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Commutative Bounded GBL-Algebras | Definition

A= (A NV, \,T,1)algebra of type (2,2,2,2,0,0).

Definition (Commutative Bounded GBL-Algebras, [[T02])
A is a commutative bounded (cb) residuated lattice if:

1. (A,A,V, T, 1)is abounded lattice;
2. (A,-, T) is a commutative monoid; *
3. x -z <yiff z < x\yholds identically (residuation).
A cb residuated lattice A is a (cb) GBL-algebra, A € CBGBL, if:
4. x ANy = x - (x\y) holds identically (divisibility).

*The property that the identity is the top is called integrality.
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Commutative Bounded GBL-Algebras | Logic

Examples (Algebraic Semantics of Propositional Logics)

1. Heyting algebras, algebraic semantics of intuitionistic logic,
are idempotent GBL-algebras, x - x = x = x A x.

2. BL-algebras, algebraic semantics of fuzzy logic [H98],
are prelinear GBL-algebras, x\y vV y\x = T.

Thus, GBL-algebras form the algebraic semantics
of an (interesting) common fragment of intuitionistic logic and fuzzy logic
(a many-valued intuitionistic logic, or a constructive fuzzy logic).
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Equations and Quasiequations

t,s GBL-terms. Forall A € CBGBL, A =t =siff Al=t\s As\t = T.

Definition (Equational and Quasiequational Theories of CBGBL)
H:{({sl,...,sk},t) \VAGCBQBL,AI:sl :T/\~~-/\Sk:T—>t:T}.
E={(S,t)eH|S={T}} CH.

fNoncommutative GBL-quasiequations are undecidable [JM09]. Decidability of
noncommutative GBL-equations is open.
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Equations and Quasiequations

t,s GBL-terms. Forall A € CBGBL, A =t =siff Al=t\s As\t = T.

Definition (Equational and Quasiequational Theories of CBGBL)
H:{({sl,...,sk},t) \VAGCBQBL,AI:sl :T/\~~-/\Sk:T—>t:T}.
E={(S,t)eH|S={T}} CH.

Fact
H (thus, E) is decidable [[M09] via strong finite model property. T

Question
Computational complexity of E and H?

Remark
Both theories are PSPACE-complete for Heyting algebras [S03],
coNP-complete for BL-algebras [BHMV01].

fNoncommutative GBL-quasiequations are undecidable [JM09]. Decidability of
noncommutative GBL-equations is open.
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Commutative GBL-Algebras | Finite Model Property

Definition (Countermodel)

Q GBL-quasiequation over {y1, ...,y }. Q fails in CBGBL iff
Q has a countermodel, ie, exist A € CBGBL, h € At gt A B ¥~ Q.
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Commutative GBL-Algebras | Finite Model Property

Definition (Countermodel)

Q GBL-quasiequation over {y1, ...,y }. Q fails in CBGBL iff

Q has a countermodel, ie, exist A € CBGBL, h € At gt A B ¥~ Q.
Definition (Finite GBL-Algebras)

FCGBL = {A | A finite in CBGBL}.

Theorem (Strong Finite Model Property, [[M09])
Q fails in CBGBL iff Q fails in FCGBL.

Proof (Sketch).
CBGBL is generated as a quasivariety by finite members [JMO09, Theorem 5.2]. [
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Finite Commutative GBL-Algebras | Representation

Proposition (Divisibility implies Distributivity)

A € CBGBL has a distributive bounded lattice reduct.
Proof.

(xAY)V(xAz) <xA(yVz)and

xAN(yVz)=WyVz)((yVz)\x), byvAw=wAv=w(w\v),
=y(yv2)\v) Vz((yVz)\x), by (vVw)u = ouVwu,
=y(y\x Az\x) V z(y\x A z\x), by (v VvV w)\u = v\u Aw\u,
<y(y\x) vz(z\x), by v < w implies uv < uw,
=@xAY)V(xAz), by o Aw = v(v\w).

O
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Finite Commutative GBL-Algebras | Representation

Proposition (Divisibility implies Distributivity)

A € CBGBL has a distributive bounded lattice reduct.
Proof.

(xAY)V(xAz) <xA(yVz)and

xAN(yVz)=WyVz)((yVz)\x), byvAw=wAv=w(w\v),
=y((yVvz)\x) Vz((yVz)\x), by (vV w)u =ouVwu,
=y(y\x Az\x) V z(y\x A z\x), by (v VvV w)\u =v\u A w\u,
<y(y\x) Vz(z\x), by v < w implies uv < uw,
=(xAY)V(xAz), byv Aw = v(v\w).
O
Idea

Adapt Birkhoff representation of finite distributive lattices by finite posets
to finite commutative bounded GBL-algebras.
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Finite Distributive Lattices | Birkhoff Representation
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Finite Commutative GBL-Algebras | Representation

Definition (Finite N-Labelled Posets)
FNP = {(P, <p,Ip) | (P, <p) finite poset, [p: P — N}.

