# Finite Projective deMorgan Algebras 

Simone Bova<br>Vanderbilt University (Nashville TN, USA)<br>joint work with Leonardo Cabrer

March 11-13, 2011
Vanderbilt University (Nashville TN, USA)
honoring Jorge Martínez

## Outline

Motivation

Background

Contribution

Open

## Outline

Motivation

## Background

## Contribution

## deMorgan Algebras, or Involutive Lattices [K58]

$\mathbf{A}=\left(A, \wedge, \vee,{ }^{\prime}, 0,1\right)$ of type $(2,2,1,0,0) . x^{\prime}$ called involution.
$\mathbf{A}$ is a deMorgan algebra $(\mathbf{A} \in \mathcal{M})$ if:

1. $(A, \wedge, \vee, 0,1)$ is a bounded distributive lattice;
2. $\mathbf{A} \models x=x^{\prime \prime}$ and $\mathbf{A} \models(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime}$.
$\mathbf{A}$ is a Kleene algebra $(\mathbf{A} \in \mathcal{K})$ if:
3. A is a deMorgan algebra;
4. $\mathbf{A} \models x \wedge x^{\prime} \leq y \vee y^{\prime}$.
$\mathbf{A}$ is a Boolean algebra $(\mathbf{A} \in \mathcal{B})$ if:
5. $\mathbf{A}$ is a Kleene algebra;
6. $\mathbf{A} \models x \wedge x^{\prime}=0$.

## deMorgan Algebras, or Involutive Lattices [K58]

$\mathbf{A}=\left(A, \wedge, \vee,{ }^{\prime}, 0,1\right)$ of type $(2,2,1,0,0) . x^{\prime}$ called involution.
$\mathbf{A}$ is a deMorgan algebra $(\mathbf{A} \in \mathcal{M})$ if:

1. $(A, \wedge, \vee, 0,1)$ is a bounded distributive lattice;
2. $\mathbf{A} \models x=x^{\prime \prime}$ and $\mathbf{A} \models(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime}$.
$\mathbf{A}$ is a Kleene algebra $(\mathbf{A} \in \mathcal{K})$ if:
3. A is a deMorgan algebra;
4. $\mathbf{A} \models x \wedge x^{\prime} \leq y \vee y^{\prime}$.
$\mathbf{A}$ is a Boolean algebra $(\mathbf{A} \in \mathcal{B})$ if:
5. $\mathbf{A}$ is a Kleene algebra;
6. $\mathbf{A} \models x \wedge x^{\prime}=0$.

## Remark

deMorgan algebras are finitely axiomatizable.

## Projective deMorgan Algebras

Fact (Balbes and Horn [BH70], Sikorski [S51])

1. $\mathbf{A} \in \mathcal{B}$ injective iff complete.
2. $\mathbf{A} \in \mathcal{B}$ projective iff countable.

Fact (Cignoli [C75])

1. $\mathbf{A} \in \mathcal{M}$ injective iff retract of $\mathbf{4}^{\kappa}(0<\kappa$ cardinal $)$.
2. $\mathbf{A} \in \mathcal{K}$ injective iff retract of $\mathbf{3}^{\kappa}(0<\kappa$ cardinal $)$.

## Projective deMorgan Algebras

Fact (Balbes and Horn [BH70], Sikorski [S51])

1. $\mathbf{A} \in \mathcal{B}$ injective iff complete.
2. $\mathbf{A} \in \mathcal{B}$ projective iff countable.

Fact (Cignoli [C75])

1. $\mathbf{A} \in \mathcal{M}$ injective iff retract of $\mathbf{4}^{\kappa}(0<\kappa$ cardinal $)$.
2. $\mathbf{A} \in \mathcal{K}$ injective iff retract of $\mathbf{3}^{\kappa}(0<\kappa$ cardinal $)$.

Question
(Finite) projective Kleene and deMorgan algebras?

## Applications

1. Many-Valued Logics (liar paradox)
2. Unification Theory (most general unifiers)
3. Proof Theory (rule admissibility)

## Outline

## Motivation

Background

## Contribution

## Subdirectly Irreducible deMorgan Algebras

Theorem (Kalman [K58])
$\mathbf{A} \in \mathcal{M}$ (nontrivial) subdirectly irreducible iff $\mathbf{A} \in\{\mathbf{2}, \mathbf{3}, \mathbf{4}\}$.


2


3


4

Then, (nontrivial) deMorgan varieties form a 3-element chain,

$$
\operatorname{ISP}(\mathbf{2})=\mathcal{B} \subset \operatorname{ISP}(\mathbf{3})=\mathcal{K} \subset \operatorname{ISP}(\mathbf{4})=\mathcal{M}
$$

## Subdirectly Irreducible deMorgan Algebras

Theorem (Kalman [K58])
$\mathbf{A} \in \mathcal{M}$ (nontrivial) subdirectly irreducible iff $\mathbf{A} \in\{\mathbf{2}, \mathbf{3}, \mathbf{4}\}$.


2


3


4

Then, (nontrivial) deMorgan varieties form a 3-element chain,

$$
\operatorname{ISP}(\mathbf{2})=\mathcal{B} \subset \operatorname{ISP}(\mathbf{3})=\mathcal{K} \subset \operatorname{ISP}(\mathbf{4})=\mathcal{M}
$$

Remark
deMorgan varieties are locally finite.

## Free Finitely Generated deMorgan Algebras

## Corollary

The free $n$-generated deMorgan algebra, $\mathbf{F}_{\mathcal{M}}(n)$, is the subalgebra of $4^{4^{n}}$ generated by the projections.

Theorem ( $\sim$ Berman and Blok [BB01])
$\mathbf{F}_{\mathcal{M}}(n) \subseteq\{0,2,3,1\}^{\{0,2,3,1\}^{n}}$ preserving $O, D \subseteq\{0,2,3,1\}^{2}$. *

${ }^{*} f: A^{n} \rightarrow A$ preserves a relation $R \subseteq A^{k}$ if $R$ is a subalgebra of $(A, f)^{k}$.

