch).
For ζ : {x1, . . . , xn} → TV(m) solution to E,
define uζ : A→ FV(m) solution to A by uζ([t]) = [ζ(t)].
(i) For u : A→ P any solution to A with g : P→ FV(l), f : FV(l)→ P st
f ◦ g = idP, let ζ : {x1, . . . , xn} → TV(m) be the solution to E st
g(u([xi])) = [ζ(xi)]. Prove that u ≤ uζ and uζ ≤ u in UV(A).
(ii) Prove that ζ1 ≤ ζ2 in UV(E) iff uζ1 ≤ uζ2 in UV(A).
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1 3

y z

xw

Figure: L ∈ DL is finitely presented by E = {w ∨ x = y ∧ z},
then typeDL(E) = typeDL(L).
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Ghilardi Algebraic Unification

Features:

(i) unification is defined in terms of the categorical notions of finite
presentation and projectivity, then the unification type is preserved
under categorical equivalence;

(iii) for locally finite varieties with nice duality theorems, unification theory
can be developed in the combinatorial category dual to finite algebras
(in particular, the characterization of projective algebras).
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Distributive Lattices | (Dual) Unification

Theorem (Birkhoff [3]

, Balbes and Horn [1]

)

(i) Finite bounded distributive lattices and finite posets are dually equivalent
(via contravariant functors JDL and DDL).

(ii) A finite bounded distributive lattice L is projective iff
JDL(L) is a finite nonempty lattice.
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Figure: P = JDL(L) and L = DDL(P).

L is not projective in DL.
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Figure: P = JDL(L) and L = DDL(P). L is not projective in DL.
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Distributive Lattices | (Dual) Unification

Problem EQUNIF(DL)

Instance A finite poset P = (P,≤).

Solution A {≤}-homomorphism u : L→ P,
where L is a finite nonempty lattice.

Type typeDL(P) = type(UDL(P)),
where preorder UDL(P) = (UDL(P),≤) is defined by:

(i) UDL(P) = {u | u solution to P};
(ii) u1 ≤ u2 iff there exists {≤}-hom f st u1 = u2 ◦ f .
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Distributive Lattices | Unification Type Classification

Fact
P is a solvable instance of UNIF(DL) iff P 6= ∅.

Theorem ([4])
Let P be a solvable instance of UNIF(DL). Then:

typeDL(P) =


p, if every interval in P is a lattice,

and P has exactly p maximal (wrt ⊆) intervals;
0, otherwise.
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Classification | Proof Idea | Type p
All intervals in P are lattices, P has p maximal intervals⇒ typeDL(P) = p:

PL

i

u

u

x

x
y

y

Figure: For all unifiers u : L→ P, there exists an inclusion map i of a maximal
interval [x, y] ⊆ P into P such that u ≤ i in UDL(P).
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Classification | Proof Idea | Type 0

There exists an interval in P that is not a lattice⇒ typeDL(P) = 0:

G Pi

u

L

ui

f

Figure: For all i < ω, uniformly construct a unifier ui : Gi → P such that,
if the unifier u : L→ P satisfies ui ≤ u, then |L| ≥ i.
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De Morgan Algebras [7]

An algebra A = (A,∧,∨,′ , 0, 1) is a De Morgan algebra if:

(i) (A,∧,∨, 0, 1) is a bounded distributive lattice;

(ii) A |= x = x′′;

(iii) A |= (x ∧ y)′ = x′ ∨ y′.

Theorem (Kalman [7])
A De Morgan algebra A is subdirectly irreducible iff A ∈ {B,K,M}.

0

1

B
0

1

2

K

2

0

1

3

M

De Morgan varieties (B ⊂ K ⊂M) are locally finite.
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Results

(i) Explicit characterization of injective objects in the combinatorial
categories dually equivalent to finite De Morgan and Kleene algebras
(key).

(ii) Complete classification of solvable instances to the (dual) De Morgan
and Kleene unification problems (using the characterization),

type(Q) =

8><>:
1, if the “core” of Q is injective;
p < ω, if the “core” of Q is “almost injective”;
0, otherwise.
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Finite De Morgan Algebras | Duality

Objects Finite De Morgan algebras A = (A,∧,∨,′ , 0, 1).

Morphisms {∧,∨,′ , 0, 1}-homomorphisms.

Objects Finite involutive posets (fip’s), that is,
finite {≤,′ }-structures P = (P,≤,′ ) such that,
(P,≤) is a partial order,
P |= x = x′′, and P |= x ≤ y implies y′ ≤ x′.

Morphisms {≤,′ }-homomorphisms.

Theorem (Cornish and Fowler [5])
Finite De Morgan algebras and finite involutive posets
are dually equivalent (via contravariant functors JM and DM).
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Finite De Morgan Algebras | Duality

a b

1 3

a’ b’

ba

c, c’ d, d’ z z’

yx

Figure: P = JM(A) and A = DM(P).
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Finite De Morgan Algebras | Projective

Definition ([2])
For a cardinal κ, a poset (Q,≤) is κ-complete if for all X ⊆ Q,
if all Y ⊆ X such that |Y| < κ have an upper bound,
then X has a least upper bound.

