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Commutative Bounded GBL-Algebras | Definition

A = (A,∧,∨, ·, \,>,⊥) algebra of type (2, 2, 2, 2, 0, 0).

Definition (Commutative Bounded GBL-Algebras, [JT02])
A is a commutative bounded (cb) residuated lattice if:

1. (A,∧,∨,>,⊥) is a bounded lattice;

2. (A, ·,>) is a commutative monoid; ∗

3. x · z ≤ y iff z ≤ x\y holds identically (residuation).

A cb residuated lattice A is a (cb) GBL-algebra, A ∈ CBGBL, if:

4. x ∧ y = x · (x\y) holds identically (divisibility).

∗The property that the identity is the top is called integrality.
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Commutative Bounded GBL-Algebras | Logic

Examples (Algebraic Semantics of Propositional Logics)

1. Heyting algebras, algebraic semantics of intuitionistic logic,
are idempotent GBL-algebras, x · x = x = x ∧ x.

2. BL-algebras, algebraic semantics of fuzzy logic [H98],
are prelinear GBL-algebras, x\y ∨ y\x = >.

Thus, GBL-algebras form the algebraic semantics
of an (interesting) common fragment of intuitionistic logic and fuzzy logic
(a many-valued intuitionistic logic, or a constructive fuzzy logic).



MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Equations and Quasiequations

t, s GBL-terms. For all A ∈ CBGBL, A |= t = s iff A |= t\s ∧ s\t = >.

Definition (Equational and Quasiequational Theories of CBGBL)
H = {({s1, . . . , sk}, t) | ∀A ∈ CBGBL, A |= s1 = > ∧ · · · ∧ sk = > → t = >}.
E = {(S, t) ∈ H | S = {>}} ⊆ H.

Fact
H (thus, E) is decidable [JM09] via strong finite model property. †

Question
Computational complexity of E and H?

Remark
Both theories are PSPACE-complete for Heyting algebras [S03],
coNP-complete for BL-algebras [BHMV01].

†Noncommutative GBL-quasiequations are undecidable [JM09]. Decidability of
noncommutative GBL-equations is open.
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Commutative GBL-Algebras | Finite Model Property

Definition (Countermodel)
Q GBL-quasiequation over {y1, . . . , yl}. Q fails in CBGBL iff
Q has a countermodel, ie, exist A ∈ CBGBL, h ∈ A{y1,...,yl} st A, h 6|= Q.

Definition (Finite GBL-Algebras)
FCGBL = {A | A finite in CBGBL}.

Theorem (Strong Finite Model Property, [JM09])
Q fails in CBGBL iff Q fails in FCGBL.

Proof (Sketch).
CBGBL is generated as a quasivariety by finite members [JM09, Theorem 5.2].
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Finite Commutative GBL-Algebras | Representation

Proposition (Divisibility implies Distributivity)
A ∈ CBGBL has a distributive bounded lattice reduct.

Proof.
(x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ z) and

x ∧ (y ∨ z) = (y ∨ z)((y ∨ z)\x), by v ∧ w = w ∧ v = w(w\v),
= y((y ∨ z)\x) ∨ z((y ∨ z)\x), by (v ∨ w)u = vu ∨ wu,
= y(y\x ∧ z\x) ∨ z(y\x ∧ z\x), by (v ∨ w)\u = v\u ∧ w\u,
≤ y(y\x) ∨ z(z\x), by v ≤ w implies uv ≤ uw,
= (x ∧ y) ∨ (x ∧ z), by v ∧ w = v(v\w).

Idea
Adapt Birkhoff representation of finite distributive lattices by finite posets
to finite commutative bounded GBL-algebras.
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Finite Distributive Lattices | Birkhoff Representation
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Finite Commutative GBL-Algebras | Representation

Definition (Finite N-Labelled Posets)
FNP = {(P,≤P, lP) | (P,≤P) finite poset, lP : P→ N}.

Notation
I(A) = {z ∈ A | z2 = z} = {z ∈ A | z idempotent}.

Definition (Map J)
J : FCGBL→ FNP such that, for all A ∈ FCGBL,

J(A) = (P,≤P, lP),

where P = {x ∈ I(A) | x join irreducible in A}, x ≤P y iff y ≤ x in A, and

lP(x) = |{y |
_

x>w∈I(A)

w < y ≤ x}|.
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Finite Commutative GBL-Algebras | Algebra to Poset via J

A = ({0, . . . , 7},∧,∨,

xy 01234567
0 00000000
1 00010111
2 00202222
3 01031333
4 00212444
5 01234555
6 01234556
7 01234567

,

x\y =
W
{z | xz ≤ y} 01234567
0 74321000
1 77343111
2 74724222
3 77377333
4 77777444
5 77777755
6 77777776
7 77777777
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Finite Commutative GBL-Algebras | Representation