## Graphs | Direct Products

$E \subseteq V^{2} . n$th direct (or tensor) product $E^{n} \subseteq\left(V^{n}\right)^{2}$ defined by, $\left(\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{n}\right)\right) \in E^{n}$ iff $\left(v_{i}, w_{i}\right) \in E$ for all $i \in[n]$.

## Graphs | Direct Products

$E \subseteq V^{2}$. $n$th direct (or tensor) product $E^{n} \subseteq\left(V^{n}\right)^{2}$ defined by, $\left(\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{n}\right)\right) \in E^{n}$ iff $\left(v_{i}, w_{i}\right) \in E$ for all $i \in[n]$.


## Graphs | Direct Products

$E \subseteq V^{2}$. $n$th direct (or tensor) product $E^{n} \subseteq\left(V^{n}\right)^{2}$ defined by, $\left(\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{n}\right)\right) \in E^{n}$ iff $\left(v_{i}, w_{i}\right) \in E$ for all $i \in[n]$.


## Graphs | Direct Products

$E \subseteq V^{2} . n$th direct (or tensor) product $E^{n} \subseteq\left(V^{n}\right)^{2}$ defined by, $\left(\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{n}\right)\right) \in E^{n}$ iff $\left(v_{i}, w_{i}\right) \in E$ for all $i \in[n]$.


For all $x \in\{0,2,3,1\}^{n}, D^{n}(x)=y$ iff $(x, y) \in D^{n}$.

## Graphs | Direct Products

$E \subseteq V^{2}$. $n$th direct (or tensor) product $E^{n} \subseteq\left(V^{n}\right)^{2}$ defined by, $\left(\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{n}\right)\right) \in E^{n}$ iff $\left(v_{i}, w_{i}\right) \in E$ for all $i \in[n]$.

$O$, cover graph

## Graphs | Direct Products

$E \subseteq V^{2}$. $n$th direct (or tensor) product $E^{n} \subseteq\left(V^{n}\right)^{2}$ defined by, $\left(\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{n}\right)\right) \in E^{n}$ iff $\left(v_{i}, w_{i}\right) \in E$ for all $i \in[n]$.

$O^{2}$, cover graph

## Projective Algebras

$\mathcal{V}$ variety. A, B, C algebras in $\mathcal{V}$.

## Projective Algebras

$\mathcal{V}$ variety. A, B, C algebras in $\mathcal{V}$.
Definition (Projective)
$\mathbf{B}$ projective if, for every $\mathbf{A}, \mathbf{C}, f: \mathbf{A} \rightarrow \mathbf{C}$ onto, $h: \mathbf{B} \rightarrow \mathbf{C}$, there exists $g: \mathbf{B} \rightarrow \mathbf{A}$ such that $f \circ g=h$.

## Projective Algebras

$\mathcal{V}$ variety. A, B, C algebras in $\mathcal{V}$.
Definition (Projective)
$\mathbf{B}$ projective if, for every A, C, $f: \mathbf{A} \rightarrow \mathbf{C}$ onto, $h: \mathbf{B} \rightarrow \mathbf{C}$, there exists $g: \mathbf{B} \rightarrow \mathbf{A}$ such that $f \circ g=h$.

Definition (Retract)
$\mathbf{B}$ retract of $\mathbf{A}$ if, there are $f: \mathbf{A} \rightarrow \mathbf{B}, g: \mathbf{B} \rightarrow \mathbf{A}$ st $f \circ g=\operatorname{id}_{B}$ (f onto, g 1:1).

Theorem
B projective iff $\mathbf{B}$ retract of $\mathbf{F}_{\mathcal{V}}(\kappa)$ for some cardinal $\kappa$.

## Projective Algebras

$\mathcal{V}$ variety. A, B, C algebras in $\mathcal{V}$.
Definition (Projective)
B projective if, for every A, C, $f: \mathbf{A} \rightarrow \mathbf{C}$ onto, $h: \mathbf{B} \rightarrow \mathbf{C}$, there exists $g: \mathbf{B} \rightarrow \mathbf{A}$ such that $f \circ g=h$.

Definition (Retract)
$\mathbf{B}$ retract of $\mathbf{A}$ if, there are $f: \mathbf{A} \rightarrow \mathbf{B}, g: \mathbf{B} \rightarrow \mathbf{A}$ st $f \circ g=\operatorname{id}_{B}$
(f onto, g 1:1).
Theorem
B projective iff $\mathbf{B}$ retract of $\mathbf{F}_{\mathcal{V}}(\kappa)$ for some cardinal $\kappa$.
Corollary
$\mathcal{V}$ locally finite variety. $\mathbf{B} \in \mathcal{V}_{\text {fin }}$ projective iff $\mathbf{B}$ retract of $\mathbf{F}_{\mathcal{V}}(n)$ for $n<\omega$.

## Outline

Motivation<br>Background

Contribution

## Goal

Characterize finite projective deMorgan algebras, ie, retracts of $\mathbf{F}_{\mathcal{M}}(n)$ for $n<\omega$.

## Goal

Characterize finite projective deMorgan algebras, ie, retracts of $\mathbf{F}_{\mathcal{M}}(n)$ for $n<\omega$.

Two steps:

1. instantiate Priestley duality by Cornish and Fowler [CF77] over finitely generated free deMorgan algebras ( $\tau$ discrete);

## Goal

Characterize finite projective deMorgan algebras, ie, retracts of $\mathbf{F}_{\mathcal{M}}(n)$ for $n<\omega$.

Two steps:

1. instantiate Priestley duality by Cornish and Fowler [CF77] over finitely generated free deMorgan algebras ( $\tau$ discrete);
2. characterize combinatorially those objects that are dual to retracts of finitely generated free deMorgan algebras.

## Finite Duality | Categories

Category FM, finite deMorgan algebras:
Objects: A, finite deMorgan algebra.
Morphisms h: A $\rightarrow \mathbf{B}$, deMorgan homomorphism.

