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deMorgan Algebras, or Involutive Lattices [K58]

A= (A NV/,01)of type (2,2,1,0,0). x’ called involution.

A is a deMorgan algebra (A € M) if:
1. (A,A,V,0,1) is a bounded distributive lattice;
22 AEx=x"andAE (xAy) =x VY.
A is a Kleene algebra (A € K) if:
1. Ais a deMorgan algebra;
2. AExAY <yvy.
A is a Boolean algebra (A € B) if:
1. Ais a Kleene algebra;
2. AExAnX =0.
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deMorgan Algebras, or Involutive Lattices [K58]

A= (A NV/,01)of type (2,2,1,0,0). x’ called involution.

A is a deMorgan algebra (A € M) if:
1. (A,A,V,0,1) is a bounded distributive lattice;
22 AEx=x"andAE (xAy) =x VY.
A is a Kleene algebra (A € K) if:
1. Ais a deMorgan algebra;
2. AExAY <yvy.
A is a Boolean algebra (A € B) if:
1. Ais a Kleene algebra;
2. AExAnX =0.

Remark
deMorgan algebras are finitely axiomatizable.
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Projective deMorgan Algebras

Fact (Balbes and Horn [BH70], Sikorski [S51])

1. A € B injective iff complete.
2. A € B projective iff countable.

Fact (Cignoli [C75])

1. A € M injective iff retract of 4" (0 < k cardinal).
2. A € K injective iff retract of 3" (0 < k cardinal).
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Projective deMorgan Algebras

Fact (Balbes and Horn [BH70], Sikorski [S51])

1. A € B injective iff complete.
2. A € B projective iff countable.

Fact (Cignoli [C75])

1. A € M injective iff retract of 4" (0 < k cardinal).
2. A € K injective iff retract of 3" (0 < k cardinal).

Question
(Finite) projective Kleene and deMorgan algebras?

REFERENCES
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Applications

1. Many-Valued Logics (liar paradox)
2. Unification Theory (most general unifiers)
3. Proof Theory (rule admissibility)
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Subdirectly Irreducible deMorgan Algebras

Theorem (Kalman [K58])
A € M (nontrivial) subdirectly irreducible iff A € {2,3,4}.

®
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2 3 4

Then, (nontrivial) deMorgan varieties form a 3-element chain,

ISP(2) = B C ISP(3) = K C ISP(4) = M.
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Subdirectly Irreducible deMorgan Algebras

Theorem (Kalman [K58])
A € M (nontrivial) subdirectly irreducible iff A € {2,3,4}.

®
ONNOS

©
2 3 4

Then, (nontrivial) deMorgan varieties form a 3-element chain,

ISP(2) = B C ISP(3) = K C ISP(4) = M.

Remark
deMorgan varieties are locally finite.
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Free Finitely Generated deMorgan Algebras

Corollary

The free n-generated deMorgan algebra, Faq(n),
is the subalgebra of 4*" generated by the projections.

Theorem (~ Berman and Blok [BB01])
Fu(n) € {0,2,3,1}{0231 preserving O, D C {0,2,3,1}2. *

o
o o &

*f: A" — A preserves a relation R C A* if R is a subalgebra of (A, f)F.

REFERENCES
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Graphs | Direct Products

E C V2. nth direct (or tensor) product E" C (V")2 defined by,
(01, -, 00), (W1,...,wy)) € E"iff (v;,w;) € E foralli € [n].
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Graphs | Direct Products

E C V2. nth direct (or tensor) product E" C (V")2 defined by,

(01, .. .,00), (W1,...,wy)) € E™iff (v;,w;) € E foralli € [n].
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Graphs | Direct Products

E C V2. nth direct (or tensor) product E" C (V")2 defined by,
((01,--.,0n), (W1,...,wy)) € E"iff (v;,w;) € E foralli € [n].

®
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@

Forallx € {0,2,3,1}", D"(x) = y iff (x,y) € D".




MOTIVATION BACKGROUND CONTRIBUTION OPEN

Graphs | Direct Products

E C V2. nth direct (or tensor) product E" C (V")? defined by,

((v1,...,0n), (w1,...,wy)) € E"iff (v;,w;) € E for alli € [n].