Definition (Map D, Poset Product, [JM09])
D : FNP→ FCGBL such that, for all P = (P,≤P, lP) ∈ FNP,

D((P,≤P, lP)) =
O
x∈P

[lP(x)] = (
Y
x∈P

[lP(x)],∧,∨, ·, \,>,⊥),

the (finite) poset product (over P), where:

1. [lP(x)] = ({0, 1, . . . , lP(x)},∧x,∨x, ·x, \x,>x,⊥x), where:

1.1 ∧x = min,∨x = max,>x = lP(x),⊥x = 0;
1.2 n ·x m = max{n + m− lP(x), 0};
1.3 n\xm = min{m + lP(x)− n, lP(x)};

2.
Q

x∈P[lP(x)] = {h ∈
Q

x∈P[lP(x)] | h(x) = ⊥x or h(y) = >y for all x <P y};
3. (f ◦ g)(x) = f (x) ◦x g(x) for all x ∈ P and ◦ ∈ {∧,∨, ·};
4. (f\g)(x) = f (x)\xg(x) if f (y) ≤y g(y) for all x <P y, and ⊥x otherwise;

5. >(x) = >x and ⊥(x) = ⊥x for all x ∈ P.
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Finite Commutative GBL-Algebras | Poset to Algebra via D
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Finite Commutative GBL-Algebras | Representation

Theorem (Finite Representation, [JM09])
D(J(A)) = A for all A ∈ FCGBL.

Examples
Finite Heyting algebras correspond to {(P,≤P, lP) ∈ FNP | lP : P→ {1}}.
Finite BL-algebras correspond to {(P,≤P, lP) ∈ FNP | (P,≤dual

P ) forest}.

Corollary
Q fails in CBGBL iff Q fails in a finite poset product

N
x∈P[lP(x)].

Proof (Sketch).
By the representation theorem, every finite GBL-algebra is isomorphic to some finite
poset product

N
x∈P[lP(x)] [JM09, Theorem 6.5].
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Computational Complexity | PSPACE

L ⊆ {0, 1}∗ decision problem. x ∈ {0, 1}n has size n.

Definition (Karp Reduction)
L′ ≤p

m L if there is a Karp reduction K : {0, 1}∗ → {0, 1}∗ from L′ to L, ie,
an algorithm K using ≤ nc time (n size, c constant) st x ∈ L′ iff K(x) ∈ L.

Definition (PSPACE-Complete)
L ∈ PSPACE iff L has decision algorithm using ≤ nc space (n size, c constant).
L is PSPACE-hard if L′ ≤p

m L for all L′ ∈ PSPACE.
L is PSPACE-complete if L ∈ PSPACE and L is PSPACE-hard.

Definition (QBF)
Let A = Qlyl · · ·Q1y1B be a sentence where Qi ∈ {∀,∃} and
B = D1 ∨ · · · ∨Dk Boolean DNF over variables {y1, . . . , yl}.
Then, A ∈ QBF iff 2 |= A.
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Main Result

Theorem
Both E and H are PSPACE-complete.

Proof.
As E ⊆ H, it is sufficient to show the following two facts.

Lemma
E is PSPACE-hard (GBL-equations are PSPACE-hard). ‡

Lemma ([BM09])
H is in PSPACE (GBL-quasiequations are in PSPACE).

‡Adaptation of [S03] to the nonidempotent case. Conjectured in [BM09].
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Commutative GBL-Equations are PSPACE-Hard

Notation
t GBL-term. t̄ = t\⊥, t2 = t · t, 2t = ((t\⊥) · (t\⊥))\⊥.

Definition (Reduction K)
For all sentences A = Qlyl · · ·Q1y1B st Qi ∈ {∀,∃} and B =

W
j=1,...,m Dj is a

Boolean DNF, define K(A) = tl(y1, . . . , yl, y1+l, . . . , y2l) inductively by:

t0 =
_

j=1,...,m

Dj[yk/2yk,¬yk/2ȳk | k = 1, . . . , l];

ti =

(
(ti−1\yi+l)\(y2

i \yi+l ∨ ȳi
2\yi+l), if Qi = ∃;

(y2
i ∨ ȳi

2)\ti−1, if Qi = ∀.

Lemma
E is PSPACE-hard.

Proof (Sketch).
K(A) is logspace computable in the size of A. A (nontrivial) induction on
k = 0, 1, . . . , l shows that 2 6|= A iff K(A) fails over a finite poset product iff
K(A) 6∈ E. Thus, QBF ≤p

m E via K, but QBF is PSPACE-hard [Pap94].
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Dj[yk/2yk,¬yk/2ȳk | k = 1, . . . , l];

ti =

(
(ti−1\yi+l)\(y2

i \yi+l ∨ ȳi
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Example
A = ∃y2∀y1((¬y1 ∧ y2) ∨ (y1 ∧ ¬y2)).

