BACKGROUND

Contribution

Open

References

Finite Projective deMorgan Algebras

Simone Bova

Vanderbilt University (Nashville TN, USA)

joint work with Leonardo Cabrer

March 11-13, 2011 Vanderbilt University (Nashville TN, USA)

honoring Jorge Martínez

MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES
Outline

Motivation

Background

Contribution

Open

MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Outline

Motivation

Background

Contribution

Open

deMorgan Algebras, or Involutive Lattices [K58]

A = $(A, \land, \lor, ', 0, 1)$ of type (2, 2, 1, 0, 0). *x*' called *involution*.

A is a *deMorgan* algebra ($\mathbf{A} \in \mathcal{M}$) if:

1. $(A, \land, \lor, 0, 1)$ is a bounded distributive lattice;

2.
$$\mathbf{A} \models x = x''$$
 and $\mathbf{A} \models (x \land y)' = x' \lor y'$.

A is a *Kleene* algebra ($\mathbf{A} \in \mathcal{K}$) if:

1. A is a deMorgan algebra;

2.
$$\mathbf{A} \models x \land x' \le y \lor y'$$
.

A is a *Boolean* algebra ($\mathbf{A} \in \mathcal{B}$) if:

1. A is a Kleene algebra;

2. $\mathbf{A} \models x \land x' = 0$.

deMorgan Algebras, or Involutive Lattices [K58]

 $\mathbf{A} = (A, \wedge, \vee, ', 0, 1)$ of type (2, 2, 1, 0, 0). x' called *involution*.

A is a *deMorgan* algebra ($\mathbf{A} \in \mathcal{M}$) if:

1. $(A, \land, \lor, 0, 1)$ is a bounded distributive lattice;

2.
$$\mathbf{A} \models x = x''$$
 and $\mathbf{A} \models (x \land y)' = x' \lor y'$.

A is a *Kleene* algebra ($\mathbf{A} \in \mathcal{K}$) if:

- 1. A is a deMorgan algebra;
- 2. $\mathbf{A} \models x \land x' \le y \lor y'$.

A is a *Boolean* algebra ($\mathbf{A} \in \mathcal{B}$) if:

1. A is a Kleene algebra;

2. $\mathbf{A} \models x \land x' = 0$.

Remark

deMorgan algebras are finitely axiomatizable.

Projective deMorgan Algebras

Fact (Balbes and Horn [BH70], Sikorski [S51])

- 1. $A \in \mathcal{B}$ injective iff complete.
- 2. $A \in \mathcal{B}$ projective iff countable.

Fact (Cignoli [C75])

- 1. $\mathbf{A} \in \mathcal{M}$ injective iff retract of $\mathbf{4}^{\kappa}$ ($0 < \kappa$ cardinal).
- 2. $\mathbf{A} \in \mathcal{K}$ injective iff retract of $\mathbf{3}^{\kappa}$ ($0 < \kappa$ cardinal).

Projective deMorgan Algebras

Fact (Balbes and Horn [BH70], Sikorski [S51])

- 1. $A \in \mathcal{B}$ injective iff complete.
- 2. $A \in \mathcal{B}$ projective iff countable.

Fact (Cignoli [C75])

- 1. $\mathbf{A} \in \mathcal{M}$ injective iff retract of $\mathbf{4}^{\kappa}$ ($0 < \kappa$ cardinal).
- 2. $\mathbf{A} \in \mathcal{K}$ injective iff retract of $\mathbf{3}^{\kappa}$ ($0 < \kappa$ cardinal).

Question

(Finite) projective Kleene and deMorgan algebras?

BACKGROUND

CONTRIBUTION

Open

REFERENCES

Applications

- 1. Many-Valued Logics (liar paradox)
- 2. Unification Theory (most general unifiers)
- 3. Proof Theory (rule admissibility)

MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Motivation

Background

Contribution

Open

Subdirectly Irreducible deMorgan Algebras

Theorem (Kalman [K58])

 $A \in \mathcal{M}$ (nontrivial) subdirectly irreducible iff $A \in \{2,3,4\}.$

Then, (nontrivial) deMorgan varieties form a 3-element chain,

$$ISP(\mathbf{2}) = \mathcal{B} \subset ISP(\mathbf{3}) = \mathcal{K} \subset ISP(\mathbf{4}) = \mathcal{M}.$$

Subdirectly Irreducible deMorgan Algebras

Theorem (Kalman [K58])

 $A \in \mathcal{M}$ (nontrivial) subdirectly irreducible iff $A \in \{2,3,4\}.$

Then, (nontrivial) deMorgan varieties form a 3-element chain,

$$ISP(\mathbf{2}) = \mathcal{B} \subset ISP(\mathbf{3}) = \mathcal{K} \subset ISP(\mathbf{4}) = \mathcal{M}.$$

Remark deMorgan varieties are locally finite.

Free Finitely Generated deMorgan Algebras

Corollary

The free n-generated deMorgan algebra, $\mathbf{F}_{\mathcal{M}}(n)$, is the subalgebra of $\mathbf{4}^{4^n}$ generated by the projections.

Theorem (~ *Berman and Blok* [*BB01*]) $\mathbf{F}_{\mathcal{M}}(n) \subseteq \{0, 2, 3, 1\}^{\{0, 2, 3, 1\}^n}$ preserving $O, D \subseteq \{0, 2, 3, 1\}^2$. *

* $f: A^n \to A$ preserves a relation $R \subseteq A^k$ if R is a subalgebra of $(A, f)^k$.