Category FIP, finite involutive posets:
Objects $\left(\mathbf{P}, z_{\mathbf{P}}\right)$, with $\mathbf{P}=\left(P, \leq_{\mathbf{P}}\right)$ finite poset, $z_{\mathbf{P}}$ antitone bijection such that $z_{\mathbf{P}}\left(z_{\mathbf{P}}(x)\right)=x$.
Morphisms $f:\left(\mathbf{P}, z_{\mathbf{P}}\right) \rightarrow\left(\mathbf{Q}, z_{\mathbf{Q}}\right)$, monotone map such that $f\left(z_{\mathbf{P}}(x)\right)=z_{\mathbf{Q}}(f(x))$.

## Finite Duality | Contravariant Functors

Functor $J: \mathbf{F M} \rightarrow$ FIP:
Objects: $J(\mathbf{A})=\left(\mathbf{P}, z_{\mathbf{P}}\right)$, with

$$
\begin{aligned}
& \mathbf{P}=(\{[x) \mid x \text { join irreducible in } \mathbf{A}\}, \supseteq), \\
& z_{\mathbf{P}}([x))=A \backslash\left\{y^{\prime} \mid y \in[x)\right\} .
\end{aligned}
$$

Morphisms $J(h: \mathbf{A} \rightarrow \mathbf{B})=J(\mathbf{B}) \rightarrow J(\mathbf{A})$, where

$$
J(h)([x))=h^{-1}([x)) \text { for all }[x) \in J(\mathbf{B}) .
$$

Functor $D: \mathbf{F I P} \rightarrow \mathbf{F M}$ :
Objects $D\left(\left(\mathbf{P}, z_{\mathbf{P}}\right)\right)=\mathbf{A}=\left(A, \wedge, \vee,{ }^{\prime}, 0,1\right)$, with
$A=\{X \subseteq P \mid(X]=X\}$,
$X \leq Y$ iff $X \subseteq Y, 0=\emptyset, 1=P$,
$X^{\prime}=P \backslash z_{\mathbf{p}}^{-1}(X)$.
Morphisms $D(f: \mathbf{P} \rightarrow \mathbf{Q})=D(\mathbf{Q}) \rightarrow D(\mathbf{P})$, where $D(f)(X)=f^{-1}(X)$ for all $X \in D(\mathbf{Q})$.

## Finite Duality | Dual Equivalence

Theorem (by Cornish and Fowler [CF77])
FM and FIP are dually equivalent via J and D.

## Example $\mid J(\mathbf{A})$



A

$J(\mathbf{A})$

## Example $\mid D(J(\mathbf{A}))=\mathbf{A}$



## $J\left(\mathbf{F}_{\mathcal{M}}(1)\right)$


$J\left(\mathbf{F}_{\mathcal{M}}(1)\right)$

## $J\left(\mathbf{F}_{\mathcal{M}}(1)\right)$



$J\left(\mathbf{F}_{\mathcal{M}}(1)\right)$

Problem
$\left|\mathbf{F}_{\mathcal{M}}(2)\right|=168$. Compute $J\left(\mathbf{F}_{\mathcal{M}}(2)\right)$.

## $J(\mathbf{2}), J(\mathbf{3}), J(\mathbf{4})$



## Morphisms over J(2), J(3), J(4)


${ }^{\dagger}$ Order reflecting.

## Morphisms over J(2), J(3), J(4)



Remark

1. Onto morphisms correspond to subalgebras (by inspection, $\mathbf{2} \leq_{S} \mathbf{3} \leq_{S} \mathbf{4}$, and $\mathbf{4} \not \leq s \mathbf{3} \not \leq S \mathbf{2}$ ).
${ }^{\dagger}$ Order reflecting.

## Morphisms over J(2), J(3), J(4)



## Remark

1. Onto morphisms correspond to subalgebras (by inspection, $\mathbf{2} \leq_{s} \mathbf{3} \leq_{s} \mathbf{4}$, and $\mathbf{4} \not \leq s \mathbf{3} \not \leq s \mathbf{2}$ ).
2. 1:1 morphisms $f$ st $x \leq y$ if $f(x) \leq f(y)^{\dagger}$ correspond to quotients (by inspection, 2, 3, 4 are simple, thus $\mathcal{M}$ is semisimple).

## Finite Duality | Quotients

Corollary (Quotients)
$J(\mathbf{A})=\left(\mathbf{P}, z_{\mathbf{P}}\right) . \operatorname{Con}(\mathbf{A})$ isomorphic to $\left(\left\{Q \subseteq P \mid z_{\mathbf{P}}(Q)=Q\right\}, \supseteq\right)$.

## Finite Duality | Quotients

Corollary (Quotients)
$J(\mathbf{A})=\left(\mathbf{P}, z_{\mathbf{P}}\right) . \operatorname{Con}(\mathbf{A})$ isomorphic to $\left(\left\{Q \subseteq P \mid z_{\mathbf{P}}(Q)=Q\right\}, \supseteq\right)$.
Proof (Sketch).
For 1, under Priestley (or Birkhoff) duality, onto bounded lattice homomorphisms correspond to order embeddings, thus $g: \mathbf{A} \rightarrow \mathbf{B}$ onto corresponds to $J(g): J(\mathbf{B}) \rightarrow J(\mathbf{A})$ order embedding. If $J(\mathbf{B})=\left(\mathbf{Q}, z_{\mathbf{Q}}\right)$, then $J(g)(Q)$ is essentially a subset of $P$, with inherited order and inherited involution, and by commutativity it is closed under $z_{\mathbf{P}}$.

## Finite Duality | Quotients

Corollary (Quotients)
$J(\mathbf{A})=\left(\mathbf{P}, z_{\mathbf{P}}\right) . \operatorname{Con}(\mathbf{A})$ isomorphic to $\left(\left\{Q \subseteq P \mid z_{\mathbf{P}}(Q)=Q\right\}, \supseteq\right)$.
Proof (Sketch).
For 1, under Priestley (or Birkhoff) duality, onto bounded lattice homomorphisms correspond to order embeddings, thus $g: \mathbf{A} \rightarrow \mathbf{B}$ onto corresponds to $J(g): J(\mathbf{B}) \rightarrow J(\mathbf{A})$ order embedding. If $J(\mathbf{B})=\left(\mathbf{Q}, z_{\mathbf{Q}}\right)$, then $J(g)(Q)$ is essentially a subset of $P$, with inherited order and inherited involution, and by commutativity it is closed under $z_{\mathbf{P}}$.

