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deMorgan Algebras, or Involutive Lattices [K58]

A = (A,∧,∨,′ , 0, 1) of type (2, 2, 1, 0, 0). x′ called involution.

A is a deMorgan algebra (A ∈M) if:
1. (A,∧,∨, 0, 1) is a bounded distributive lattice;
2. A |= x = x′′ and A |= (x ∧ y)′ = x′ ∨ y′.

A is a Kleene algebra (A ∈ K) if:
1. A is a deMorgan algebra;
2. A |= x ∧ x′ ≤ y ∨ y′.

A is a Boolean algebra (A ∈ B) if:
1. A is a Kleene algebra;
2. A |= x ∧ x′ = 0.

Remark
deMorgan algebras are finitely axiomatizable.
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Projective deMorgan Algebras

Fact (Balbes and Horn [BH70], Sikorski [S51])

1. A ∈ B injective iff complete.
2. A ∈ B projective iff countable.

Fact (Cignoli [C75])

1. A ∈M injective iff retract of 4κ (0 < κ cardinal).
2. A ∈ K injective iff retract of 3κ (0 < κ cardinal).

Question
(Finite) projective Kleene and deMorgan algebras?
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Applications

1. Many-Valued Logics (liar paradox)
2. Unification Theory (most general unifiers)
3. Proof Theory (rule admissibility)
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Subdirectly Irreducible deMorgan Algebras

Theorem (Kalman [K58])
A ∈M (nontrivial) subdirectly irreducible iff A ∈ {2, 3, 4}.

0

1

2

0

1

2

3

2

0

1

3

4

Then, (nontrivial) deMorgan varieties form a 3-element chain,

ISP(2) = B ⊂ ISP(3) = K ⊂ ISP(4) =M.

Remark
deMorgan varieties are locally finite.
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Free Finitely Generated deMorgan Algebras

Corollary
The free n-generated deMorgan algebra, FM(n),
is the subalgebra of 44n

generated by the projections.

Theorem (∼ Berman and Blok [BB01])
FM(n) ⊆ {0, 2, 3, 1}{0,2,3,1}n

preserving O,D ⊆ {0, 2, 3, 1}2. ∗
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∗f : An → A preserves a relation R ⊆ Ak if R is a subalgebra of (A, f )k.
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Graphs | Direct Products

E ⊆ V2. nth direct (or tensor) product En ⊆ (Vn)2 defined by,
((v1, . . . , vn), (w1, . . . ,wn)) ∈ En iff (vi,wi) ∈ E for all i ∈ [n].
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D2

For all x ∈ {0, 2, 3, 1}n, Dn(x) = y iff (x, y) ∈ Dn.
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Projective Algebras

V variety. A, B, C algebras in V .

Definition (Projective)
B projective if, for every A, C, f : A→ C onto, h : B→ C,
there exists g : B→ A such that f ◦ g = h.

Definition (Retract)
B retract of A if, there are f : A→ B, g : B→ A st f ◦ g = idB
(f onto, g 1:1).

Theorem
B projective iff B retract of FV(κ) for some cardinal κ.

Corollary
V locally finite variety. B ∈ Vfin projective iff B retract of FV(n) for n < ω.
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Goal

Characterize finite projective deMorgan algebras,
ie, retracts of FM(n) for n < ω.

Two steps:
1. instantiate Priestley duality by Cornish and Fowler [CF77]

over finitely generated free deMorgan algebras (τ discrete);
2. characterize combinatorially those objects that are dual to

retracts of finitely generated free deMorgan algebras.
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Finite Duality | Categories

Category FM, finite deMorgan algebras:
Objects: A, finite deMorgan algebra.

Morphisms h : A→ B, deMorgan homomorphism.

Category FIP, finite involutive posets:
Objects (P, zP), with P = (P,≤P) finite poset,

zP antitone bijection such that zP(zP(x)) = x.
Morphisms f : (P, zP)→ (Q, zQ), monotone map

such that f (zP(x)) = zQ(f (x)).
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Finite Duality | Contravariant Functors

Functor J : FM→ FIP:
Objects: J(A) = (P, zP), with

P = ({[x) | x join irreducible in A},⊇),
zP([x)) = A \ {y′ | y ∈ [x)}.