Graphs | *Direct Products*

Graphs | *Direct Products*

BACKGROUND

CONTRIBUTION

Open

References

Graphs | *Direct Products*

Graphs | *Direct Products*

 $E \subseteq V^2$. *n*th *direct* (or *tensor*) product $E^n \subseteq (V^n)^2$ defined by, $((v_1, \ldots, v_n), (w_1, \ldots, w_n)) \in E^n$ iff $(v_i, w_i) \in E$ for all $i \in [n]$.

For all $x \in \{0, 2, 3, 1\}^n$, $D^n(x) = y$ iff $(x, y) \in D^n$.

Graphs | *Direct Products*

BACKGROUND

CONTRIBUTION

Open

REFERENCES

Graphs | *Direct Products*

BACKGROUND

CONTRIBUTION

Open

References

Projective Algebras

 \mathcal{V} variety. **A**, **B**, **C** algebras in \mathcal{V} .

Projective Algebras

 \mathcal{V} variety. **A**, **B**, **C** algebras in \mathcal{V} .

Definition (Projective)

B *projective* if, for every **A**, **C**, f : **A** \rightarrow **C** onto, h : **B** \rightarrow **C**, there exists g : **B** \rightarrow **A** such that $f \circ g = h$.

Projective Algebras

\mathcal{V} variety. **A**, **B**, **C** algebras in \mathcal{V} .

Definition (Projective)

B *projective* if, for every **A**, **C**, $f : \mathbf{A} \to \mathbf{C}$ onto, $h : \mathbf{B} \to \mathbf{C}$, there exists $g : \mathbf{B} \to \mathbf{A}$ such that $f \circ g = h$.

Definition (Retract)

B retract of **A** if, there are $f : \mathbf{A} \to \mathbf{B}$, $g : \mathbf{B} \to \mathbf{A}$ st $f \circ g = id_B$ (*f* onto, *g* 1:1).

Theorem

B projective iff **B** retract of $\mathbf{F}_{\mathcal{V}}(\kappa)$ for some cardinal κ .

Projective Algebras

\mathcal{V} variety. **A**, **B**, **C** algebras in \mathcal{V} .

Definition (Projective)

B *projective* if, for every **A**, **C**, $f : \mathbf{A} \to \mathbf{C}$ onto, $h : \mathbf{B} \to \mathbf{C}$, there exists $g : \mathbf{B} \to \mathbf{A}$ such that $f \circ g = h$.

Definition (Retract)

B retract of **A** if, there are $f : \mathbf{A} \to \mathbf{B}$, $g : \mathbf{B} \to \mathbf{A}$ st $f \circ g = id_B$ (*f* onto, *g* 1:1).

Theorem

B projective iff **B** retract of $\mathbf{F}_{\mathcal{V}}(\kappa)$ for some cardinal κ .

Corollary

 \mathcal{V} locally finite variety. $\mathbf{B} \in \mathcal{V}_{\text{fin}}$ projective iff \mathbf{B} retract of $\mathbf{F}_{\mathcal{V}}(n)$ for $n < \omega$.

MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Motivation

Background

Contribution

Open

Characterize finite projective deMorgan algebras, ie, retracts of $\mathbf{F}_{\mathcal{M}}(n)$ for $n < \omega$.

Characterize finite projective deMorgan algebras, ie, retracts of $\mathbf{F}_{\mathcal{M}}(n)$ for $n < \omega$.

Two steps:

1. instantiate Priestley duality by Cornish and Fowler [CF77] over finitely generated free deMorgan algebras (τ discrete);

Characterize finite projective deMorgan algebras, ie, retracts of $\mathbf{F}_{\mathcal{M}}(n)$ for $n < \omega$.

Two steps:

- 1. instantiate Priestley duality by Cornish and Fowler [CF77] over finitely generated free deMorgan algebras (τ discrete);
- 2. characterize combinatorially those objects that are dual to retracts of finitely generated free deMorgan algebras.

Finite Duality | *Categories*

Category FM, finite deMorgan algebras: *Objects:* A, finite deMorgan algebra. *Morphisms* $h: A \rightarrow B$, deMorgan homomorphism.

Category **FIP**, finite involutive posets:

Objects (**P**, $z_{\mathbf{P}}$), with **P** = (P, $\leq_{\mathbf{P}}$) finite poset, $z_{\mathbf{P}}$ antitone bijection such that $z_{\mathbf{P}}(z_{\mathbf{P}}(x)) = x$.

Morphisms $f: (\mathbf{P}, z_{\mathbf{P}}) \to (\mathbf{Q}, z_{\mathbf{Q}})$, monotone map such that $f(z_{\mathbf{P}}(x)) = z_{\mathbf{Q}}(f(x))$.