Remark
$\theta \in \operatorname{Con}(\mathbf{A})$ meet irreducible iff $\theta$ corresponds to some $\left\{x, z_{\mathbf{P}}(x)\right\}$ with $x$ join irreducible in $\mathbf{A}$. For, $\left\{x, z_{\mathbf{P}}(x)\right\}$ coatom in $\operatorname{Con}(\mathbf{A})$.

## Finite Duality | Projective

Corollary (Projective)
$J\left(\mathbf{F}_{\mathcal{M}}(n)\right)=\left(\mathbf{P}, z_{\mathbf{P}}\right) . J(\mathbf{A})=\left(\mathbf{Q}, z_{\mathbf{Q}}\right)$. Then, $\mathbf{A}$ projective iff,

1. $\emptyset \neq Q \subseteq P$ st $z_{\mathbf{P}}(Q)=Q$;
2. there is an involutive retraction of $P$ onto $Q$, that is, a poset retraction ${ }^{\ddagger}$ such that $z_{\mathbf{P}} \circ r=r \circ z_{\mathbf{p}}$.
[^0]
## Finite Duality | Projective

## Corollary (Projective)

$J\left(\mathbf{F}_{\mathcal{M}}(n)\right)=\left(\mathbf{P}, z_{\mathbf{P}}\right) . J(\mathbf{A})=\left(\mathbf{Q}, z_{\mathbf{Q}}\right)$. Then, $\mathbf{A}$ projective iff,

1. $\emptyset \neq Q \subseteq P$ st $z_{\mathbf{P}}(Q)=Q$;
2. there is an involutive retraction of $P$ onto $Q$, that is, a poset retraction ${ }^{\ddagger}$ such that $z_{\mathbf{P}} \circ r=r \circ z_{\mathbf{P}}$.

Proof (Sketch).
$f: \mathbf{A} \rightarrow \mathbf{F}_{\mathcal{M}}(n) 1: 1$ and $g: \mathbf{F}_{\mathcal{M}}(n) \rightarrow \mathbf{A}$ onto such that $g \circ f=\mathrm{id}_{\mathbf{A}}$ iff, by duality, $J(g \circ f)=J\left(\mathrm{id}_{\mathbf{A}}\right)$ iff, $J(f) \circ J(g)=\operatorname{id}_{J(\mathbf{A})}$, where $J(g): J(\mathbf{A}) \rightarrow J\left(\mathbf{F}_{\mathcal{M}}(n)\right)$ order embedding, and $J(f): J\left(\mathbf{F}_{\mathcal{M}}(n)\right) \rightarrow J(\mathbf{A})$ onto. For 1, use the previous corollary. For 2, $J(f)$ monotone onto implies $J(f): P \rightarrow Q$ poset retraction that commutes with $z_{\mathrm{p}}$.

$$
{ }^{\ddagger} r: P \rightarrow Q \text { onto monotone st } r(Q)=Q .
$$

## $\mathbf{F}_{\mathcal{M}}(n) \mid$ Dual Object

Theorem
$J\left(\mathbf{F}_{\mathcal{M}}(n)\right)$ isomorphic to $\left(\left(\{0,2,3,1\}^{n}, O^{n}\right), D^{n}\right)$.

## $\mathbf{F}_{\mathcal{M}}(n) \mid$ Dual Object

## Theorem

$J\left(\mathbf{F}_{\mathcal{M}}(n)\right)$ isomorphic to $\left(\left(\{0,2,3,1\}^{n}, O^{n}\right), D^{n}\right)$.
Proof (Sketch).
Fix antichain $X \subseteq\{0,2,3,1\}^{n}$ such that $(X] \cup D^{n}((X])=\{0,2,3,1\}^{n}$ and
$(X] \cap D^{n}((X])=\{0,1\}^{n}$. Define $B=\{0,1\}^{n}=D^{n}(B) ; B_{k, 2}=(B] \backslash B=D^{n}\left(B_{k, 1}\right)$;
$B_{k, 1}=[B) \backslash B=D^{n}\left(B_{k, 2}\right) ; B_{m, 2}=(X] \backslash B_{k, 2}=D^{n}\left(B_{m, 3}\right) ; B_{m, 3}=[X) \backslash B_{k, 1}=D^{n}\left(B_{m, 2}\right)$.
Then, $\left\{B, B_{k, 2}, B_{k, 1}, B_{m, 2}, B_{m, 3}\right\} 5$-partition of $\{0,2,3,1\}^{n}$.
Define $M:\{0,2,3,1\}^{n} \rightarrow 2^{\left\{x_{i}, x_{i}^{\prime} \mid i \in[n]\right\}}$, for $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, by:

$$
M(\mathbf{a})= \begin{cases}\left\{x_{i}^{\prime}, x_{j} \mid a_{i}=0, a_{j}=1\right\}, & \text { if } \mathbf{a} \in B ; \\ \left\{x_{i}^{\prime}, x_{j}, x_{l}^{\prime}, x_{l} \mid a_{i}=0, a_{j}=1, a_{l}=2\right\}, & \text { if } \mathbf{a} \in B_{k, 2} ; \\ \left\{x_{i}^{\prime}, x_{j} \mid a_{i}=0, a_{j}=1\right\}, & \text { if } \mathbf{a} \in B_{k, 1} ; \\ \left\{x_{i}^{\prime}, x_{j}, x_{l}^{\prime}, x_{l} \mid a_{i}=0, a_{j}=1, a_{l}=2\right\}, & \text { if } \mathbf{a} \in B_{m, 2} ; \\ \left\{x_{i}^{\prime}, x_{j}, x_{l}^{\prime}, x_{l} \mid a_{i}=0, a_{j}=1, a_{l}=3\right\}, & \text { if } \mathbf{a} \in B_{m, 3} .\end{cases}
$$

By direct computation, $M$ isomorphism ( $\backslash M(\mathbf{a})$ is the minterm at $\mathbf{a}$, ie, the smallest term operation $m$ in $\mathbf{F}_{\mathcal{M}}(n)$ st $m(\mathbf{a})=i$, for a suitable $i$ depending on $\left.\mathbf{a}\right)$.

