Motivation	Background	Contribution	Open	References
	0000 0	0 000 000	000 000	

Lewis Dichotomies in Many-Valued Logics

Simone Bova

Department of Mathematics Vanderbilt University (Nashville, USA) simone.bova@vanderbilt.edu

ASUBL 2010 June 8-10, 2009, Nomi (Japan)

MOTIVATION	Background	Contribution	Open	References
	0000	0 000 000	000 000	

Boolean Satisfiability

x	y	⊥ ²	\wedge^2	\oplus^{2}	\vee^2	\neg^2	⊤²
0	0	0	0	0	0	1	1
0	1	0	0	1	1	0	1
1	0	0	0	1	1	1	1
1	1	0	1	0	1	0	1

Instance A term $t(x_1, ..., x_n)$ on signature (\land, \neg) . *Question* $(\{0, 1\}, \land^2, \neg^2, \top^2) \models \exists x_1 ... \exists x_n (t = \top)$?

Computationally tractable (in P) or intractable (NP-complete)? Intractable, it is necessary to check all $\{0, 1\}^{\{x_1, ..., x_n\}}$.

MOTIVATION	BACKGROUND	Contribution	Open	References
	0000 0	0 000 000	000 000	

Boolean Satisfiability

x	y	⊥ ²	\wedge^2	\oplus^{2}	\vee^2	\neg^2	⊤²
0	0	0	0	0	0	1	1
0	1	0	0	1	1	0	1
1	0	0	0	1	1	1	1
1	1	0	1	0	1	0	1

Instance A term $t(x_1, ..., x_n)$ on signature $(\bot, \land, \lor, \top)$. *Question* $(\{0, 1\}, \{\bot^2, \land^2, \lor^2, \top^2\}) \models \exists x_1 ... \exists x_n (t = \top)$?

Tractable or intractable? Tractable, it is sufficient to check $\{1\}^{\{x_1,...,x_n\}}$.

MOTIVATION	Background 0000 0	CONTRIBUTION 0 000 000	Open 000 000	References			
Outline							

Background Clone Theory Lewis Dichotomy

Contribution

Many-Valued Logics Kleene Operations Gödel Operations

Open

DeMorgan Operations Łukasiewicz Operations

MOTIVATION BACKGROUND 0000 0		CONTRIBUTION 0 000 000	Open 000 000	References			
Outline							

Background Clone Theory Lewis Dichotomy

Contribution

Many-Valued Logics Kleene Operations Gödel Operations

Open

DeMorgan Operations Łukasiewicz Operations

MOTIVATION	BACKGROUND	Contribution	Open	References
	•000 0	0 000 000	000	

Clones Lattice

A nonempty set, $0 \le n < \omega$. $\mathbf{O}_n = A^{A^n}$, *n*-ary operations on *A*. $\mathbf{O} = \mathbf{O}_A = \bigcup_n \mathbf{O}_n$, the finitary operations on *A*.

Definition

A *clone* on *A* is a subset of **O** containing the projection operations and closed under compositions. $Cl(A) = \{C \mid C \text{ clone on } A\}$. *C_n*, *n*-ary operations in $C \in Cl(A)$.

Fact

 $Cl(A) = (Cl(A), \subseteq)$ is a bounded algebraic lattice.

NA	01	TT	AT.	TO	NT
TAT	U.	. I V	MI	10	IN

BACKGROUND •000 o CONTRIBU 0 000 Open 000 000 References

Clones Lattice | *Boolean Case*

MOTIVATION	BACKGROUND	Contribution	Open	References
	•000 0	0 000 000	000	

Coclones Lattice

A nonempty set, $1 \le n < \omega$. $\mathbf{R}_n = 2^{A^n}$, *n*-ary relations on *A*. $\mathbf{R} = \bigcup_n \mathbf{R}_n$, the finitary relations on *A*.

Definition

A *coclone* on *A* is a subset of **R** containing the diagonal relation and closed under Cartesian products, identification of coordinates, and projection of coordinates. $Co(A) = \{S \mid S \text{ coclone on } A\}.$

Fact

 $Co(A) = (Co(A), \subseteq)$ is a bounded algebraic lattice.

Motivation	BACKGROUND	Contribution	Open	References
	0000	0	000	
	0	000	000	
		000		

Lattice Antiisomorphism

Definition

 $R \in \mathbf{R}_k, f \in \mathbf{O}$. *f preserves R* if *R* is a subuniverse of $(A, f)^k$. $S \subseteq \mathbf{R}$. Pol(*S*), the set of all operations on *A* that preserve each relation in *S* (the *polymorphisms* of *S*). $F \subseteq \mathbf{O}$. Inv(*F*), the set of all relations on *A* that are preserved by each operation in *F* (the *invariants* of *F*).