O, cover graph
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Graphs | Direct Products

E C V2. nth direct (or tensor) product E" C (V")? defined by,
((v1,...,0n), (W1,...,wy)) € E™iff (v;,w;) € E foralli € [n].

O, cover graph

O?, cover graph
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B projective if, for every A, C,f: A — Conto, h: B— C,
there exists g: B — A such thatfog=h.
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Projective Algebras

V variety. A, B, C algebras in V.

Definition (Projective)
B projective if, for every A, C,f: A — Conto, h: B— C,
there exists g: B — A such thatfog=h.

Definition (Retract)

B retract of A if, therearef: A — B,g: B— Astfog=idp
(f onto, g 1:1).

Theorem
B projective iff B retract of Fy,(k) for some cardinal k.
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Projective Algebras

V variety. A, B, C algebras in V.

Definition (Projective)
B projective if, for every A, C,f: A — Conto, h: B— C,
there exists g: B — A such thatfog=h.

Definition (Retract)

B retract of A if, therearef: A — B,g: B— Astfog=idp
(f onto, g 1:1).

Theorem
B projective iff B retract of Fy,(k) for some cardinal k.

Corollary
V locally finite variety. B € Vg, projective iff B retract of Fy,(n) for n < w.
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Goal

Characterize finite projective deMorgan algebras,
ie, retracts of Fyq(n) for n < w.
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Goal

Characterize finite projective deMorgan algebras,
ie, retracts of Fyq(n) for n < w.

Two steps:

1. instantiate Priestley duality by Cornish and Fowler [CF77]
over finitely generated free deMorgan algebras (7 discrete);
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Goal

Characterize finite projective deMorgan algebras,
ie, retracts of Fyq(n) for n < w.

Two steps:
1. instantiate Priestley duality by Cornish and Fowler [CF77]
over finitely generated free deMorgan algebras (7 discrete);

2. characterize combinatorially those objects that are dual to
retracts of finitely generated free deMorgan algebras.
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Finite Duality | Categories

Category FM, finite deMorgan algebras:
Objects: A, finite deMorgan algebra.
Morphisms h: A — B, deMorgan homomorphism.

Category FIP, finite involutive posets:
Objects (P,zp), with P = (P, <p) finite poset,
zp antitone bijection such that zp(zp(x)) = x.

Morphisms f: (P,zp) — (Q, zg), monotone map
such that f(zp(x)) = zg(f(x)).
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Finite Duality | Contravariant Functors

Functor J: FM — FIP:
Objects: J(A) = (P,zp), with
P = ({[x) | xjoin irreducible in A}, D),
zp([) =AN{Y |y € [¥)}.
Morphisms J(h: A — B) =J(B) — J(A), where
J()([x)) = h~([x)) for all [x) € J(B).

Functor D: FIP — FM:

Objects D((P,zp)) = A = (A, A,V,,0,1), with
A={XCP| (X =X},
X<Y1ffXCY 0=0,1=P,

=P\z'(X).
Morphisms D(f: P — Q) = D(Q) — D(P), where
D(f)(X) = f~Y(X) for all X € D(Q).
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Finite Duality | Dual Equivalence

Theorem (by Cornish and Fowler [CF77])
FM and FIP are dually equivalent via | and D.






Example | D(J(A))
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J(Faq(1))

Problem
|[Fa1(2)| = 168. Compute J(Faq(2)).
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Morphisms over J(2), ](3), ](4)

aa | D | 5D
T | Qg

fOrder reflecting.
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of0N0)

Remark

1. Onto morphisms correspond to subalgebras
(by inspection, 2 <g 3 <g 4, and 4 L5 3 £s 2).

Ry

fOrder reflecting.
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Morphisms over [(2), ](3), ](4)

O/N0) 0]

Fam | &0

Remark

1. Onto morphisms correspond to subalgebras
(by inspection, 2 <g 3 <g 4, and 4 L5 3 £s 2).

2. 1:1 morphisms f st x < y if f(x) < f(y) T correspond to quotients
(by inspection, 2, 3, 4 are simple, thus M is semisimple).

fOrder reflecting.
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Finite Duality | Quotients

Corollary (Quotients)
J(A) = (P,zp). Con(A) isomorphic to ({Q C P | zp(Q) = Q}, D).



MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Finite Duality | Quotients

Corollary (Quotients)
J(A) = (P,zp). Con(A) isomorphic to ({Q C P | zp(Q) = Q}, D).

Proof (Sketch).
For 1, under Priestley (or Birkhoff) duality, onto bounded lattice homomorphisms
correspond to order embeddings, thus g: A — B onto corresponds to

J(g): J(B) — J(A) order embedding. If [(B) = (Q, zq), then J(g)(Q) is essentially
a subset of P, with inherited order and inherited involution, and by commutativity it
is closed under zp. O
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Finite Duality | Quotients

Corollary (Quotients)
J(A) = (P,zp). Con(A) isomorphic to ({Q C P | zp(Q) = Q}, D).

Proof (Sketch).

For 1, under Priestley (or Birkhoff) duality, onto bounded lattice homomorphisms
correspond to order embeddings, thus g: A — B onto corresponds to

J(g): J(B) — J(A) order embedding. If [(B) = (Q, zq), then J(g)(Q) is essentially
a subset of P, with inherited order and inherited involution, and by commutativity it
is closed under zp. O

Remark
6 € Con(A) meet irreducible iff 0 corresponds to some {x, zp(x)}
with x join irreducible in A. For, {x,zp(x)} coatom in Con(A).
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Finite Duality | Projective

Corollary (Projective)
JEpm(n)) = (P, zp). J(A) = (Q,zq). Then, A projective iff,
1.0 #QCPstzp(Q) = Q;

2. there is an involutive retraction of P onto Q,
that is, a poset retraction® such that zp or = r o zp.

r: P — Q onto monotone st 7(Q) = Q.

REFERENCES
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Finite Duality | Projective

Corollary (Projective)
JEpm(n)) = (P, zp). J(A) = (Q,zq). Then, A projective iff,
1.0 #QCPstzp(Q) = Q;

2. there is an involutive retraction of P onto Q,
that is, a poset retraction® such that zp or = r o zp.

Proof (Sketch).

f:A— Fpyp(n) 1:1and g: Faq(n) — A onto such that g o f = ida iff, by duality,
J(g o f) = J(ida) iff J(f) o J(g) = idyca), where J(g): J(A) — J(Fa(n)) order
embedding, and J(f): J(Fa(n)) — J(A) onto. For 1, use the previous corollary.

For 2, J(f) monotone onto implies | (f): P — Q poset retraction that commutes with
Zp. O

r: P — Q onto monotone st 7(Q) = Q.
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Fr(n) | Dual Object

Theorem
J(Exq(n)) isomorphic to (({0,2,3,1}",0"),D").
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m(n) | Dual Object

Theorem .

J(Exq(n)) isomorphic to (({0,2,3,1}",0"),D").

Proof (Sketch).

Fix antichain X C {0,2, 3, 1}" such that (X] U D”(( X]) ={0,2,3,1}" and

(XIND"((X]) = {0,1}". Define B = {0,1}" = D"(B); B» = (B] \ B = D"(B1);

By,1 = [B) \ B =D"(By,2); Bup = (X]\ By = D"(Bm 3); B,z = [X) \ Bx,1 = D" (B 2)-
Then, {B, B2, Bx,1, Bum,2, m,3} 5-partition of {0,2,3,1}".

Define M: {0,2,3,1}" — Z{xi”‘zq"e["]},for a=(ay,...,an), by:

{2}, xj [ a; = 0,4 =1}, ifa€B;
{x,xp, %), % | a; = 0,07 = 1,4 = 2}, ifa € By,
M(a) = {X;,x]‘ I a; = O,Ll]' = 1}/ lfa S Bk,l;

{x;,x]-,xl’,xl ‘ a; = 0,11]' =14 = 2}/ lfa S Bm,Z/'
{xf,x;,x/,% | a; = 0,8 = 1,a) = 3}, ifa € By

By direct computation, M isomorphism (\ M(a) is the minterm at a, ie,
the smallest term operation m in F pq(n) st m(a) = i, for a suitable i depending on a). O



OOOOOOOOOOOO
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Involutive Retractions | Problem

Instance ) # Q € {0,2,3,1}" st D"(Q) = Q.
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Involutive Retractions | Problem

Instance ) # Q € {0,2,3,1}" st D"(Q) = Q. Say (n = 2),

Question Is there a poset retraction r of {0,2,3,1}" onto Q
such thatro D" = D" o 1?
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Involutive Retractions | Idea

0#Q C {0,2,3,1}" st D"(Q) = Q. Think D(Q) € H(F(n)).