## $J\left(\mathbf{F}_{\mathcal{M}}(2)\right)$



$$
J\left(\mathbf{F}_{\mathcal{M}}(2)\right)=\left(\left(\{0,2,3,1\}^{2}, O^{2}\right), D^{2}\right)
$$



## Involutive Retractions | Problem

$$
\text { Instance } \emptyset \neq Q \subseteq\{0,2,3,1\}^{n} \text { st } D^{n}(Q)=Q .
$$

## Involutive Retractions | Problem

$$
\text { Instance } \emptyset \neq Q \subseteq\{0,2,3,1\}^{n} \text { st } D^{n}(Q)=Q \text {. Say }(n=2) \text {, }
$$



## Involutive Retractions | Problem

$$
\text { Instance } \emptyset \neq Q \subseteq\{0,2,3,1\}^{n} \text { st } D^{n}(Q)=Q \text {. Say }(n=2) \text {, }
$$



Question Is there a poset retraction $r$ of $\{0,2,3,1\}^{n}$ onto $Q$ such that $r \circ D^{n}=D^{n} \circ r$ ?

## Involutive Retractions | Idea

(i) $\emptyset \neq Q \subseteq\{0,2,3,1\}^{n}$ st $D^{n}(Q)=Q$. Think $D(Q) \in H\left(\mathbf{F}_{\mathcal{M}}(n)\right)$.
(ii) Take a morphism $r$ in FIP from $\{0,2,3,1\}^{n}$ onto $Q . r$ is an involutive poset retraction of $\{0,2,3,1\}^{n}$ onto $Q$ that is, $r:\{0,2,3,1\}^{n} \rightarrow Q$ monotone onto st $r(Q)=Q$ and $r \circ D^{n}=D^{n} \circ r$.
(iii) The goal is to collect necessary combinatorial conditions imposed by such an $r$ on $Q$, until sufficient conditions arise such that conversely, $\{0,2,3,1\}^{n}$ admits an involutive retraction onto any $Q$ satisfying those conditions. This suffices to characterize (duals of) finite projective deMorgan algebras.
(iv) $B=\{0,1\}^{n}$. Clearly, $r(B)=Q \cap B \neq \emptyset$ (trivial, enough for Boolean case) and $r((B])=Q \cap(B]$.
(v) The key insight is that $r$ determines in a natural (nontrivial) way a partition of $\{0,2,3,1\}^{n}$ into two blocks, say $(X]$ and $D^{n}((X])$ for some antichain $X \subseteq\{0,2,3,1\}^{n}$, such that $(X] \cap D^{n}((X])=B$, and $(X], D^{n}((X])$, as well as $Q \cap(X], Q \cap D^{n}((X])$, are dual isomorphic via $D^{n}$ (the latter since $D^{n}(Q)=Q$ ). The Kleene case reduces to the particular case where $X=B$.
(vi) The first (easy, enough for Kleene case) observation is that therefore, the behaviour of $r$ over $D^{n}((X])$ is encoded by $\left.r\right|_{(X]}$, since $r \circ D^{n}=D^{n} \circ r$.
(vii) The second (tricky, necessary for $\mathcal{M}$ ) observation is that moreover, $X$ must satisfy a certain combinatorial property such that, if $x \leq y$ with $x \in(X]$ and $y \in D^{n}((X])$, then $r(x) \leq r(y)$.


## Main Result

$\emptyset \neq Q \subseteq\{0,2,3,1\}^{n}$ st $D^{n}(Q)=Q$.

## Definition (Interface)

$X \subseteq\{0,2,3,1\}^{n}$ is an interface (for $Q$ ) if $X$ is an antichain such that:
(I1) $(X] \cup D^{n}((X])=\{0,2,3,1\}^{n}$ and $(X] \cap D^{n}((X])=B$;
(I2) for all $x \in(X]$ and $y \in D^{n}((X])$, if $x \leq y$ then,

$$
\bigvee_{Q \cap(X]}\{z \in Q \cap(X] \mid z \leq x\} \leq \bigwedge_{Q \cap D^{n}((X])}\left\{w \in Q \cap D^{n}((X]) \mid w \geq y\right\} .
$$

## Definition (Better Embedded)

$Q$ is better embedded in $\{0,2,3,1\}^{n}$ if:
(E1) There exists an interface $X$ for $Q$ such that $Q \cap(X]$ is a meet semilattice well embedded ${ }^{8}$ in $(X]$, with $Q \cap(B]$ well embedded in ( $\left.B\right]$.
(E2) Every $x \in Q \cap(B] \backslash B$ is comparable to some $y \in Q \cap B$.
${ }^{\S} S$ poset. $R \subseteq S$ is well embedded in $S$ if every $X \subseteq R$ with an upper bound in $S$ has an upper bound in $R$ [BB89].

## Main Result

Theorem (Finite Projective deMorgan Algebras)
Let $\mathbf{A}=D(Q)$. A projective iff,
$Q$ is better embedded in $\{0,2,3,1\}^{n}$ for some $n<\omega$.