Theorem (Lattice Antiisomorphism)

Cl(A) and Co(A) are lattice antiisomorphic via Pol (or Inv).

MOTIVATION

BACKGROUND 0000 CONTRIBUT 0 000 000 Open 000 000 REFERENCES

Lattice Antiisomorphism | Boolean Case

Boolean clones (Post lattice).

Boolean coclones.

NA		T	37	A.2	TT.	\sim	NT
IVI	U	11	v	Μ	1 1	U	IN

BACKGROUNI
0000
0

Open 000 000 REFERENCES

Relational Presentation of Clones

Notation

 $F \subseteq \mathbf{O}$. [F] is the (clone) closure of F, the smallest clone on A containing F. $S \subseteq \mathbf{R}$. [S] is the (coclone) closure of S, the smallest coclone on A containing S.

Corollary

Let $F \subseteq \mathbf{O}$ *. Then, there exists* $S \subseteq \mathbf{R}$ *, unique up to coclone closure, such that* $[F] = \operatorname{Pol}(S)$ *.*

Example (Monotone Boolean Operations)

$$F = \{ \perp^2, \wedge^2, \vee^2, \top^2 \} \subseteq \mathbf{O}_{\{0,1\}}. \ [F] = M = \operatorname{Pol} \left(\begin{array}{cc} 0 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right).$$

Motivation	BACKGROUND	Contribution	Open	References
	000• 0	0 000 000	000 000	

Lattice Antiisomorphism

Lemma (Geiger, Bodnarchuk et al. [L06]) $C, C' \in Cl(A), S, S' \in Co(A). F \subseteq O, S \subseteq R.$ Then: 1. $C \subseteq C' \Rightarrow Inv(C') \subseteq Inv(C), S \subseteq S' \Rightarrow Pol(S') \subseteq Pol(S).$ 2. Inv(F) = Inv([F]) = [Inv(F)], Pol(S) = Pol([S]) = [Pol(S)].3. Pol(Inv(F)) = [F], Inv(Pol(S)) = [S].

Proof of Lattice Antiisomorphism.

By (2), Inv: $Cl(A) \rightarrow Co(A)$ and Pol: $Co(A) \rightarrow Cl(A)$. By (1) and (3), Inv and Pol are antitone bijections.

Proof of Corollary.

Let $S \subseteq \mathbf{R}$ such that [S] = Inv(F). Then, $[F] =_{(3)} \text{Pol}(\text{Inv}(F)) = \text{Pol}([S]) =_{(2)} \text{Pol}(S)$.

BACKGROUND

Open 000 000 REFERENCES

Parameterized Boolean Satisfiability

 $\mathbf{A} = (\{0, 1\}, F) \text{ algebra (signature } \sigma).$ *Problem* SAT(**A**) *Instance* A term $t(x_1, \dots, x_n)$ on σ . *Question* Does there exist $(a_1, \dots, a_n) \in \{0, 1\}^{\{x_1, \dots, x_n\}}$ such that $t^{\mathbf{A}}(a_1, \dots, a_n) = 1$?

Theorem (Lewis Dichotomy)

SAT(**A**) is NP-complete if $S_1 \subseteq [F]$, that is, if

$$(x \wedge \neg y)^{2} = \frac{b \mid 0 \quad 1}{0 \quad 0 \quad 0} \in [F],$$

1 | 1 \ 0

and in P otherwise.

Motivation	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	•	000	000	
		000		

Parameterized Boolean Satisfiability

Corollary $SAT(\mathbf{A})$ is in P iff F is contained in either

$$R_{1} = \operatorname{Pol} \left(\begin{array}{c} 1 \end{array} \right) \subseteq \mathbf{O}_{\{0,1\}},$$

$$M = \operatorname{Pol} \left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right) \subseteq \mathbf{O}_{\{0,1\}},$$

$$D = \operatorname{Pol} \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \subseteq \mathbf{O}_{\{0,1\}}, or$$

$$L = \operatorname{Pol} \left(\begin{array}{c} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \end{array} \right) \subseteq \mathbf{O}_{\{0,1\}}.$$

NA	\sim	T	17	7 A 1	TI	\sim	NT
TAT	U	11	LV	Μ	11	U	IN

BACKGROUND

CONTRIBUTIO 0 000 000 Open 000 000 REFERENCES

Parameterized Boolean Satisfiability

Theorem (Lewis Dichotomy)

SAT(**A**) is NP-complete if $(x \land \neg y)^2 \in [F]$, and in P otherwise.

Proof.