Morphisms J(h : A→ B) = J(B)→ J(A), where
J(h)([x)) = h−1([x)) for all [x) ∈ J(B).

Functor D : FIP→ FM:
Objects D((P, zP)) = A = (A,∧,∨,′ , 0, 1), with

A = {X ⊆ P | (X] = X},
X ≤ Y iff X ⊆ Y, 0 = ∅, 1 = P,
X′ = P \ z−1

P (X).
Morphisms D(f : P→ Q) = D(Q)→ D(P), where

D(f )(X) = f−1(X) for all X ∈ D(Q).
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Finite Duality | Dual Equivalence

Theorem (by Cornish and Fowler [CF77])
FM and FIP are dually equivalent via J and D.
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Example | J(A)
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Example | D(J(A)) = A

[x)

[y)

[w)

[z)

J(A) D(J(A)) = A
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J(FM(1))

1
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0
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1

x x’

FM(1) J(FM(1))

Problem
|FM(2)| = 168. Compute J(FM(2)).
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J(2), J(3), J(4)
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Morphisms over J(2), J(3), J(4)

2 32 3
2 3

1 1

2

1

1

1 2 3
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1

Remark

1. Onto morphisms correspond to subalgebras
(by inspection, 2 ≤S 3 ≤S 4, and 4 6≤S 3 6≤S 2).

2. 1:1 morphisms f st x ≤ y if f (x) ≤ f (y) † correspond to quotients
(by inspection, 2, 3, 4 are simple, thusM is semisimple).

†Order reflecting.
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Finite Duality | Quotients

Corollary (Quotients)
J(A) = (P, zP). Con(A) isomorphic to ({Q ⊆ P | zP(Q) = Q},⊇).

Proof (Sketch).
For 1, under Priestley (or Birkhoff) duality, onto bounded lattice homomorphisms
correspond to order embeddings, thus g : A→ B onto corresponds to
J(g) : J(B)→ J(A) order embedding. If J(B) = (Q, zQ), then J(g)(Q) is essentially
a subset of P, with inherited order and inherited involution, and by commutativity it
is closed under zP.

Remark
θ ∈ Con(A) meet irreducible iff θ corresponds to some {x, zP(x)}
with x join irreducible in A. For, {x, zP(x)} coatom in Con(A).
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Finite Duality | Projective

Corollary (Projective)
J(FM(n)) = (P, zP). J(A) = (Q, zQ). Then, A projective iff,

1. ∅ 6= Q ⊆ P st zP(Q) = Q;
2. there is an involutive retraction of P onto Q,

that is, a poset retraction‡ such that zP ◦ r = r ◦ zP.

Proof (Sketch).
f : A→ FM(n) 1:1 and g : FM(n)→ A onto such that g ◦ f = idA iff, by duality,
J(g ◦ f ) = J(idA) iff, J(f ) ◦ J(g) = idJ(A), where J(g) : J(A)→ J(FM(n)) order
embedding, and J(f ) : J(FM(n))→ J(A) onto. For 1, use the previous corollary.
For 2, J(f ) monotone onto implies J(f ) : P→ Q poset retraction that commutes with
zP.

‡r : P→ Q onto monotone st r(Q) = Q.
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FM(n) | Dual Object

Theorem
J(FM(n)) isomorphic to (({0, 2, 3, 1}n,On),Dn).

Proof (Sketch).
Fix antichain X ⊆ {0, 2, 3, 1}n such that (X] ∪ Dn((X]) = {0, 2, 3, 1}n and
(X] ∩ Dn((X]) = {0, 1}n. Define B = {0, 1}n = Dn(B); Bk,2 = (B] \ B = Dn(Bk,1);
Bk,1 = [B) \ B = Dn(Bk,2); Bm,2 = (X] \ Bk,2 = Dn(Bm,3); Bm,3 = [X) \ Bk,1 = Dn(Bm,2).
Then, {B,Bk,2,Bk,1,Bm,2,Bm,3} 5-partition of {0, 2, 3, 1}n.
Define M : {0, 2, 3, 1}n → 2{xi,x

′
i |i∈[n]}, for a = (a1, . . . , an), by:

M(a) =

8>>>>><>>>>>:

{x′i , xj | ai = 0, aj = 1}, if a ∈ B;
{x′i , xj, x′l , xl | ai = 0, aj = 1, al = 2}, if a ∈ Bk,2;
{x′i , xj | ai = 0, aj = 1}, if a ∈ Bk,1;
{x′i , xj, x′l , xl | ai = 0, aj = 1, al = 2}, if a ∈ Bm,2;
{x′i , xj, x′l , xl | ai = 0, aj = 1, al = 3}, if a ∈ Bm,3.