Finite Duality | Contravariant Functors

Functor $J : \mathbf{FM} \rightarrow \mathbf{FIP}$:

Objects:
$$J(\mathbf{A}) = (\mathbf{P}, z_{\mathbf{P}})$$
, with
 $\mathbf{P} = (\{[x) \mid x \text{ join irreducible in } \mathbf{A}\}, \supseteq),$
 $z_{\mathbf{P}}([x)) = A \setminus \{y' \mid y \in [x)\}.$
Morphisms $J(h: \mathbf{A} \to \mathbf{B}) = J(\mathbf{B}) \to J(\mathbf{A})$, where
 $J(h)([x)) = h^{-1}([x))$ for all $[x) \in J(\mathbf{B}).$

Functor $D: \mathbf{FIP} \to \mathbf{FM}:$

Objects
$$D((\mathbf{P}, z_{\mathbf{P}})) = \mathbf{A} = (A, \land, \lor, ', 0, 1)$$
, with
 $A = \{X \subseteq P \mid (X] = X\},$
 $X \leq Y \text{ iff } X \subseteq Y, 0 = \emptyset, 1 = P,$
 $X' = P \setminus z_{\mathbf{P}}^{-1}(X).$
Morphisms $D(f : \mathbf{P} \to \mathbf{Q}) = D(\mathbf{Q}) \to D(\mathbf{P})$, where
 $D(f)(X) = f^{-1}(X) \text{ for all } X \in D(\mathbf{Q}).$

BACKGROUND

CONTRIBUTION

OPEN

References

Finite Duality | Dual Equivalence

Theorem (by Cornish and Fowler [CF77]) FM and FIP are dually equivalent via J and D.

BACKGROUND

CONTRIBUTION

OPEN

References

Example $| J(\mathbf{A})$

Α

BACKGROUND

CONTRIBUTION

Open

REFERENCES

Example $| D(J(\mathbf{A})) = \mathbf{A}$

BACKGROUND

CONTRIBUTION

Open

References

$J(\mathbf{F}_{\mathcal{M}}(1))$

 $J(\mathbf{F}_{\mathcal{M}}(1))$

Problem

BACKGROUND

CONTRIBUTION

Open

REFERENCES

$J(\mathbf{F}_{\mathcal{M}}(1))$

 $J(\mathbf{F}_{\mathcal{M}}(1))$

 $|\mathbf{F}_{\mathcal{M}}(2)| = 168.$ Compute $J(\mathbf{F}_{\mathcal{M}}(2)).$

Motivation

BACKGROUND

CONTRIBUTION

OPEN

References

$J({\bf 2}), J({\bf 3}), J({\bf 4})$

BACKGROUND

CONTRIBUTION

Open

References

Morphisms over J(2), J(3), J(4)

[†]Order reflecting.

BACKGROUND

CONTRIBUTION

Open

References

Morphisms over J(2), J(3), J(4)

Remark

1. Onto morphisms correspond to subalgebras (by inspection, $2 \leq_S 3 \leq_S 4$, and $4 \not\leq_S 3 \not\leq_S 2$).

[†]Order reflecting.

BACKGROUND

CONTRIBUTION

Open

References

Morphisms over J(2), J(3), J(4)

Remark

- 1. Onto morphisms correspond to subalgebras (by inspection, $2 \leq_S 3 \leq_S 4$, and $4 \not\leq_S 3 \not\leq_S 2$).
- 2. 1:1 morphisms f st $x \le y$ if $f(x) \le f(y)^{\dagger}$ correspond to quotients (by inspection, **2**, **3**, **4** are simple, thus \mathcal{M} is semisimple).

[†]Order reflecting.

BACKGROUND

CONTRIBUTION

Open

REFERENCES

Finite Duality | *Quotients*

Corollary (Quotients) $J(\mathbf{A}) = (\mathbf{P}, z_{\mathbf{P}})$. Con(\mathbf{A}) *isomorphic to* ({ $Q \subseteq P \mid z_{\mathbf{P}}(Q) = Q$ }, \supseteq).

Finite Duality | *Quotients*

Corollary (Quotients) $J(\mathbf{A}) = (\mathbf{P}, z_{\mathbf{P}}).$ Con(**A**) *isomorphic to* $(\{Q \subseteq P \mid z_{\mathbf{P}}(Q) = Q\}, \supseteq).$

Proof (Sketch).

For 1, under Priestley (or Birkhoff) duality, onto bounded lattice homomorphisms correspond to order embeddings, thus $g: \mathbf{A} \to \mathbf{B}$ onto corresponds to $J(g): J(\mathbf{B}) \to J(\mathbf{A})$ order embedding. If $J(\mathbf{B}) = (\mathbf{Q}, z_{\mathbf{Q}})$, then J(g)(Q) is essentially a subset of P, with inherited order and inherited involution, and by commutativity it is closed under $z_{\mathbf{P}}$.

Finite Duality | *Quotients*

Corollary (Quotients) $J(\mathbf{A}) = (\mathbf{P}, z_{\mathbf{P}}).$ Con(**A**) *isomorphic to* $(\{Q \subseteq P \mid z_{\mathbf{P}}(Q) = Q\}, \supseteq).$

Proof (Sketch).

For 1, under Priestley (or Birkhoff) duality, onto bounded lattice homomorphisms correspond to order embeddings, thus $g: \mathbf{A} \to \mathbf{B}$ onto corresponds to $J(g): J(\mathbf{B}) \to J(\mathbf{A})$ order embedding. If $J(\mathbf{B}) = (\mathbf{Q}, z_{\mathbf{Q}})$, then J(g)(Q) is essentially a subset of P, with inherited order and inherited involution, and by commutativity it is closed under $z_{\mathbf{P}}$.