For hardness, inspection of Post lattice shows $[\{(x \land \neg y)^2, \top^2\}] = I_1 \lor S_1 = [\{\land^2, \neg^2\}]$. Let $\mathbf{A}' = (\{0, 1\}, \{(x \land \neg y)^2, \top^2\})$, so SAT(\mathbf{A}') is NP-complete. Reduction SAT(\mathbf{A}') \leq_L SAT(\mathbf{A}): Given t on $x \land \neg y, \top$, return $z \land t[\top/z]$ with z fresh (note $S_1 \subseteq [F]$ implies $\land^2 \in [F]$). So, SAT(\mathbf{A}) is NP-complete.

For tractability, inspection of Post lattice yields the following cases:

 $F \subseteq R_1$ (1-reproducing) implies t "Yes" instance ($t^{\mathbf{A}}(1,...,1) = 1$).

 $F \subseteq M$ (monotone) implies t "Yes" instance iff $t^{\mathbf{A}}(1, ..., 1) = 1$ (evaluation, in P). $F \subseteq D$ (selfdual) implies t "Yes" instance $(t^{\mathbf{A}}(0, ..., 0) = 1 \text{ or } t^{\mathbf{A}}(1, ..., 1) = 1)$. $F \subseteq L$ (affine) implies t "Yes" instance iff (w.l.o.g. t on \oplus , \top as $[\{\oplus^2, \top^2\}] = L$) either \top or some x_i have an odd number of occurrences in t (counting, in P).

MOTIVATION	BACKGROUND	CONTRIBUTION	Open	References
	0000	0 000 000	000	
		Outline		

Background Clone Theory Lewis Dichotomy

Contribution

Many-Valued Logics Kleene Operations Gödel Operations

Open

DeMorgan Operations Łukasiewicz Operations

Lewis Dichotomies in Many-Valued Logics

 $\mathbf{A} = (A, F)$ algebra (signature σ) such that:

1. $\{0,1\} \subset A$; 2. $F' = \{f' \mid f' \text{ restriction of } f \in F \text{ to } \{0,1\}\} \subset \text{Pol} (0 \ 1).$

 $[F]_n$ is the universe of $\mathbf{F}_{HSP(\mathbf{A})}(n)$, the free *n*-generated algebra in the variety generated by \mathbf{A} (roughly, the truthtables of the *n*-variable fragment of a many-valued expansion of a Boolean language).

Problem Give a Lewis dichotomy for "SAT(\mathbf{A})".

Lewis Dichotomies in Many-Valued Logics

 $\mathbf{A} = (A, F)$ algebra (signature σ) such that:

1. $\{0,1\} \subset A$; 2. $F' = \{f' \mid f' \text{ restriction of } f \in F \text{ to } \{0,1\}\} \subset \text{Pol} (0 \ 1).$

 $[F]_n$ is the universe of $\mathbf{F}_{HSP(\mathbf{A})}(n)$, the free *n*-generated algebra in the variety generated by \mathbf{A} (roughly, the truthtables of the *n*-variable fragment of a many-valued expansion of a Boolean language).

Problem Give a Lewis dichotomy for "SAT(**A**)". *Idea* Exploit Post lattice.

Motivation	BACKGROUND	CONTRIBUTION	Open	References
	0000	0 •00 000	000	

Kleene Operations

$$3 = (\{0, 2, 1\}, K) \text{ with } K = \{\wedge^3, \neg^3, \top^3\} \text{ where: } \top^3 = 1;$$

$$\neg^3(0) = 1, \neg^3(2) = 2, \neg^3(1) = 0; \text{ and, } \frac{\wedge^3 \mid 0 \quad 2 \quad 1}{0 \quad 0 \quad 0 \quad 0},$$

$$1 \quad 0 \quad 2 \quad 1$$

Fact (Kleene Operations)

1.
$$[K] = \operatorname{Pol} \left(\begin{array}{cccccc} 0 & 1 & 0 & 2 & 1 & 2 & 2 \\ 0 & 2 & 1 & 0 & 1 \end{array} \right) = \operatorname{Pol}(\mathcal{K});$$

2. $[K]_n$ universe of $\mathbf{F}_{HSP(3)}(n)$, the free n-generated Kleene algebra.

Remark

Propositional semantics: 1, 0 for "true", "false"; 2 for "undetermined".

MOTIVATION	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

Satisfiability Problem

 σ algebraic signature, **A** = (*A*, *F*) algebra on σ with:

1.
$$A = \{0, 2, 1\};$$

2. $F = \{f : A^{\operatorname{ar}(f)} \to A \mid f \in \sigma\} \subseteq [K].$

Problem KLEENE-SAT(**A**) Instance A term $t(x_1, ..., x_n)$ on σ . Question Does there exist $(a_1, ..., a_n) \in A^{\{x_1, ..., x_n\}}$ such that $t^{\mathbf{A}}(a_1, ..., a_n) = 1$?