By direct computation, M isomorphism (
V

M(a) is the minterm at a, ie,
the smallest term operation m in FM(n) st m(a) = i, for a suitable i depending on a).
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J(FM(2))
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J(FM(2)) = (({0, 2, 3, 1}2, O2), D2)
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Involutive Retractions | Problem

Instance ∅ 6= Q ⊆ {0, 2, 3, 1}n st Dn(Q) = Q.

Say (n = 2),
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Question Is there a poset retraction r of {0, 2, 3, 1}n onto Q
such that r ◦Dn = Dn ◦ r?
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Involutive Retractions | Idea

(i) ∅ 6= Q ⊆ {0, 2, 3, 1}n st Dn(Q) = Q. Think D(Q) ∈ H(FM(n)).

(ii) Take a morphism r in FIP from {0, 2, 3, 1}n onto Q. r is an involutive poset
retraction of {0, 2, 3, 1}n onto Q that is, r : {0, 2, 3, 1}n → Q monotone onto st
r(Q) = Q and r ◦ Dn = Dn ◦ r.

(iii) The goal is to collect necessary combinatorial conditions imposed by such an r on
Q, until sufficient conditions arise such that conversely, {0, 2, 3, 1}n admits an
involutive retraction onto any Q satisfying those conditions. This suffices to
characterize (duals of) finite projective deMorgan algebras.

(iv) B = {0, 1}n. Clearly, r(B) = Q ∩ B 6= ∅ (trivial, enough for Boolean case) and
r((B]) = Q ∩ (B].

(v) The key insight is that r determines in a natural (nontrivial) way a partition of
{0, 2, 3, 1}n into two blocks, say (X] and Dn((X]) for some antichain
X ⊆ {0, 2, 3, 1}n, such that (X] ∩ Dn((X]) = B, and (X],Dn((X]), as well as
Q ∩ (X],Q ∩ Dn((X]), are dual isomorphic via Dn (the latter since Dn(Q) = Q).
The Kleene case reduces to the particular case where X = B.

(vi) The first (easy, enough for Kleene case) observation is that therefore, the
behaviour of r over Dn((X]) is encoded by r|(X], since r ◦ Dn = Dn ◦ r.

(vii) The second (tricky, necessary forM) observation is that moreover, X must
satisfy a certain combinatorial property such that, if x ≤ y with x ∈ (X] and
y ∈ Dn((X]), then r(x) ≤ r(y).
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Main Result

∅ 6= Q ⊆ {0, 2, 3, 1}n st Dn(Q) = Q.

Definition (Interface)
X ⊆ {0, 2, 3, 1}n is an interface (for Q) if X is an antichain such that:

(I1) (X] ∪Dn((X]) = {0, 2, 3, 1}n and (X] ∩Dn((X]) = B;

(I2) for all x ∈ (X] and y ∈ Dn((X]), if x ≤ y then,_
Q∩(X]

{z ∈ Q ∩ (X] | z ≤ x} ≤
^

Q∩Dn((X])

{w ∈ Q ∩Dn((X]) | w ≥ y}.

Definition (Better Embedded)
Q is better embedded in {0, 2, 3, 1}n if:

(E1) There exists an interface X for Q such that Q ∩ (X] is a meet semilattice
well embedded§ in (X], with Q ∩ (B] well embedded in (B].

(E2) Every x ∈ Q ∩ (B] \ B is comparable to some y ∈ Q ∩ B.

§S poset. R ⊆ S is well embedded in S if every X ⊆ R with an upper bound
in S has an upper bound in R [BB89].
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Main Result

Theorem (Finite Projective deMorgan Algebras)
Let A = D(Q). A projective iff,
Q is better embedded in {0, 2, 3, 1}n for some n < ω.