## Main Result

Theorem (Finite Projective deMorgan Algebras)
Let $\mathbf{A}=D(Q)$. A projective iff,
$Q$ is better embedded in $\{0,2,3,1\}^{n}$ for some $n<\omega$.
$\operatorname{Proof}(\Rightarrow)$.
Given retraction $r$ of $\{0,2,3,1\}^{n}$ onto $Q$ st $r\left(D^{n}(x)\right)=D^{n}(r(x))$. Let $B_{d} \subseteq(\{x \mid \operatorname{level}(x)=n\}]$ st $B_{d} \cup D^{n}\left(B_{d}\right)=B . r^{-1}\left(Q \cap B_{d}\right)$ meet semilattice dual isomorphic to $\{0,2,3,1\} \backslash r^{-1}\left(Q \cap B_{d}\right)$ via $D^{n}$ since $Q=D^{n}(Q)$. Define $X \subseteq\{0,2,3,1\}$ antichain by $X=\left\{x \mid x\right.$ maximal in $\left.r^{-1}\left(Q \cap B_{d}\right)\right\}$. Notice $(X]=r^{-1}\left(Q \cap B_{d}\right)$. Check (I1)-(I2). By construction, $\left.r\right|_{(X]}$ retraction of $(X]$ onto $Q \cap B_{d}=Q \cap(X]$, then by [BB89, Lemma 2.4], since ( $X$ ] is a (finite, so complete) meet semilattice, $Q \cap(X]$ is a meet semilattice well embedded in ( $X$ ]. Check better embedding. Let $X \subseteq Q \cap(B]$ with an upper bound $b$ in $(B]$; then $r(b)=c$ for some upper bound $c$ of $X \subseteq Q \cap(B]$, ie, $Q \cap(B]$ is well embedded in (B]. (E2) is easily seen necessary (ow, there is $x \in Q \cap B_{k, 2}$ incomparable with every $y \in Q \cap B$, then there is $v \in B \backslash Q$ st $x \leq v$ but $r(v) \| y$, contradiction).

## Main Result

## Theorem (Finite Projective deMorgan Algebras)

## Let $\mathbf{A}=D(Q)$. A projective iff,

$Q$ is better embedded in $\{0,2,3,1\}^{n}$ for some $n<\omega$.
Proof ( $\Leftarrow$ ).
Let $X$ be an interface st $Q \cap(X]$ is a (finite, hence complete) meet semilattice well embedded in (X]. Then by [BB89, Theorem 2.7], $r(x)=\bigvee_{Q \cap(X]}\{y \in Q \cap(X] \mid y \leq x\}$ for all $x \in(X]$ retraction of $(X]$ onto $Q \cap(X]$. Since $Q \cap(B]$ well embedded in $(B]$ by (E2), the construction yields $r((B])=Q \cap(B]$. Possibly fix $r(x) \in(B] \backslash B$ using (E3). Extend $r$ to $\{0,2,3,1\}^{n}$ by $r\left(D^{n}(x)\right)=D^{n}(r(x))$, sound since for all $x \in B$, we have $x=D^{n}(x) \in B$, but $r(x)=r\left(D^{n}(x)\right)$. Sufficient to check $r$ retraction (onto $Q$ is clear). If $x \leq y \in(X]$, then $r(x) \leq r(y)$. If $x \leq y \in\left[D^{n}(X)\right)$, then $D^{n}(y) \leq D^{n}(x) \in(X]$, then $r\left(D^{n}(y)\right) \leq r\left(D^{n}(x)\right)$, then $D^{n}(r(y)) \leq D^{n}(r(x))$, then $r(x) \leq r(y)$. Case $y<x$ with $x \in(X], y \in\left[D^{n}(X)\right)$ impossible. Case $x<y$ with $x \in(X], y \in\left[D^{n}(X)\right)$, by (I2), $r(x) \leq r(y)$.

## Main Result

## Theorem (Finite Projective deMorgan Algebras)

## Let $\mathbf{A}=D(Q)$. A projective iff,

$Q$ is better embedded in $\{0,2,3,1\}^{n}$ for some $n<\omega$.
$\operatorname{Proof}(\Leftarrow)$.
Let $X$ be an interface st $Q \cap(X]$ is a (finite, hence complete) meet semilattice well embedded in (X]. Then by [BB89, Theorem 2.7], $r(x)=\bigvee_{Q \cap(X]}\{y \in Q \cap(X] \mid y \leq x\}$ for all $x \in(X]$ retraction of $(X]$ onto $Q \cap(X]$. Since $Q \cap(B]$ well embedded in $(B]$ by (E2), the construction yields $r((B])=Q \cap(B]$. Possibly fix $r(x) \in(B] \backslash B$ using (E3). Extend $r$ to $\{0,2,3,1\}^{n}$ by $r\left(D^{n}(x)\right)=D^{n}(r(x))$, sound since for all $x \in B$, we have $x=D^{n}(x) \in B$, but $r(x)=r\left(D^{n}(x)\right)$. Sufficient to check $r$ retraction (onto $Q$ is clear). If $x \leq y \in(X]$, then $r(x) \leq r(y)$. If $x \leq y \in\left[D^{n}(X)\right)$, then $D^{n}(y) \leq D^{n}(x) \in(X]$, then $r\left(D^{n}(y)\right) \leq r\left(D^{n}(x)\right)$, then $D^{n}(r(y)) \leq D^{n}(r(x))$, then $r(x) \leq r(y)$. Case $y<x$ with $x \in(X], y \in\left[D^{n}(X)\right)$ impossible. Case $x<y$ with $x \in(X], y \in\left[D^{n}(X)\right)$, by (I2), $r(x) \leq r(y)$.

Problem
Projective deMorgan algebras?

## Example 1 | Projective



## Example $2 \mid$ Projective



## Example 3 | Not Projective



## Outline

## Motivation

Background

Contribution

Open

## Complexity

Tabular presentation of $\mathbf{A} \in \mathcal{M}$ finite has size $\leq 5|A|^{2}(2 \lg |A|)=o\left(|A|^{3}\right)$. $\mathbf{A} \in \mathcal{M}$ wlog, ow checking axioms $E$ of $\mathcal{M}$ requires $\leq|E||A|^{3}=O\left(|A|^{3}\right)$ time.

## Complexity

Tabular presentation of $\mathbf{A} \in \mathcal{M}$ finite has size $\leq 5|A|^{2}(2 \lg |A|)=o\left(|A|^{3}\right)$. $\mathbf{A} \in \mathcal{M}$ wlog, ow checking axioms $E$ of $\mathcal{M}$ requires $\leq|E||A|^{3}=O\left(|A|^{3}\right)$ time.

## Problem DEMORGAN-DUAL-ObJECT

Input Tabular presentation of $\mathbf{A} \in \mathcal{M}$.
Output $Q \subseteq\{0,2,3,1\}^{n}$ st $J(\mathbf{A})=Q$.