Remark

2-KLEENE-SAT(**A**) is in P: By preservation, there exists $(a_1, \ldots, a_n) \in A^{\{x_1, \ldots, x_n\}}$ such that $t^{\mathbf{A}}(a_1, \ldots, a_n) = 2$ iff $t^{\mathbf{A}}(2, \ldots, 2) = 2$.

Motivation	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

Theorem KLEENE-SAT(**A**) *is* NP-complete if

and in P otherwise.

Remark $[k_1], [k_2]$ incomparable in the lattice of clones on $\{0, 2, 1\}$.

Motivation	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

Corollary

KLEENE-SAT(\mathbf{A}) tractable iff F is contained in either

$$\begin{split} K(R_1) &= \operatorname{Pol} \left(\begin{array}{ccc} 1 & , \mathcal{K} \right) \subseteq \mathbf{O}_{\{0,2,1\}}, \\ K(M) &= \operatorname{Pol} \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 1 \end{array}, \mathcal{K} \right) \subseteq \mathbf{O}_{\{0,2,1\}}, \\ K(D) &= \operatorname{Pol} \left(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}, \mathcal{K} \right) \subseteq \mathbf{O}_{\{0,2,1\}}, or \\ K(L) &= \operatorname{Pol} \left(\begin{array}{ccc} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \end{array} \right) \subseteq \mathbf{O}_{\{0,2,1\}}. \end{split}$$

18/11 11 1 3/ /3 1 11 1/5	
WOINATION	ε.

BACKGROUN 0000 0 CONTRIBUTION

Open 000 000 REFERENCES

Dichotomy Theorem

Proof of Kleene Dichotomy, Lower Bound.

For the lower bound, suppose $k_1 \in [F]$; the case $k_2 \in [F]$ is similar. $f \in F \subseteq [K]$ implies $f \in Pol(\{0,1\})$, then $\mathbf{A}' = (\{0,1\},F')$ with $F' = \{f'|f' \text{ restriction of } f \in F \text{ to } \{0,1\}\}$ is an algebra (display \mathbf{A} and \mathbf{A}' over the same signature). $k_1 \in [F]$ implies $b \in [F']$, so by Lewis dichotomy, SAT(\mathbf{A}') is NP-complete. Reduction SAT(\mathbf{A}') \leq_L KLEENE-SAT(\mathbf{A}): Return the input term $t(x_1, \ldots, x_n)$. Let $(a_1, \ldots, a_n) \in \{0, 2, 1\}^n$ such that $t^{\mathbf{A}}(a_1, \ldots, a_n) = 1$. Pick $(a'_1, \ldots, a'_n) \in \{0, 1\}^n$ such that $a'_i = a_i$ if $a_i \in \{0, 1\}$. Note $t^{\mathbf{A}}(a_1, \ldots, a_n) = 1$ implies $t^{\mathbf{A}}(a'_1, \ldots, a'_n) = 1$, by preservation of \mathcal{K} . But, $t^{\mathbf{A}'}(a'_1, \ldots, a'_n) = t^{\mathbf{A}}(a'_1, \ldots, a'_n)$.

The converse follows as the restriction of t^{A} to $\{0,1\}$ is equal to $t^{A'}$.

Proof of Kleene Dichotomy, Upper Bound.

For the upper bound, suppose that neither k_1 nor k_2 are in [*F*]. By direct computation, there are exactly 4 binary operations in [*K*] whose restriction to $\{0, 1\}$ is the operation *b* in Lewis dichotomy; in addition to k_1 and k_2 ,

k_3	0	2	1		k_4	0	2	1
0	0	0	0	and	0	0	2	0
2	2	2	0	anu	2	2	2	0 .
1	1	2	0		1	1	2	0

Neither k_3 nor k_4 are in [*F*], in fact

$$k_1(x,y) = k_3(x,k_3(x,k_3(x,y))),$$

$$k_2(x,y) = k_4(k_4(x,y),k_4(y,x)).$$

Then, there is no binary operation in [F] whose restriction to $\{0, 1\}$ is *b*. Thus, if $\mathbf{A}' = (\{0, 1\}, F')$ is as above, $b \notin [F']$, and $SAT(\mathbf{A}')$ is in P. The trivial reduction KLEENE-SAT(\mathbf{A}) $\leq_L SAT(\mathbf{A}')$ is correct.