Take a morphism r in FIP from {0,2,3,1}" onto Q. r is an involutive poset
retraction of {0,2,3,1}" onto Q thatis, r: {0,2,3,1}" — Q monotone onto st
r(Q) =QandroD" =D"or.

The goal is to collect necessary combinatorial conditions imposed by such an r on
Q, until sufficient conditions arise such that conversely, {0,2, 3, 1}" admits an
involutive retraction onto any Q satisfying those conditions. This suffices to
characterize (duals of) finite projective deMorgan algebras.

B = {0,1}". Clearly, r(B) = Q N B # 0 (trivial, enough for Boolean case) and
r((B]) = QN (B].

The key insight is that r determines in a natural (nontrivial) way a partition of
{0,2,3,1}" into two blocks, say (X] and D" ((X]) for some antichain

X € {0,2,3,1}", such that (X] N D"((X]) = B, and (X], D"((X]), as well as

QN (X],Q N D"((X]), are dual isomorphic via D" (the latter since D"(Q) = Q).
The Kleene case reduces to the particular case where X = B.

The first (easy, enough for Kleene case) observation is that therefore, the
behaviour of r over D" ((X]) is encoded by | (x], sincer o D" = D" or.

The second (tricky, necessary for M) observation is that moreover, X must
satisfy a certain combinatorial property such that, if x < y with x € (X] and
y € D"((X]), then r(x) < r(y).
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D'((X1])

0,21
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Main Result

0#QC{0,2,3,1}"stD"(Q) =Q.

Definition (Interface)

X C€{0,2,3,1}" is an interface (for Q) if X is an antichain such that:
(I1) (X]uD"((X]) ={0,2,3,1}" and (X] N D"((X]) = B;

(12) forallx € (X] and y € D"((X]), if x < y then,

V{zeQnX]|z<xp< A {weQnD'((X]) | w>y}
QN (X] QND"((X])

Definition (Better Embedded)
Q is better embedded in {0, 2,3,1}" if:

(E1) There exists an interface X for Q such that Q N (X] is a meet semilattice
well embedded? in (X], with Q N (B] well embedded in (B].

(E2) Every x € QN (B]\ B is comparable to some y € Q N B.

5S poset. R C S is well embedded in S if every X C R with an upper bound
in S has an upper bound in R [BB89].
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Main Result

Theorem (Finite Projective deMorgan Algebras)
Let A = D(Q). A projective iff,
Q is better embedded in {0,2,3,1}" for some n < w.
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Main Result

Theorem (Finite Projective deMorgan Algebras)

Let A = D(Q). A projective iff,
Q is better embedded in {0,2,3,1}" for some n < w.

Proof (=).

Given retraction r of {0,2,3,1}" onto Q st r(D"(x)) = D"(r(x)). Let

By C ({x | level(x) = n}] st B; UD"(B;) = B. r~1(Q N By) meet semilattice dual
isomorphic to {0,2,3,1} \ ¥~1(Q N By) via D" since Q = D"(Q). Define X C {0,2,3,1}
antichain by X = {x | x maximal in 71 (Q N B,)}. Notice (X] = r~1(Q N By). Check
(I1)-(12). By construction, r|(x) retraction of (X] onto Q N By = Q N (X], then by [BB8Y,
Lemma 2.4], since (X] is a (finite, so complete) meet semilattice, Q N (X] is a meet
semilattice well embedded in (X]. Check better embedding. Let X C Q N (B] with an
upper bound b in (B]; then r(b) = c for some upper bound c of X C Q N (B], ie, Q N (B]
is well embedded in (B]. (E2) is easily seen necessary (ow, thereis x € Q N By »
incomparable with every y € Q N B, then thereisv € B\ Qstx < vbutr(v) || y,
contradiction). O
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Main Result

Theorem (Finite Projective deMorgan Algebras)

Let A = D(Q). A projective iff,
Q is better embedded in {0,2,3,1}" for some n < w.