## Complexity

Tabular presentation of $\mathbf{A} \in \mathcal{M}$ finite has size $\leq 5|A|^{2}(2 \lg |A|)=o\left(|A|^{3}\right)$. $\mathbf{A} \in \mathcal{M}$ wlog, ow checking axioms $E$ of $\mathcal{M}$ requires $\leq|E||A|^{3}=O\left(|A|^{3}\right)$ time.

$$
\begin{aligned}
\text { Problem } & \text { DEMORGAN-DUAL-OBJECT } \\
\text { Input } & \text { Tabular presentation of } \mathbf{A} \in \mathcal{M} . \\
\text { Output } & Q \subseteq\{0,2,3,1\}^{n} \text { st } J(\mathbf{A})=Q .
\end{aligned}
$$

Conjecture
Dual-Object polytime.

## Complexity

Tabular presentation of $\mathbf{A} \in \mathcal{M}$ finite has size $\leq 5|A|^{2}(2 \lg |A|)=o\left(|A|^{3}\right)$. $\mathbf{A} \in \mathcal{M}$ wlog, ow checking axioms $E$ of $\mathcal{M}$ requires $\leq|E||A|^{3}=O\left(|A|^{3}\right)$ time.

$$
\begin{aligned}
\text { Problem } & \text { DEMORGAN-DUAL-OBJECT } \\
\text { Input } & \text { Tabular presentation of } \mathbf{A} \in \mathcal{M} . \\
\text { Output } & Q \subseteq\{0,2,3,1\}^{n} \text { st } J(\mathbf{A})=Q .
\end{aligned}
$$

Conjecture
Dual-Object polytime.
Problem DEMORGAN-PROJECTIVE
Instance Tabular presentation of $\mathbf{A} \in \mathcal{M}$.
Question A projective?

## Complexity

Tabular presentation of $\mathbf{A} \in \mathcal{M}$ finite has size $\leq 5|A|^{2}(2 \lg |A|)=o\left(|A|^{3}\right)$. $\mathbf{A} \in \mathcal{M}$ wlog, ow checking axioms $E$ of $\mathcal{M}$ requires $\leq|E||A|^{3}=O\left(|A|^{3}\right)$ time.

$$
\begin{aligned}
\text { Problem } & \text { DEMORGAN-DUAL-OBJECT } \\
\text { Input } & \text { Tabular presentation of } \mathbf{A} \in \mathcal{M} . \\
\text { Output } & Q \subseteq\{0,2,3,1\}^{n} \text { st } J(\mathbf{A})=Q .
\end{aligned}
$$

Conjecture
Dual-Object polytime.
Problem DEMORGAN-PROJECTIVE
Instance Tabular presentation of $\mathbf{A} \in \mathcal{M}$.
Question A projective?

Conjecture
DEMORGAN-PROJECTIVE polytime.

## Unification

$\mathbf{A} \in \mathcal{M}$ unifiable does not imply $\mathbf{A} \in \mathcal{M}$ projective (hence, nontrivial).

## Unification

$\mathbf{A} \in \mathcal{M}$ unifiable does not imply $\mathbf{A} \in \mathcal{M}$ projective (hence, nontrivial).

Question $\mathcal{M}$ unification type?

## Unification

$\mathbf{A} \in \mathcal{M}$ unifiable does not imply $\mathbf{A} \in \mathcal{M}$ projective (hence, nontrivial).

Question $\mathcal{M}$ unification type?
Conjecture
Unitary.

## Unification

$\mathbf{A} \in \mathcal{M}$ unifiable does not imply $\mathbf{A} \in \mathcal{M}$ projective (hence, nontrivial).

## Question $\mathcal{M}$ unification type?

Conjecture
Unitary.
Evidence.
Heyting finitary but Heyting plus $(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime}$ unitary, and finite bounded distributive lattices finitary.

## Counting

$\left|\mathbf{F}_{\mathcal{K}}(1)\right|=6$.

## Counting

$$
\begin{aligned}
&\left|\mathbf{F}_{\mathcal{K}}(1)\right|=6 . \\
&\left|\mathbf{F}_{\mathcal{K}}(2)\right|=84 .
\end{aligned}
$$

## Counting

$$
\begin{aligned}
\left|\mathbf{F}_{\mathcal{K}}(1)\right| & =6 . \\
\left|\mathbf{F}_{\mathcal{K}}(2)\right| & =84 . \\
\left|\mathbf{F}_{\mathcal{K}}(3)\right| & =43,918 .
\end{aligned}
$$

## Counting

$$
\begin{aligned}
& \left|\mathbf{F}_{\mathcal{K}}(1)\right|=6 . \\
& \left|\mathbf{F}_{\mathcal{K}}(2)\right|=84 . \\
& \left|\mathbf{F}_{\mathcal{K}}(3)\right|=43,918 . \\
& \left|\mathbf{F}_{\mathcal{K}}(4)\right|=160,297,985,276 . \text { Brute force. }
\end{aligned}
$$

## Counting

$$
\begin{aligned}
& \left|\mathbf{F}_{\mathcal{K}}(1)\right|=6 . \\
& \left|\mathbf{F}_{\mathcal{K}}(2)\right|=84 . \\
& \left|\mathbf{F}_{\mathcal{K}}(3)\right|=43,918 . \\
& \left|\mathbf{F}_{\mathcal{K}}(4)\right|=160,297,985,276 . \text { Brute force. } \\
& \left|\mathbf{F}_{\mathcal{K}}(5)\right|=?
\end{aligned}
$$

## Counting

$$
\begin{aligned}
& \left|\mathbf{F}_{\mathcal{K}}(1)\right|=6 . \\
& \left|\mathbf{F}_{\mathcal{K}}(2)\right|=84 . \\
& \left|\mathbf{F}_{\mathcal{K}}(3)\right|=43,918 . \\
& \left|\mathbf{F}_{\mathcal{K}}(4)\right|=160,297,985,276 . \text { Brute force. } \\
& \left|\mathbf{F}_{\mathcal{K}}(5)\right|=?
\end{aligned}
$$

Question $\left|\mathbf{F}_{\mathcal{K}}(n)\right|$ ?