Motivation	Background	CONTRIBUTION	Open	References
	0000	0 000 000	000	

Gödel Operations

$$\mathbf{G} = ([0,1],G) \text{ with } G = \{\wedge^{\mathbf{G}}, \rightarrow^{\mathbf{G}}, \neg^{\mathbf{G}}, \perp^{\mathbf{G}}\} \text{ where: } \perp^{\mathbf{G}} = 0;$$
$$x \wedge^{\mathbf{G}} y = \min\{x, y\}; x \rightarrow^{\mathbf{G}} y = \begin{cases} 1 & x \leq y \\ y & \text{otherwise} \end{cases}; \neg^{\mathbf{G}} x = x \rightarrow^{\mathbf{G}} 0.$$

 $m \ge 1$. **G**_{*m*} = ({0, 1/*m*, 2/*m*, ..., 1}, *G*_{*m*}) subalgebra of **G** (easy).

Theorem (Gödel Operations)

- 1. $[G] = \operatorname{Pol}(\{S \mid S \text{ subuniverse of } \mathbf{G}_m \text{ or } \mathbf{G}_m^2\})_{m \ge 1} = \operatorname{Pol}(\mathcal{G}).$
- 2. $[G]_n$ universe of $\mathbf{F}_{HSP(\mathbf{G})}(n)$, the free n-generated Gödel algebra (commutative bounded integral divisible prelinear idempotent residuated lattices).

Motivation	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

Gödel Operations

Proof of Part 1.

If $f \in [G]$, then f is a term operation over \mathbf{G} , thus f preserves \mathcal{G} . Suppose $f: [0,1]^n \to [0,1] \notin [G]_n \subseteq [G]$. Write $[0,1]_m$ for $\{0,1/m,\ldots,1\}$. Let $h: [G_{n+1}]_n \to [G]_n$ st h(g) = g' iff, for all $\mathbf{a} \in [0,1]_{n+1}^n$ and $\mathbf{a} \in [0,1]^n$, if \mathbf{a} and \mathbf{a}' "have the same ordered partition", then: $g(\mathbf{a}) = 0$ iff $g'(\mathbf{a}') = 0$, $g(\mathbf{a}) = 1$ iff $g'(\mathbf{a}') = 1$, and, $g(a_1,\ldots,a_n) = a_i$ iff $g'(a'_1,\ldots,a'_n) = a'_i$. h is an isomorphism of $[G]_n$ and $[G_{n+1}]_n$ with op's defined pointwise [AG08]. Note $h(f|_{[0,1]_{n+1}}) = f$, then $f|_{[0,1]_{n+1}} \notin [G_{n+1}]_n$, ow $f \in [G]_n$.

Claim

 $f|_{[0,1]_{n+1}} \notin \operatorname{Pol}\left(\{S \mid S \text{ subuniverse of } \mathbf{G}_{n+1} \text{ or } \mathbf{G}_{n+1}^2\}\right) = \operatorname{Pol}(\mathcal{G}_{n+1}) \subseteq \operatorname{Pol}(\mathcal{G}).$ By the claim, $f \notin \operatorname{Pol}(\mathcal{G})$.

MOTIVATION	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

Gödel Operations

Proof of Claim.

We use the combinatorial characterization of $[G_{n+1}]_n$ in [AG08]. If $f(a_1, \ldots, a_n) \notin \{a_1, \ldots, a_n\} \cup \{0, 1\}$ for some $(a_1, \ldots, a_n) \in [0, 1]_{n+1}^n$, then $f \notin Pol(\mathcal{G}_{n+1})$. Ow, there exist $\mathbf{a}, \mathbf{b} \in [0, 1]_{n+1}^n$ "having the same first *i* blocks", say $(A_1, \ldots, A_i, \ldots, A_j)$ and $(B_1, \ldots, B_i, \ldots, B_k)$ with $i \leq j, k$. Let v_t be equal to the numerical value of the a_i 's in A_t for $1 \leq t \leq j$, and let w_t be equal to the numerical value of the b_i 's in B_t for $1 \leq t \leq k$. We have $f(\mathbf{a}) \in A_r$ and $f(\mathbf{b}) \in B_s$ with either $r \neq s \leq i$ or $r \leq i < s$. In both cases, *f* does not preserve the subuniverse of \mathbf{G}_{n+1}^2 given by

$$\{(0,0),(v_1,w_1),\ldots,(v_i,w_i)\}\cup\{v_{i+1},\ldots,v_{j-1},1\} imes\{w_{i+1},\ldots,w_{k-1},1\}.$$

MOTIVATION	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

Satisfiability Problem

 σ algebraic signature, **A** = (*A*, *F*) algebra on σ with:

1.
$$A = [0, 1];$$

2. $F = \{f : A^{\operatorname{ar}(f)} \to A \mid f \in \sigma\} \subseteq [G].$

Problem GÖDEL-SAT(**A**) Instance A term $t(x_1, ..., x_n)$ on σ . Question Does there exist $(a_1, ..., a_n) \in A^{\{x_1, ..., x_n\}}$ such that $t^{\mathbf{A}}(a_1, ..., a_n) = 1$?