Remark

 $\theta \in \text{Con}(\mathbf{A})$ meet irreducible iff θ corresponds to some $\{x, z_{\mathbf{P}}(x)\}$ with x join irreducible in **A**. For, $\{x, z_{\mathbf{P}}(x)\}$ coatom in Con(**A**).

Finite Duality | *Projective*

Corollary (Projective)

 $J(\mathbf{F}_{\mathcal{M}}(n)) = (\mathbf{P}, z_{\mathbf{P}}). J(\mathbf{A}) = (\mathbf{Q}, z_{\mathbf{Q}}).$ Then, **A** projective iff,

- 1. $\emptyset \neq Q \subseteq P \text{ st } z_{\mathbf{P}}(Q) = Q;$
- 2. there is an involutive retraction of P onto Q, that is, a poset retraction[†] such that $z_{\mathbf{P}} \circ r = r \circ z_{\mathbf{P}}$.

[‡] $r: P \to Q$ onto monotone st r(Q) = Q.

Finite Duality | *Projective*

Corollary (Projective)

$$J(\mathbf{F}_{\mathcal{M}}(n)) = (\mathbf{P}, z_{\mathbf{P}}). J(\mathbf{A}) = (\mathbf{Q}, z_{\mathbf{Q}}).$$
 Then, **A** projective iff,

- 1. $\emptyset \neq Q \subseteq P \text{ st } z_{\mathbf{P}}(Q) = Q;$
- 2. there is an involutive retraction of P onto Q, that is, a poset retraction[‡] such that $z_{\mathbf{P}} \circ r = r \circ z_{\mathbf{P}}$.

Proof (Sketch).

 $f: \mathbf{A} \to \mathbf{F}_{\mathcal{M}}(n) \ 1:1 \ and \ g: \mathbf{F}_{\mathcal{M}}(n) \to \mathbf{A} \ onto \ such \ that \ g \circ f = \mathrm{id}_{\mathbf{A}} \ iff, \ by \ duality,$ $J(g \circ f) = J(\mathrm{id}_{\mathbf{A}}) \ iff, \ J(f) \circ J(g) = \mathrm{id}_{J(\mathbf{A})}, \ where \ J(g): \ J(\mathbf{A}) \to J(\mathbf{F}_{\mathcal{M}}(n)) \ order$ embedding, and $J(f): \ J(\mathbf{F}_{\mathcal{M}}(n)) \to J(\mathbf{A}) \ onto. \ For \ 1, \ use \ the \ previous \ corollary.$ For 2, $J(f) \ monotone \ onto \ implies \ J(f): \ P \to Q \ poset \ retraction \ that \ commutes \ with \ z_{\mathbf{P}}.$

[‡] $r: P \to Q$ onto monotone st r(Q) = Q.

$\mathbf{F}_{\mathcal{M}}(n) \mid Dual \ Object$

Theorem $J(\mathbf{F}_{\mathcal{M}}(n))$ isomorphic to $((\{0, 2, 3, 1\}^n, O^n), D^n)$.

$\mathbf{F}_{\mathcal{M}}(n) \mid Dual \ Object$

Theorem $J(\mathbf{F}_{\mathcal{M}}(n))$ *isomorphic to* $((\{0,2,3,1\}^n, O^n), D^n).$

Proof (Sketch).

Fix antichain
$$X \subseteq \{0, 2, 3, 1\}^n$$
 such that $(X] \cup D^n((X]) = \{0, 2, 3, 1\}^n$ and
 $(X] \cap D^n((X]) = \{0, 1\}^n$. Define $B = \{0, 1\}^n = D^n(B)$; $B_{k,2} = (B] \setminus B = D^n(B_{k,1})$;
 $B_{k,1} = [B] \setminus B = D^n(B_{k,2})$; $B_{m,2} = (X] \setminus B_{k,2} = D^n(B_{m,3})$; $B_{m,3} = [X] \setminus B_{k,1} = D^n(B_{m,2})$.
Then, $\{B, B_{k,2}, B_{k,1}, B_{m,2}, B_{m,3}\}$ 5-partition of $\{0, 2, 3, 1\}^n$.
Define M : $\{0, 2, 3, 1\}^n \to 2^{\{x_i, x'_i \mid i \in [n]\}}$, for $\mathbf{a} = (a_1, \dots, a_n)$, by:

$$M(\mathbf{a}) = \begin{cases} \{x'_i, x_j \mid a_i = 0, a_j = 1\}, & \text{if } \mathbf{a} \in B; \\ \{x'_i, x_j, x'_l, x_l \mid a_i = 0, a_j = 1, a_l = 2\}, & \text{if } \mathbf{a} \in B_{k,2}; \\ \{x'_i, x_j \mid a_i = 0, a_j = 1\}, & \text{if } \mathbf{a} \in B_{k,1}; \\ \{x'_i, x_j, x'_l, x_l \mid a_i = 0, a_j = 1, a_l = 2\}, & \text{if } \mathbf{a} \in B_{m,2}, \\ \{x'_i, x_j, x'_l, x_l \mid a_i = 0, a_j = 1, a_l = 3\}, & \text{if } \mathbf{a} \in B_{m,3}. \end{cases}$$

By direct computation, M isomorphism $(\bigwedge M(\mathbf{a}) \text{ is the minterm at } \mathbf{a}, ie,$ the smallest term operation m in $\mathbf{F}_{\mathcal{M}}(n)$ st $m(\mathbf{a}) = i$, for a suitable *i* depending on \mathbf{a}).