Theorem ([4])
A finite De Morgan algebra A is projective iff JM(A) = (P,≤,′ ) satisfies:

(M1) (P,≤) is a nonempty lattice;

(M2) for all x ∈ P st x ≤ x′ there exists y ∈ P st x ≤ y = y′;

(M3) {x ∈ P | x ≤ x′} with inherited order is 3-complete.
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Finite De Morgan Algebras | Projective

a b

1 3

a’ b’

ba

c, c’ d, d’ z z’

yx

Figure: P fails (M1), then DM(P) is not projective.
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Finite De Morgan Algebras | Projective

a b c

1 2 31 3

4 5 6

6’ 5’ 4’

1’2’3’

2

a b c

a’ b’ c’

d, d’ e, e’ f, f’

Figure: P fails (M3), then DM(P) is not projective.
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De Morgan Algebras | Unification Core

Definition (De Morgan Unification Core)
The De Morgan unification core of the fip Q is the fip Qm = (Qm,≤m, im) st:

(i) Qm = {x, x′ ∈ Q | y ≤ z, x, x′ for some y, z ∈ Q such that z = z′};
(ii) x ≤m y iff x ≤ y for all x, y ∈ Qm;

(iii) im(x) = x′ for all x ∈ Qm.

Lemma
If u : P→ Q is a unifier for Q, then u(P) ⊆ Qm.
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De Morgan Algebras | Unification Type Classification

Problem EQUNIF(M)

Instance A finite involutive poset Q = (Q,≤,′ ).

Solution A {≤,′ }-homomorphism u : P→ Q,
where DM(P) is a finite projective De Morgan algebra.

Fact
Q is a solvable instance of EQUNIF(M) iff {x ∈ Q | x = x′} 6= ∅.

Theorem ([4])
Let Q = (Q,≤,′ ) be a solvable instance of UNIF(M). Then:

typeM(Q) =

8><>:
p, if every interval in Qm satisfies (M1), (M2), (M3),

and Qm has exactly p maximal intervals;
0, otherwise.
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De Morgan Classification | Q 6|= (M1) Gadget

Figure: Qm has poset Q1 (on the left). For i < ω, construct ui : Gi → Q1 such
that, if the unifier u : L→ P satisfies ui ≤ u, then |L| ≥ i (on the right, G3).
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De Morgan Classification | Q 6|= (M2) Gadget

Figure: Qm has poset Q2 (on the left). For i < ω, construct ui : Gi → Q2 such
that, if the unifier u : L→ P satisfies ui ≤ u, then |L| ≥ i (on the right, G3).
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De Morgan Classification | Q 6|= (M3) Gadget

Figure: Qm has poset Q3 (on the left). For i < ω, construct ui : Gi → Q3 such
that, if the unifier u : L→ P satisfies ui ≤ u, then |L| ≥ i (on the right, G4).
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Finite Kleene Algebras | Duality and Projective

Theorem (Cornish and Fowler [5])
Finite Kleene algebras and finite involutive posets st x ≤ x′ or x′ ≤ x (kfip’s)
are dually equivalent (via contravariant functors JK and DK).

Theorem ([4])
A finite Kleene algebra A is projective iff JK(A) = (P,≤,′ ) satisfies:

(K1) {x ∈ P | x ≤ x′} with inherited order is a nonempty meet semilattice;

(K2) for all x, y ∈ P st x, y ≤ y′, x′ there exists z ∈ P st x, y ≤ z ≤ z′;

(M2) for all x ∈ P st x ≤ x′ there exists y ∈ P st x ≤ y = y′;

(M3) {x ∈ P | x ≤ x′} with inherited order is 3-complete.
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Kleene Algebras | Unification Core

Definition (Kleene Unification Core)
The Kleene unification core of the kfip Q is the kfip Qk = (Qk,≤k, ik) st:

(i) Qk = {x, x′ ∈ Q | x ≤ z = z′ for some z ∈ Q};

(ii) x ≤k y iff, x ≤ y and either of the following three cases occurs:

(a) x ≤ x′ and y ≤ y′;
(b) x′ ≤ x and y′ ≤ y;
(c) x ≤ z = z′ ≤ y for some z ∈ Q;

(iii) ik(x) = x′ for all x ∈ Qk.

Lemma

(i) If u : P→ Q unifies Q, then u(P) ⊆ Qk and u : P→ Qk unifies Qk.

(ii) Qk satisfies (K2) and (M2).
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Kleene Algebras | Unification Type Classification

Problem UNIF(K).

Instance A finite involutive poset Q = (Q,≤,′ ) st x ≤ x′ or x′ ≤ x.

Solution A homomorphism u : P→ Q,
where DK(P) is a finite projective Kleene algebra.

Fact
Q is a solvable instance of UNIF(K) iff {x ∈ Q | x = x′} 6= ∅.

Theorem ([4])
Let Q = (Q,≤,′ ) be a solvable instance of UNIF(K). Then:

typeK(Q) =

8><>:
p, if every interval in Qk satisfies (K1) and (M3),

and Qk has exactly p maximal intervals;
0, otherwise.
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