Remark

 $\epsilon > 0. \epsilon$ -GÖDEL-SAT(**A**) \equiv_L GÖDEL-SAT(**A**): By preservation, there exists $(a_1, \ldots, a_n) \in A^{\{x_1, \ldots, x_n\}}$ such that $t^{\mathbf{A}}(a_1, \ldots, a_n) = \epsilon$ iff there exists $(a_1, \ldots, a_n) \in A^{\{x_1, \ldots, x_n\}}$ such that $t^{\mathbf{A}}(a_1, \ldots, a_n) = 1$.

Motivation	BACKGROUND	CONTRIBUTION	Open	References
	0000 0	0	000	
		000		

Theorem GÖDEL-SAT(**A**) *is NP-complete if*

$$(x \land \neg y)^{\mathbf{G}} \in [F] \text{ or } (\neg (x \to y))^{\mathbf{G}} \in [F]$$

and in P otherwise.

Remark $[(x \land \neg y)^{\mathbf{G}}], [(\neg(x \to y))^{\mathbf{G}}]$ incomparable in the lattice of clones on [0, 1].

MOTIVATION	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	

Corollary

GODEL-SAT(A) tractable iff F is contained in either

$$G(R_1) = \operatorname{Pol} \left(\begin{array}{ccc} 1 & , \mathcal{G} \right) \subseteq \mathbf{O}_{[0,1]},$$

$$G(M) = \operatorname{Pol} \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 1 \end{array}, \mathcal{G} \right) \subseteq \mathbf{O}_{[0,1]},$$

$$G(D) = \operatorname{Pol} \left(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}, \mathcal{G} \right) \subseteq \mathbf{O}_{[0,1]}, \text{ or }$$

$$G(L) = \operatorname{Pol} \left(\begin{array}{ccc} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \end{array}, \mathcal{G} \right) \subseteq \mathbf{O}_{[0,1]}.$$

Motivation	Background	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

 $\mathbf{A} = ([0, 1]_3, F)$ with $F \subseteq [G_3]$. GÖDEL-SAT(\mathbf{A}) similarly.

Lemma GÖDEL-SAT(**A**) *is NP-complete if*

g_1	0	1/3	2/3	1		<i>g</i> 2	0	1/3	2/3	1	
0	0	0	0	0		0	0	0	0	0	
1/3	1/3	0	0	0	$\in [F]$ or	1/3	1	0	0	0	$\in [F],$
2/3	2/3	0	0	0		2/3	1	0	0	0	
1	1	0	0	0		1	1	0	0	0	

and in P otherwise.

Remark

 $[g_1], [g_2]$ incomparable in the lattice of clones on $[0, 1]_3$.

M		T		Δ.	TΤ	\cap	NT
TAT	O	1.	I V	n	1 1	0	1.N

BACKGROUN 0000 0 CONTRIBUTION 0 000 000 Open 000 000 REFERENCES

Dichotomy Theorem

Proof of Lemma.

Lower Bound, Case $g_1 \in [F]$: Let $\mathbf{A}' = (\{0,1\}, F')$ with $F' = F|_{\{0,1\}}$, correct as $F \subseteq [G]$ implies F preserves the subuniverse $\{0,1\}$. Then, $b \in [F']$, so that SAT(\mathbf{A}') is NP-complete. Reduction SAT($\mathbf{A}') \leq_L$ GÖDEL-SAT(\mathbf{A}): return the given term t. If $t^{\mathbf{A}'}(\mathbf{a}) = 1$, then $t^{\mathbf{A}}(\mathbf{a}) = 1$ by the definition of F'. Conversely, let $(a_1, \ldots, a_n) \in [0,1]_3^n$ st $t^{\mathbf{A}}(a_1, \ldots, a_n) = 1$. Let $(a'_1, \ldots, a'_n) \in \{0,1\}^n$ st $a'_i = 0$ if $a_i = 0$ and $a'_i = 1$ ow. As $R = \{(0,0), (1/3,1), (2/3,1), (1,1)\}$ is a subuniverse of \mathbf{G}_3^2 , $t^{\mathbf{A}}$ preserves R and $t^{\mathbf{A}}(a'_1, \ldots, a'_n) = 1$. Then, $t^{\mathbf{A}'}(a'_1, \ldots, a'_n) = 1$. Case $g_2 \in [F]$: Similar. Upper Bound: $g_1, g_2 \notin [F]$ imply no operation in $[F]_2$ restricted to $\{0,1\}$ equals b, as g_1 and g_2 are the only such operations in $[G_3]_2 \supseteq [F]_2$. Then, $b \notin [F']$, and SAT(\mathbf{A}') is in P. As above GÖDEL-SAT($\mathbf{A}) \leq_L$ SAT(\mathbf{A}').