## Counting

$$
\begin{aligned}
& \left|\mathbf{F}_{\mathcal{K}}(1)\right|=6 . \\
& \left|\mathbf{F}_{\mathcal{K}}(2)\right|=84 . \\
& \left|\mathbf{F}_{\mathcal{K}}(3)\right|=43,918 . \\
& \left|\mathbf{F}_{\mathcal{K}}(4)\right|=160,297,985,276 . \text { Brute force. } \\
& \left|\mathbf{F}_{\mathcal{K}}(5)\right|=?
\end{aligned}
$$

$$
\text { Question }\left|\mathbf{F}_{\mathcal{K}}(n)\right| \text { ? }
$$

Recurrence in terms of Dedekind numbers, ie, $\left|\mathbf{F}_{\mathcal{D L}}(n)\right|$ ?

## Counting

$$
\begin{aligned}
& \left|\mathbf{F}_{\mathcal{K}}(1)\right|=6 . \\
& \left|\mathbf{F}_{\mathcal{K}}(2)\right|=84 . \\
& \left|\mathbf{F}_{\mathcal{K}}(3)\right|=43,918 . \\
& \left|\mathbf{F}_{\mathcal{K}}(4)\right|=160,297,985,276 . \text { Brute force. } \\
& \left|\mathbf{F}_{\mathcal{K}}(5)\right|=?
\end{aligned}
$$

$$
\text { Question }\left|\mathbf{F}_{\mathcal{K}}(n)\right| \text { ? }
$$

Recurrence in terms of Dedekind numbers, ie, $\left|\mathbf{F}_{\mathcal{D L}}(n)\right|$ ?
Gives $\left|\mathbf{F}_{\mathcal{K}}(n)\right|$ for $n \leq 8$.

## Counting

$$
\begin{aligned}
\left|\mathbf{F}_{\mathcal{K}}(1)\right| & =6 . \\
\left|\mathbf{F}_{\mathcal{K}}(2)\right| & =84 . \\
\left|\mathbf{F}_{\mathcal{K}}(3)\right| & =43,918 . \\
\left|\mathbf{F}_{\mathcal{K}}(4)\right| & =160,297,985,276 . \text { Brute force. } \\
\left|\mathbf{F}_{\mathcal{K}}(5)\right| & =? \\
& \\
& \text { Question }\left|\mathbf{F}_{\mathcal{K}}(n)\right| ?
\end{aligned}
$$

Recurrence in terms of Dedekind numbers, ie, $\left|\mathbf{F}_{\mathcal{D L}}(n)\right|$ ?
Gives $\left|\mathbf{F}_{\mathcal{K}}(n)\right|$ for $n \leq 8$. Noninteresting.

## Counting

$$
\begin{aligned}
\left|\mathbf{F}_{\mathcal{K}}(1)\right| & =6 . \\
\left|\mathbf{F}_{\mathcal{K}}(2)\right| & =84 . \\
\left|\mathbf{F}_{\mathcal{K}}(3)\right| & =43,918 . \\
\left|\mathbf{F}_{\mathcal{K}}(4)\right| & =160,297,985,276 . \text { Brute force. } \\
\left|\mathbf{F}_{\mathcal{K}}(5)\right| & =? \\
& \\
& \text { Question }\left|\mathbf{F}_{\mathcal{K}}(n)\right| ?
\end{aligned}
$$

Recurrence in terms of Dedekind numbers, ie, $\left|\mathbf{F}_{\mathcal{D L}}(n)\right|$ ?
Gives $\left|\mathbf{F}_{\mathcal{K}}(n)\right|$ for $n \leq 8$. Noninteresting.
Does it give any nontrivial insight on the lattice of clones of Kleene operations?

## Counting

$$
\begin{aligned}
\left|\mathbf{F}_{\mathcal{K}}(1)\right| & =6 . \\
\left|\mathbf{F}_{\mathcal{K}}(2)\right| & =84 . \\
\left|\mathbf{F}_{\mathcal{K}}(3)\right| & =43,918 . \\
\left|\mathbf{F}_{\mathcal{K}}(4)\right| & =160,297,985,276 . \text { Brute force. } \\
\left|\mathbf{F}_{\mathcal{K}}(5)\right| & =? \\
& \\
& \text { Question }\left|\mathbf{F}_{\mathcal{K}}(n)\right| ?
\end{aligned}
$$

Recurrence in terms of Dedekind numbers, ie, $\left|\mathbf{F}_{\mathcal{D L}}(n)\right|$ ?
Gives $\left|\mathbf{F}_{\mathcal{K}}(n)\right|$ for $n \leq 8$. Noninteresting.
Does it give any nontrivial insight on the lattice of clones of Kleene operations? Very interesting.

## References


R. Balbes and A. Horn.

Injective and Projective Heyting Algebras.
Trans. Amer. Math. Soc., 148:549-559, 1970.
J. Berman and W. J. Blok.

Generalizations of Tarski's Fixed Point Theorem for Order Varieties of Complete Meet Semilattices.
Order, 5:381-392, 1989.
J. Berman and W. J. Blok.

Stipulations, Multivalued Logic, and De Morgan Algebras.
Mult.-Valued Log., 7(5-6):391-416, 2001.
R. Cignoli.

Injective De Morgan and Kleene algebras.
Proc. Amer. Math. Soc., 47:269-278, 1975.

W. H. Cornish and P. R. Fowler.

Coproducts of de Morgan algebras.
Bull. Austral. Math. Soc., 16:1-13, 1977.
J. A. Kalman.

Lattices with Involution.
Trans. Amer. Math. Soc., 87:485-491, 1958.
R. Sikorski.

Homomorphisms, mappings and retracts.
Colloquium Math., 2:202-211, 1951.
A. Visser.

Four-Valued Semantics and the Liar.
J. Philos. Logic, 2:181-212, 1984.

Thank you!


[^0]:    ${ }^{\ddagger} r: P \rightarrow Q$ onto monotone st $r(Q)=Q$.