$J(\mathbf{F}_{\mathcal{M}}(2)) = ((\{0, 2, 3, 1\}^2, O^2), D^2)$

BACKGROUND

CONTRIBUTION

REFERENCES

Involutive Retractions | Problem

Instance $\emptyset \neq Q \subseteq \{0, 2, 3, 1\}^n$ st $D^n(Q) = Q$.

BACKGROUND

CONTRIBUTION

Involutive Retractions | Problem

Instance $\emptyset \neq Q \subseteq \{0,2,3,1\}^n$ st $D^n(Q) = Q$. Say (n = 2),

BACKGROUND

CONTRIBUTION

Involutive Retractions | Problem

Instance $\emptyset \neq Q \subseteq \{0,2,3,1\}^n$ st $D^n(Q) = Q$. Say (n = 2),

Question Is there a poset retraction *r* of $\{0, 2, 3, 1\}^n$ onto *Q* such that $r \circ D^n = D^n \circ r$?

Involutive Retractions | *Idea*

- (i) $\emptyset \neq Q \subseteq \{0,2,3,1\}^n$ st $D^n(Q) = Q$. Think $D(Q) \in H(\mathbf{F}_{\mathcal{M}}(n))$.
- (*ii*) Take a morphism *r* in **FIP** from $\{0, 2, 3, 1\}^n$ onto *Q*. *r* is an involutive poset retraction of $\{0, 2, 3, 1\}^n$ onto *Q* that is, *r*: $\{0, 2, 3, 1\}^n \rightarrow Q$ monotone onto st r(Q) = Q and $r \circ D^n = D^n \circ r$.
- (*iii*) The goal is to collect *necessary* combinatorial conditions imposed by such an *r* on Q, until *sufficient* conditions arise such that conversely, $\{0, 2, 3, 1\}^n$ admits an involutive retraction onto any Q satisfying those conditions. This suffices to characterize (duals of) finite projective deMorgan algebras.
- (*iv*) $B = \{0, 1\}^n$. Clearly, $r(B) = Q \cap B \neq \emptyset$ (trivial, enough for Boolean case) and $r((B)) = Q \cap (B]$.
- (*v*) The key insight is that *r* determines in a natural (nontrivial) way a partition of $\{0, 2, 3, 1\}^n$ into two blocks, say (X] and $D^n((X])$ for some antichain $X \subseteq \{0, 2, 3, 1\}^n$, such that $(X] \cap D^n((X]) = B$, and (X], $D^n((X])$, as well as $Q \cap (X], Q \cap D^n((X])$, are dual isomorphic via D^n (the latter since $D^n(Q) = Q$). The Kleene case reduces to the particular case where X = B.
- (*vi*) The first (easy, enough for Kleene case) observation is that therefore, the behaviour of *r* over $D^n((X))$ is encoded by $r|_{(X)}$, since $r \circ D^n = D^n \circ r$.
- (vii) The second (tricky, necessary for \mathcal{M}) observation is that moreover, X must satisfy a certain combinatorial property such that, if $x \leq y$ with $x \in (X]$ and $y \in D^n((X])$, then $r(x) \leq r(y)$.

 $\emptyset \neq Q \subseteq \{0,2,3,1\}^n$ st $D^n(Q) = Q$.

Definition (Interface)

 $X \subseteq \{0, 2, 3, 1\}^n$ is an *interface (for Q)* if X is an antichain such that:

(I1) $(X] \cup D^n((X]) = \{0, 2, 3, 1\}^n \text{ and } (X] \cap D^n((X]) = B;$

(12) for all $x \in (X]$ and $y \in D^n((X])$, if $x \le y$ then,

$$\bigvee_{Q\cap(X]} \{z \in Q \cap (X] \mid z \le x\} \le \bigwedge_{Q\cap D^n((X])} \{w \in Q \cap D^n((X]) \mid w \ge y\}.$$

Definition (Better Embedded)

Q is better embedded in $\{0, 2, 3, 1\}^n$ if:

(E1) There exists an interface X for Q such that $Q \cap (X]$ is a meet semilattice well embedded[§] in (X], with $Q \cap (B]$ well embedded in (B].

(E2) Every $x \in Q \cap (B] \setminus B$ is comparable to some $y \in Q \cap B$.

[§]*S* poset. $R \subseteq S$ is *well embedded* in *S* if every $X \subseteq R$ with an upper bound in *S* has an upper bound in *R* [BB89].

Theorem (Finite Projective deMorgan Algebras)

Let $\mathbf{A} = D(Q)$. A projective iff, Q is better embedded in $\{0, 2, 3, 1\}^n$ for some $n < \omega$.

Theorem (Finite Projective deMorgan Algebras)

Let $\mathbf{A} = D(Q)$. A projective iff, Q is better embedded in $\{0, 2, 3, 1\}^n$ for some $n < \omega$.