MOTIVATION	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

Proof of Gödel Dichotomy.

Lower Bound. Case $(x \land \neg y)^{\mathbf{G}} \in [F]$: Let $\mathbf{A}' = ([0, 1], F')$ with $F' = \{f' \mid f' \text{ restriction to } [0,1]_3 \text{ of } f \in F\}$. As $g_1 \in [F']$, by the lemma, GODEL-SAT(A') is NP-complete. Reduction GÖDEL-SAT(\mathbf{A}') \leq_L GÖDEL-SAT(\mathbf{A}): return the given term *t*. If $t^{\mathbf{A}'}(\mathbf{a}) = 1$, then $t^{\mathbf{A}}(\mathbf{a}) = 1$ as $t^{\mathbf{A}}|_{[0,1]_2} = t^{\mathbf{A}'}$. Conversely, let $\mathbf{a} = (a_1, \ldots, a_n) \in [0,1]^n$ st $t^{\mathbf{A}}(\mathbf{a}) = 1$. Let $\mathbf{a}' = (a'_1, \dots, a'_n) \in \{0, 1\}^n \subseteq [0, 1]^n_3$ st $a'_i = a_i$ if $a_i = 0$ and $a'_i = 1$ ow. $t^{A} \in [G]$ implies that t^{A} preserves the subuniverse $R = \{(0,0), (a,1) \mid 0 < a\}$ of \mathbf{G}^2 . Also, $(1,a) \notin R$ if $a \neq 1$, then $t^{\mathbf{A}}(\mathbf{a}) = 1$ implies $t^{A}(\mathbf{a}') = 1$. But $t^{A}|_{\{0,1\}} = t^{A'}$, then $t^{A'}(\mathbf{a}') = 1$. Case $(\neg (x \rightarrow y))^{\mathbf{G}} \in [F]$: Similar. Upper Bound. $(x \land \neg y)^{\mathbf{G}}, (\neg (x \to y))^{\mathbf{G}} \notin [F]$ implies that no operation in $[F]_2$ restricted to {0,1} equals *b*, then $\mathbf{A}' = (\{0,1\}, F')$ with $F' = F|_{\{0,1\}}$ is st $SAT(\mathbf{A}')$ is in P. Reduction GÖDEL-SAT(\mathbf{A}) $\leq_L SAT(\mathbf{A}')$: return the given term t. As above.

Motivation	BACKGROUND	CONTRIBUTION	Open	References
	0000	0 000 000	000	
		Outline		

Background Clone Theory Lewis Dichotomy

Contribution

Many-Valued Logics Kleene Operations Gödel Operations

Open

DeMorgan Operations Łukasiewicz Operations

MOTIVATION	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

DeMorgan Operations

$$4 = (\{0, 2, 3, 1\}, M) \text{ with } M = \{\wedge^{4}, \neg^{4}, \top^{4}\} \text{ where: } \top^{4} = 1;$$

$$\neg^{4}(0) = 1, \neg^{4}(2) = 2, \neg^{4}(3) = 3, \neg^{4}(1) = 0; \begin{array}{c} \wedge^{3} & 0 & 2 & 3 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 & 2 \\ 3 & 0 & 0 & 3 & 3 \\ 1 & 0 & 2 & 3 & 1 \end{array}$$

Fact (DeMorgan Operations)

2. $[M]_n$ universe of $\mathbf{F}_{HSP(4)}(n)$, the free n-generated DeMorgan algebra.

Remark

1, 0 for "true", "false"; 2, 3 for "undetermined", "overdetermined".

MOTIVATION	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

Satisfiability Problem

 σ algebraic signature, **A** = (*A*, *F*) algebra on σ with:

1.
$$A = \{0, 2, 3, 1\};$$

2. $F = \{f : A^{\operatorname{ar}(f)} \to A \mid f \in \sigma\} \subseteq [M].$

Problem DEMORGAN-SAT(**A**) Instance A term $t(x_1, ..., x_n)$ on σ . Question Does there exist $(a_1, ..., a_n) \in A^{\{x_1, ..., x_n\}}$ such that $t^{\mathbf{A}}(a_1, ..., a_n) = 1$?

Remark

Complexity of 2-DEMORGAN-SAT(\mathbf{A}), 3-DEMORGAN-SAT(\mathbf{A})?