Proof (⇒).
Given retraction r of {0, 2, 3, 1}n onto Q st r(Dn(x)) = Dn(r(x)). Let
Bd ⊆ ({x | level(x) = n}] st Bd ∪ Dn(Bd) = B. r−1(Q ∩ Bd) meet semilattice dual
isomorphic to {0, 2, 3, 1} \ r−1(Q ∩ Bd) via Dn since Q = Dn(Q). Define X ⊆ {0, 2, 3, 1}
antichain by X = {x | x maximal in r−1(Q ∩ Bd)}. Notice (X] = r−1(Q ∩ Bd). Check
(I1)-(I2). By construction, r|(X] retraction of (X] onto Q ∩ Bd = Q ∩ (X], then by [BB89,
Lemma 2.4], since (X] is a (finite, so complete) meet semilattice, Q ∩ (X] is a meet
semilattice well embedded in (X]. Check better embedding. Let X ⊆ Q ∩ (B] with an
upper bound b in (B]; then r(b) = c for some upper bound c of X ⊆ Q ∩ (B], ie, Q ∩ (B]
is well embedded in (B]. (E2) is easily seen necessary (ow, there is x ∈ Q ∩ Bk,2
incomparable with every y ∈ Q ∩ B, then there is v ∈ B \ Q st x ≤ v but r(v) ‖ y,
contradiction).
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Main Result

Theorem (Finite Projective deMorgan Algebras)
Let A = D(Q). A projective iff,
Q is better embedded in {0, 2, 3, 1}n for some n < ω.

Proof (⇐).
Let X be an interface st Q ∩ (X] is a (finite, hence complete) meet semilattice well
embedded in (X]. Then by [BB89, Theorem 2.7], r(x) =

W
Q∩(X]{y ∈ Q ∩ (X] | y ≤ x}

for all x ∈ (X] retraction of (X] onto Q ∩ (X]. Since Q ∩ (B] well embedded in (B] by
(E2), the construction yields r((B]) = Q ∩ (B]. Possibly fix r(x) ∈ (B] \ B using (E3).
Extend r to {0, 2, 3, 1}n by r(Dn(x)) = Dn(r(x)), sound since for all x ∈ B, we have
x = Dn(x) ∈ B, but r(x) = r(Dn(x)). Sufficient to check r retraction (onto Q is clear). If
x ≤ y ∈ (X], then r(x) ≤ r(y). If x ≤ y ∈ [Dn(X)), then Dn(y) ≤ Dn(x) ∈ (X], then
r(Dn(y)) ≤ r(Dn(x)), then Dn(r(y)) ≤ Dn(r(x)), then r(x) ≤ r(y). Case y < x with
x ∈ (X], y ∈ [Dn(X)) impossible. Case x < y with x ∈ (X], y ∈ [Dn(X)), by (I2),
r(x) ≤ r(y).

Problem
Projective deMorgan algebras?
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Example 1 | Projective
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Example 2 | Projective
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Example 3 | Not Projective
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Complexity

Tabular presentation of A ∈M finite has size ≤ 5|A|2(2 lg |A|) = o(|A|3).
A ∈M wlog, ow checking axioms E ofM requires ≤ |E||A|3 = O(|A|3) time.

Problem DEMORGAN-DUAL-OBJECT

Input Tabular presentation of A ∈M.

Output Q ⊆ {0, 2, 3, 1}n st J(A) = Q.

Conjecture
DUAL-OBJECT polytime.

Problem DEMORGAN-PROJECTIVE

Instance Tabular presentation of A ∈M.

Question A projective?

Conjecture
DEMORGAN-PROJECTIVE polytime.
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Unification

A ∈M unifiable does not imply A ∈M projective (hence, nontrivial).

Question M unification type?

Conjecture
Unitary.

Evidence.
Heyting finitary but Heyting plus (x ∧ y)′ = x′ ∨ y′ unitary,
and finite bounded distributive lattices finitary.
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Counting

|FK(1)| = 6.

|FK(2)| = 84.
|FK(3)| = 43, 918.
|FK(4)| = 160, 297, 985, 276. Brute force.
|FK(5)| =?

Question |FK(n)|?

Recurrence in terms of Dedekind numbers, ie, |FDL(n)|?

Gives |FK(n)| for n ≤ 8. Noninteresting.

Does it give any nontrivial insight on the lattice of clones of Kleene
operations? Very interesting.
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