$Proof (\Rightarrow).$

Given retraction r of $\{0, 2, 3, 1\}^n$ onto Q st $r(D^n(x)) = D^n(r(x))$. Let $B_d \subseteq (\{x \mid \text{level}(x) = n\}]$ st $B_d \cup D^n(B_d) = B$. $r^{-1}(Q \cap B_d)$ meet semilattice dual isomorphic to $\{0, 2, 3, 1\} \setminus r^{-1}(Q \cap B_d)$ via D^n since $Q = D^n(Q)$. Define $X \subseteq \{0, 2, 3, 1\}$ antichain by $X = \{x \mid x \text{ maximal in } r^{-1}(Q \cap B_d)\}$. Notice $(X] = r^{-1}(Q \cap B_d)$. Check (I1)-(I2). By construction, $r|_{\{X\}}$ retraction of (X] onto $Q \cap B_d = Q \cap (X]$, then by [BB89, Lemma 2.4], since (X] is a (finite, so complete) meet semilattice, $Q \cap (X]$ is a meet semilattice well embedded in (X]. Check better embedding. Let $X \subseteq Q \cap (B]$ with an upper bound b in (B]; then r(b) = c for some upper bound c of $X \subseteq Q \cap (B]$, ie, $Q \cap (B]$ is well embedded in (B]. (E2) is easily seen necessary (ow, there is $x \in Q \cap B_{k,2}$ incomparable with every $y \in Q \cap B$, then there is $v \in B \setminus Q$ st $x \leq v$ but $r(v) \parallel y$, contradiction).

Theorem (Finite Projective deMorgan Algebras)

Let $\mathbf{A} = D(Q)$. A projective iff, Q is better embedded in $\{0, 2, 3, 1\}^n$ for some $n < \omega$.

$Proof (\Leftarrow).$

Let X be an interface st $Q \cap (X]$ is a (finite, hence complete) meet semilattice well embedded in (X]. Then by [BB89, Theorem 2.7], $r(x) = \bigvee_{Q \cap (X]} \{y \in Q \cap (X] \mid y \le x\}$ for all $x \in (X]$ retraction of (X] onto $Q \cap (X]$. Since $Q \cap (B]$ well embedded in (B] by (E2), the construction yields $r((B)) = Q \cap (B]$. Possibly fix $r(x) \in (B] \setminus B$ using (E3). Extend *r* to $\{0, 2, 3, 1\}^n$ by $r(D^n(x)) = D^n(r(x))$, sound since for all $x \in B$, we have $x = D^n(x) \in B$, but $r(x) = r(D^n(x))$. Sufficient to check *r* retraction (onto *Q* is clear). If $x \le y \in (X]$, then $r(x) \le r(y)$. If $x \le y \in [D^n(X))$, then $D^n(y) \le D^n(x) \in (X]$, then $r(D^n(y)) \le r(D^n(x))$, then $D^n(r(y)) \le D^n(r(x))$, then $r(x) \le r(y)$. Case y < x with $x \in (X], y \in [D^n(X))$ impossible. Case x < y with $x \in (X], y \in [D^n(X))$, by (I2), $r(x) \le r(y)$.

Theorem (Finite Projective deMorgan Algebras)

Let $\mathbf{A} = D(Q)$. A projective iff, Q is better embedded in $\{0, 2, 3, 1\}^n$ for some $n < \omega$.

$Proof (\Leftarrow).$

Let X be an interface st $Q \cap (X]$ is a (finite, hence complete) meet semilattice well embedded in (X]. Then by [BB89, Theorem 2.7], $r(x) = \bigvee_{Q \cap (X]} \{y \in Q \cap (X] \mid y \le x\}$ for all $x \in (X]$ retraction of (X] onto $Q \cap (X]$. Since $Q \cap (B]$ well embedded in (B] by (E2), the construction yields $r((B)) = Q \cap (B]$. Possibly fix $r(x) \in (B] \setminus B$ using (E3). Extend r to $\{0, 2, 3, 1\}^n$ by $r(D^n(x)) = D^n(r(x))$, sound since for all $x \in B$, we have $x = D^n(x) \in B$, but $r(x) = r(D^n(x))$. Sufficient to check r retraction (onto Q is clear). If $x \le y \in (X]$, then $r(x) \le r(y)$. If $x \le y \in [D^n(X))$, then $D^n(y) \le D^n(x) \in (X]$, then $r(D^n(y)) \le r(D^n(x))$, then $D^n(r(y)) \le D^n(r(x))$, then $r(x) \le r(y)$. Case y < x with $x \in (X], y \in [D^n(X))$ impossible. Case x < y with $x \in (X], y \in [D^n(X))$, by (I2), $r(x) \le r(y)$.

Problem

Projective deMorgan algebras?

CONTRIBUTION

Open

REFERENCES

Example 1 | *Projective*

Example 2 | *Projective*

Example 3 | *Not Projective*

BACKGROUND

CONTRIBUTION

Open

REFERENCES

Outline

Motivation

Background

Contribution

Open

Tabular presentation of $\mathbf{A} \in \mathcal{M}$ finite has size $\leq 5|A|^2(2\lg |A|) = o(|A|^3)$. $\mathbf{A} \in \mathcal{M}$ wlog, ow checking axioms *E* of \mathcal{M} requires $\leq |E||A|^3 = O(|A|^3)$ time.

Tabular presentation of $\mathbf{A} \in \mathcal{M}$ finite has size $\leq 5|A|^2(2\lg |A|) = o(|A|^3)$. $\mathbf{A} \in \mathcal{M}$ wlog, ow checking axioms *E* of \mathcal{M} requires $\leq |E||A|^3 = O(|A|^3)$ time.