Proof («=).

Let X be an interface st Q N (X] is a (finite, hence complete) meet semilattice well
embedded in (X]. Then by [BB89, Theorem 2.7], (x) = Vg x{y € QN (X] | y < x}
for all x € (X] retraction of (X] onto Q N (X]. Since Q N (B] well embedded in (B] by
(E2), the construction yields r((B]) = Q N (B]. Possibly fix r(x) € (B] \ B using (E3).
Extend r to {0,2,3,1}" by r(D"(x)) = D"(r(x)), sound since for all x € B, we have

x = D"(x) € B, butr(x) = r(D"(x)). Sufficient to check r retraction (onto Q is clear). If
x<ye (X], thenr(x) <r(y). Iffx <y e [D"(X)), then D"(y) < D"(x) € (X], then
r(D"(y)) < r(D"(x)), then D" (r(y)) < D"(r(x)), then r(x) < r(y). Case y < x with

x € (X],y € [D"(X)) impossible. Case x < y withx € (X], y € [D"(X)), by (I12),

r(x) < 7(y).

ERENCES
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Main Result

Theorem (Finite Projective deMorgan Algebras)
Let A = D(Q). A projective iff,
Q is better embedded in {0,2,3,1}" for some n < w.

Proof («=).

Let X be an interface st Q N (X] is a (finite, hence complete) meet semilattice well
embedded in (X]. Then by [BB89, Theorem 2.7], (x) = Vg x{y € QN (X] | y < x}
for all x € (X] retraction of (X] onto Q N (X]. Since Q N (B] well embedded in (B] by
(E2), the construction yields r((B]) = Q N (B]. Possibly fix r(x) € (B] \ B using (E3).
Extend r to {0,2,3,1}" by r(D"(x)) = D"(r(x)), sound since for all x € B, we have

x = D"(x) € B, butr(x) = r(D"(x)). Sufficient to check r retraction (onto Q is clear). If
x<ye (X], thenr(x) <r(y). Iffx <y e [D"(X)), then D"(y) < D"(x) € (X], then
r(D"(y)) < r(D"(x)), then D" (r(y)) < D"(r(x)), then r(x) < r(y). Case y < x with

x € (X],y € [D"(X)) impossible. Case x < y withx € (X], y € [D"(X)), by (I12),

r(x) < 7(y).

Problem
Projective deMorgan algebras?
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Tabular presentation of A € M finite has size < 5|A|*(21g|A|) = o(JA[).
A € M wlog, ow checking axioms E of M requires < |E||A]> = O(|A[*) time.
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Input Tabular presentation of A € M.
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Conjecture
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Question A projective?
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Complexity

Tabular presentation of A € M finite has size < 5|A|*(21g|A|) = o(JA[).
A € M wlog, ow checking axioms E of M requires < |E||A]> = O(|A[*) time.

Problem DEMORGAN-DUAL-OBJECT
Input Tabular presentation of A € M.
Output Q € {0,2,3,1}" stJ(A) = Q.
Conjecture
DUAL-OBJECT polytime.
Problem  DEMORGAN-PROJECTIVE

Instance Tabular presentation of A € M.

Question A projective?

Conjecture
DEMORGAN-PROJECTIVE polytime.
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Unification

A € M unifiable does not imply A € M projective (hence, nontrivial).
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Unification

A € M unifiable does not imply A € M projective (hence, nontrivial).

Question M unification type?

Conjecture

Unitary.

Evidence.

Heyting finitary but Heyting plus (x A y)' = x' V y' unitary,

and finite bounded distributive lattices finitary. O



[F(1)| = 6.



[Fx(1)] = 6.
[Fi(2)] = 84.



[Ex(1)] = 6.
[Fx(2)] = 84.
[Fx(3)| = 43,918.
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[Fx(1)] = 6.
Fx(2)| = 84.
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Counting

= 160,297,985, 276. Brute force.
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Recurrence in terms of Dedekind numbers, ie, |Fp. (1)|?

Gives |[Fx(n)| for n < 8. Noninteresting.

Does it give any nontrivial insight on the lattice of clones of Kleene
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