Inductive computation of K(A) = t2(y1, y2, y3, y4):
t0 = (2ȳ1 ∧ 2y2) ∨ (2y1 ∧ 2ȳ2),
t1 = (y2

1 ∨ ȳ1
2)\t0,

t2 = (t1\y4)\(y2
2\y4 ∨ ȳ2

2\y4)

= (((y2
1 ∨ ȳ1

2)\((2ȳ1 ∧ 2y2) ∨ (2y1 ∧ 2ȳ2)))\y4)\(y2
2\y4 ∨ ȳ2

2\y4).

2 6|= A . . . the lemma yields a finite countermodel A to K(A)
(take y1 = a, y2 = b, y4 = 0):

1

e

b d

c

0

a

1

1

1

1

(T,≤T, 1) A = D((T,≤T, 1))
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2)\t0,
t2 = (t1\y4)\(y2

2\y4 ∨ ȳ2
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t0 = (2ȳ1 ∧ 2y2) ∨ (2y1 ∧ 2ȳ2),
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2)\((2ȳ1 ∧ 2y2) ∨ (2y1 ∧ 2ȳ2)))\y4)\(y2
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2)\t0,

t2 = (t1\y4)\(y2
2\y4 ∨ ȳ2
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t0 = (2ȳ1 ∧ 2y2) ∨ (2y1 ∧ 2ȳ2),
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Tight Tree Embedding Lemma

Theorem (Tight Tree Embedding, [BM09])
Let Q be a GBL-quasiequation of size n. Then, Q fails in CBGBL iff
Q fails in a poset product

N
x∈P[lP(x)] over a finite rooted tree (P,≤P) such that:

1. |P| ∈ exp(poly(n));

2. max{|S| | S chain in P} ∈ poly(n);

3. lP(x) ∈ exp(poly(n)) for all x ∈ P.

Proof (Sketch).
[BM09, Lemma 2] Every finite countermodel to Q embeds into some finite poset
product

N
x∈P[lP(x)] where P is satisfies conditions (1)-(3). (1)-(2) obtained

combinatorially, (3) obtained geometrically along the lines of [M87].
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Commutative GBL-Quasiequations are in PSPACE

Lemma
H is in PSPACE.

Proof (Sketch).
[BM09, Lemma 4] We describe a nondeterministic polynomial space algorithm that
decides the complement of H. But coNPSPACE = PSPACE [Pap94].
Let Q be a GBL-quasiequation. The idea of the algorithm is to search exhaustively the
space of countermodels (poset products) satisfying conditions (1)-(3) in the tight
embedding theorem wrt Q. (1)-(3) allow to implement a terminating search in
polyspace.
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Pseudocode

FINDCOUNTERMODEL(Q = ({s1, . . . , sk}, t))
1 guess h(v1) = (h1(v1), . . . , hl(v1)) ∈ [lP(v1)]

l I y1, . . . , yl variables in Q
2 H ← () + h(v1)
3 guess i(v1) ∈ {0, 1}m I r1, . . . , rm subterms of form ri1

\ri2
in Q, ri evaluated pointwise at v0 iff i(v1)i = 1

4 I ← () + i(v1)
5 if not(t < > = s1 = · · · = sk at v1 wrt h(v1), i(v1))
6 output 0 I countermodel not found
7 guess B = |P|
8 b← 2, j← 1
9 while b ≤ B
10 if(j = 1 and {i | i(vj)i = 0} = ∅)
11 output 1 I countermodel found
12 else if(j > 1 and {i | i(vj)i = 0} = ∅)
13 j← j− 1, H ← H − h(vj) I backtrack
14 else if({i | i(vj)i = 0} = ∅)
15 j← j + 1, b← b + 1 I iterate
16 guess h(vj) = (h1(vj), . . . , hl(vj)) ∈ [lP(vj)]

l

17 H ← H + h(vj)
18 guess i(vj) ∈ {0, 1}m

19 I ← I + i(vj)
20 if(h(vj) sound wrt h(vj−1), i(vj) > i(vj−1), and ui1

≤ ui2
at vj wrt h(vj), i(vj) for all i st i(vj−1)i = 1)

21 i(vk)i ← 1 for all k < j and i st i(vj)i = 1, i(vk)i = 0
22 else output 0 I countermodel not found
23 endwhile
24 output 0 I countermodel not found
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Open Problems

1. Hardness of unbounded commutative case (easy).
2. Decidability of noncommutative GBL-equations (difficult).
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