ProblemDEMORGAN-DUAL-OBJECTInputTabular presentation of $\mathbf{A} \in \mathcal{M}$.Output $Q \subseteq \{0, 2, 3, 1\}^n$ st $J(\mathbf{A}) = Q$.

Tabular presentation of $\mathbf{A} \in \mathcal{M}$ finite has size $\leq 5|A|^2(2\lg |A|) = o(|A|^3)$. $\mathbf{A} \in \mathcal{M}$ wlog, ow checking axioms *E* of \mathcal{M} requires $\leq |E||A|^3 = O(|A|^3)$ time.

ProblemDEMORGAN-DUAL-OBJECTInputTabular presentation of $\mathbf{A} \in \mathcal{M}$.Output $Q \subseteq \{0, 2, 3, 1\}^n$ st $J(\mathbf{A}) = Q$.

Conjecture

DUAL-OBJECT polytime.

Tabular presentation of $\mathbf{A} \in \mathcal{M}$ finite has size $\leq 5|A|^2(2\lg |A|) = o(|A|^3)$. $\mathbf{A} \in \mathcal{M}$ wlog, ow checking axioms *E* of \mathcal{M} requires $\leq |E||A|^3 = O(|A|^3)$ time.

ProblemDEMORGAN-DUAL-OBJECTInputTabular presentation of $\mathbf{A} \in \mathcal{M}$.Output $Q \subseteq \{0, 2, 3, 1\}^n$ st $J(\mathbf{A}) = Q$.

Conjecture

DUAL-OBJECT polytime.

ProblemDEMORGAN-PROJECTIVEInstanceTabular presentation of $\mathbf{A} \in \mathcal{M}$.Question \mathbf{A} projective?

Tabular presentation of $\mathbf{A} \in \mathcal{M}$ finite has size $\leq 5|A|^2(2\lg |A|) = o(|A|^3)$. $\mathbf{A} \in \mathcal{M}$ wlog, ow checking axioms *E* of \mathcal{M} requires $\leq |E||A|^3 = O(|A|^3)$ time.

ProblemDEMORGAN-DUAL-OBJECTInputTabular presentation of $\mathbf{A} \in \mathcal{M}$.Output $Q \subseteq \{0, 2, 3, 1\}^n$ st $J(\mathbf{A}) = Q$.

Conjecture

DUAL-OBJECT polytime.

ProblemDEMORGAN-PROJECTIVEInstanceTabular presentation of $\mathbf{A} \in \mathcal{M}$.QuestionA projective?

Conjecture DEMORGAN-PROJECTIVE *polytime*.

Unification

$\mathbf{A} \in \mathcal{M}$ unifiable does not imply $\mathbf{A} \in \mathcal{M}$ projective (hence, nontrivial).

 $A \in \mathcal{M}$ unifiable does not imply $A \in \mathcal{M}$ projective (hence, nontrivial).

Question M unification type?

Unification

 $A \in \mathcal{M}$ unifiable does not imply $A \in \mathcal{M}$ projective (hence, nontrivial).

Question M unification type?

Conjecture Unitary.

Unification

 $\mathbf{A} \in \mathcal{M}$ unifiable does not imply $\mathbf{A} \in \mathcal{M}$ projective (hence, nontrivial).

Question M unification type?

Conjecture

Unitary.

Evidence.

Heyting finitary but Heyting plus $(x \land y)' = x' \lor y'$ unitary, and finite bounded distributive lattices finitary.

N REFERENCES

 $|\mathbf{F}_{\mathcal{K}}(1)| = 6.$

MOTIVATION	BACKGROUND	CONTRIBUTION	Open	References
		Counting		
		Counting		

$$\begin{split} |\mathbf{F}_{\mathcal{K}}(1)| &= 6. \\ |\mathbf{F}_{\mathcal{K}}(2)| &= 84. \end{split}$$

Motivation	BACKGROUND	Contribution	Open	References
	~			

$$\begin{split} |F_{\mathcal{K}}(1)| &= 6. \\ |F_{\mathcal{K}}(2)| &= 84. \\ |F_{\mathcal{K}}(3)| &= 43,918. \end{split}$$

$$\begin{split} |\mathbf{F}_{\mathcal{K}}(1)| &= 6. \\ |\mathbf{F}_{\mathcal{K}}(2)| &= 84. \\ |\mathbf{F}_{\mathcal{K}}(3)| &= 43,918. \\ |\mathbf{F}_{\mathcal{K}}(4)| &= 160,297,985,276. \text{ Brute force.} \end{split}$$

$$\begin{split} |\mathbf{F}_{\mathcal{K}}(1)| &= 6. \\ |\mathbf{F}_{\mathcal{K}}(2)| &= 84. \\ |\mathbf{F}_{\mathcal{K}}(3)| &= 43,918. \\ |\mathbf{F}_{\mathcal{K}}(4)| &= 160,297,985,276. \text{ Brute force.} \\ |\mathbf{F}_{\mathcal{K}}(5)| &= ? \end{split}$$

$$\begin{split} |\mathbf{F}_{\mathcal{K}}(1)| &= 6. \\ |\mathbf{F}_{\mathcal{K}}(2)| &= 84. \\ |\mathbf{F}_{\mathcal{K}}(3)| &= 43,918. \\ |\mathbf{F}_{\mathcal{K}}(4)| &= 160,297,985,276. \text{ Brute force.} \\ |\mathbf{F}_{\mathcal{K}}(5)| &= ? \end{split}$$

Question $|\mathbf{F}_{\mathcal{K}}(n)|$?

$$\begin{split} |\mathbf{F}_{\mathcal{K}}(1)| &= 6. \\ |\mathbf{F}_{\mathcal{K}}(2)| &= 84. \\ |\mathbf{F}_{\mathcal{K}}(3)| &= 43,918. \\ |\mathbf{F}_{\mathcal{K}}(4)| &= 160,297,985,276. \text{ Brute force.} \\ |\mathbf{F}_{\mathcal{K}}(5)| &= ? \end{split}$$

Question $|\mathbf{F}_{\mathcal{K}}(n)|$?