Motivation	Background	Contribution	Open	References
	0000	0	000	
	0	000	000	
		000		

Hard and Easy Cases

Proposition DEMORGAN-SAT(**A**) *is NP-complete if*

d_1	0	2	3	1		d_2	0	2	3	1	
0	0	0	0	0		0	0	2	3	0	
2	2	2	2	2	\in [<i>F</i>] or	2	2	2	2	2	$\in [F],$
3	3	3	3	3		3	3	3	3	3	
1	1	2	3	0		1	1	2	3	0	

and in *P* if $[F|_{\{0,1\}}] \subseteq R_1, D$.

Remark

Complexity of DEMORGAN-SAT(**A**) *if* $I_0 \subseteq [F]$?

MOTIVATION	Background	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

m-Valued Łukasiewicz Operations

$$\mathbf{L} = ([0,1], L) \text{ with } L = \{ \odot^{\mathbf{L}}, \rightarrow^{\mathbf{L}}, \bot^{\mathbf{L}} \} \text{ where: } \bot^{\mathbf{L}} = 0; \\ x \odot^{\mathbf{L}} y = \max\{0, x + y - 1\}; x \rightarrow^{\mathbf{L}} y = \min\{1, y + 1 - x\}.$$

 $m \ge 1$. **L**_{*m*} = ({0, 1/*m*, 2/*m*, ..., 1}, *L*_{*m*}) subalgebra of **L** (easy).

Theorem (m-Valued Łukasiewicz Operations)

- 1. $[L_m] = \operatorname{Pol}(\{R \mid R \text{ subuniverse of } \mathbf{L}_m\})$ = $\operatorname{Pol}(\{dk/m \mid 0 \le k \le m/d\})_{1 \le d|m}.$
- 2. $[L_m]_n$ universe of $\mathbf{F}_{HSP(\mathbf{L}_m)}(n)$, the free *n*-generated algebra in the variety generated by \mathbf{L}_m (*m*-valued Łukasiewicz algebras).

Motivation	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

Satisfiability Problem

 $m \ge 1$, σ algebraic signature, $\mathbf{A} = (A, F)$ algebra on σ with: 1. $A \subseteq [0, 1]$; 2. $F = \{f : A^{\operatorname{ar}(f)} \to A \mid f \in \sigma\} \subseteq [L_m]$.

Problem ŁUKASIEWICZ-SAT(**A**) Instance A term $t(x_1, ..., x_n)$ on σ . Question Does there exist $(a_1, ..., a_n) \in A^{\{x_1, ..., x_n\}}$ such that $t^{\mathbf{A}}(a_1, ..., a_n) = 1$?

Remark

0 < l < m. Complexity of $\frac{l}{m}$ -ŁUKASIEWICZ-SAT(**A**)?

Motivation	Background	Contribution	Open	References
	0000	0 000 000	000 000	

Hard and Easy Cases

Proposition

$\texttt{LUKASIEWICZ-SAT}(\mathbf{A})$ is NP-complete if

1	0	1/m	• • •	1	
0	0	0	• • •	0	
1/m	0	0	• • •	0	$\in [F],$
÷	:	÷	·	÷	
1	1	0	• • •	0	

and in P *if* $[F|_{\{0,1\}}] \subseteq R_1, D$.

Remark Complexity of ŁUKASIEWICZ-SAT(\mathbf{A}) *if* $I_0 \subseteq [F]$?

Motivation	BACKGROUND	CONTRIBUTION	Open	References
	0000	0	000	
	0	000	000	
		000		

References

S. Aguzzoli and B. Gerla.

Normal Forms and Free Algebras for Some Extensions of MTL. Fuzzy Set. Syst, 159(10):1131–1152, 2008.

J. Berman and W. J. Blok.

Stipulations, Multivalued Logic, and De Morgan Algebras. Mult.-Valued Log., 7(5-6):391–416, 2001.

E. Böhler, S. Reith, H. Schnoor, and H. Vollmer.

Bases for Boolean Co-Clones. Inform. Process. Lett., 96(2):59-66, 2005.

M. Gehrke, C. Walker, and E. Walker.

A Mathematical Setting for Fuzzy Logics. Int. J. Uncertainly and Knowledge-Based Systems, 5(3):223–238, 1997.

D. Lau.

Function Algebras on Finite Sets: Basic Course on Many-Valued Logic and Clone Theory. Springer, 2006.

H. R. Lewis.

Satisfiability Problems for Propositional Calculi. Mathematical Systems Theory, 13:45–53, 1979.

E. L. Post.

The Two-Valued Iterative Systems of Mathematical Logic. Annals of Mathematical Studies, 5:1–122, 1941.

Motivation	Background	Contribution	Open	References
	0000 0	0 000 000	000 000	

Thank you!