Recurrence in terms of Dedekind numbers, ie, $|\mathbf{F}_{D\mathcal{L}}(n)|$?

$$\begin{split} |\mathbf{F}_{\mathcal{K}}(1)| &= 6. \\ |\mathbf{F}_{\mathcal{K}}(2)| &= 84. \\ |\mathbf{F}_{\mathcal{K}}(3)| &= 43,918. \\ |\mathbf{F}_{\mathcal{K}}(4)| &= 160,297,985,276. \text{ Brute force.} \\ |\mathbf{F}_{\mathcal{K}}(5)| &= ? \end{split}$$

Question $|\mathbf{F}_{\mathcal{K}}(n)|$?

Recurrence in terms of Dedekind numbers, ie, $|\mathbf{F}_{DL}(n)|$?

Gives $|\mathbf{F}_{\mathcal{K}}(n)|$ for $n \leq 8$.

$$\begin{split} |\mathbf{F}_{\mathcal{K}}(1)| &= 6. \\ |\mathbf{F}_{\mathcal{K}}(2)| &= 84. \\ |\mathbf{F}_{\mathcal{K}}(3)| &= 43,918. \\ |\mathbf{F}_{\mathcal{K}}(4)| &= 160,297,985,276. \text{ Brute force.} \\ |\mathbf{F}_{\mathcal{K}}(5)| &= ? \end{split}$$

Question $|\mathbf{F}_{\mathcal{K}}(n)|$?

Recurrence in terms of Dedekind numbers, ie, $|\mathbf{F}_{D\mathcal{L}}(n)|$?

Gives $|\mathbf{F}_{\mathcal{K}}(n)|$ for $n \leq 8$. Noninteresting.

$$\begin{split} |\mathbf{F}_{\mathcal{K}}(1)| &= 6. \\ |\mathbf{F}_{\mathcal{K}}(2)| &= 84. \\ |\mathbf{F}_{\mathcal{K}}(3)| &= 43,918. \\ |\mathbf{F}_{\mathcal{K}}(4)| &= 160,297,985,276. \text{ Brute force.} \\ |\mathbf{F}_{\mathcal{K}}(5)| &= ? \end{split}$$

Question $|\mathbf{F}_{\mathcal{K}}(n)|$?

Recurrence in terms of Dedekind numbers, ie, $|\mathbf{F}_{DL}(n)|$?

Gives $|\mathbf{F}_{\mathcal{K}}(n)|$ for $n \leq 8$. Noninteresting.

Does it give any nontrivial insight on the lattice of clones of Kleene operations?

$$\begin{split} |\mathbf{F}_{\mathcal{K}}(1)| &= 6. \\ |\mathbf{F}_{\mathcal{K}}(2)| &= 84. \\ |\mathbf{F}_{\mathcal{K}}(3)| &= 43,918. \\ |\mathbf{F}_{\mathcal{K}}(4)| &= 160,297,985,276. \text{ Brute force.} \\ |\mathbf{F}_{\mathcal{K}}(5)| &= ? \end{split}$$

Question $|\mathbf{F}_{\mathcal{K}}(n)|$?

Recurrence in terms of Dedekind numbers, ie, $|\mathbf{F}_{DL}(n)|$?

Gives $|\mathbf{F}_{\mathcal{K}}(n)|$ for $n \leq 8$. Noninteresting.

Does it give any nontrivial insight on the lattice of clones of Kleene operations? Very interesting.

References

R. Balbes and A. Horn.

Injective and Projective Heyting Algebras. Trans. Amer. Math. Soc., 148:549–559, 1970.

J. Berman and W. J. Blok.

Generalizations of Tarski's Fixed Point Theorem for Order Varieties of Complete Meet Semilattices. Order, 5:381–392, 1989.

J. Berman and W. J. Blok.

Stipulations, Multivalued Logic, and De Morgan Algebras. Mult.-Valued Log., 7(5-6):391–416, 2001.

R. Cignoli.

Injective De Morgan and Kleene algebras. Proc. Amer. Math. Soc., 47:269–278, 1975.

W. H. Cornish and P. R. Fowler.

Coproducts of de Morgan algebras. Bull. Austral. Math. Soc., 16:1–13, 1977.

J. A. Kalman.

Lattices with Involution. Trans. Amer. Math. Soc., 87:485–491, 1958.

R. Sikorski.

Homomorphisms, mappings and retracts. Colloquium Math., 2:202–211, 1951.

A. Visser.

Four-Valued Semantics and the Liar. J. Philos. Logic, 2:181–212, 1984.

BACKGROUND

Contribution

Open

REFERENCES

Thank you!