Notation
I(A) = {z € A| 2> =z} = {z € A | zidempotent}.
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Finite Commutative GBL-Algebras | Representation

Definition (Finite N-Labelled Posets)
FNP = {(P, <p,Ip) | (P, <p) finite poset, [p: P — N}.

Notation
I(A) = {z € A| 2> =z} = {z € A | zidempotent}.

Definition (Map ])
J: FCGBL — ENP such that, for all A € FCGBL,

J(A) = (P, <p,lp),

where P = {x € I(A) | xjoin irreducible in A}, x <p yiff y < xin A, and

b =1yl \/ w<y<xl.

x>wel(A)
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Finite Commutative GBL-Algebras | Algebra to Poset via |

A=({0,...,7},A,V,

xy | 01234567  x\y = V{z | xz <y} | 01234567
0 | 00000000 0 74321000
1 | 00010111 1 77343111
2 | 00202222 2 74724222
3 | 01031333 , 3 77377333
4 | 00212444 4 77777444
5 | 01234555 5 77777755
6 | 01234556 6 77777776
7 | 01234567 7 77777777
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Finite Commutative GBL-Algebras | Representation

Definition (Map D, Poset Product, [[M09])
D: FNP — FCGBL such that, for all P = (P, <p,lp) € FENP,

D((P, <p,1p)) = @p ()] = ([ JlIp()], A, v, \, T, L),
xeP xeP
the (finite) poset product (over P), where:
1. [ll’(x)] = ({07 17 ceey lp(x)}, Nxy Vi, xs \x; Tx7 J—x), where:

1.1 Ay = min, V, = max, Ty = Ip(x), L, =0;

1.2 n-ym=max{n+m—Ip(x),0};

1.3 n\ym = min{m + Ip(x) — n,Ip(x)};
[Lcpllr(¥)] = {1 € [Tcpllr(x)] | h(x) = Lxorh(y) = Ty forallx <p y};
(fog)(x) =f(x)oxg(x) forallx € Pand o € {A,V,};
- (A\Q)(x) =f () \xg(x) if f(y) <y, g(y) for all x <p y, and L, otherwise;
T(x)=Tyand L(x) = L, forall x € P.

SIS
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Finite Commutative GBL-Algebras | Poset to Algebra via D

e
/\

AL NN
N

J(A) = (P, <p,lIp) € FNP D(J(A)) = ®,pllr(x)] = A € FCGBL
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Finite Commutative GBL-Algebras | Representation

Theorem (Finite Representation, [[MO09])
D(J(A)) = A forall A € FCGBL.
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Theorem (Finite Representation, [[MO09])
D(J(A)) = A forall A € FCGBL.

Examples
Finite Heyting algebras correspond to {(P, <p,lp) € ENP | [p: P — {1}}.
Finite BL-algebras correspond to {(P, <p,lp) € FNP | (P, <8 forest}.
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Finite Commutative GBL-Algebras | Representation

Theorem (Finite Representation, [[MO09])
D(J(A)) = A forall A € FCGBL.

Examples

Finite Heyting algebras correspond to {(P, <p,lp) € ENP | [p: P — {1}}.
Finite BL-algebras correspond to {(P, <p,lp) € FNP | (P, <8 forest}.

Corollary
Q fails in CBGBL iff Q fails in a finite poset product @), cp[lp(x)].

Proof (Sketch).

By the representation theorem, every finite GBL-algebra is isomorphic to some finite
poset product @..pllp(x)] [[M09, Theorem 6.5]. O
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Computational Complexity | PSPACE

L C {0,1}" decision problem. x € {0,1}" has size n.
Definition (Karp Reduction)

L' <}, L if there is a Karp reduction K: {0,1}* — {0,1}* from L’ to L, ie,
an algorithm K using < n‘ time (n size, ¢ constant) st x € L' iff K(x) € L.

Definition (PSPACE-Complete)

L € PSPACE iff L has decision algorithm using < n° space (1 size, ¢ constant).
L is PSPACE-hard if L’ </, L for all L’ € PSPACE.
L is PSPACE-complete if L € PSPACE and L is PSPACE-hard.

Definition (QBF)

Let A = Quyi - - - Qiy1B be a sentence where Q; € {V, 3} and
B =DV ---V Di Boolean DNF over variables {y1,...,1}.
Then, A € QBF iff 2 = A.
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Main Result

Theorem
Both E and H are PSPACE-complete.

J:Adap’cation of [S03] to the nonidempotent case. Conjectured in [BM09].
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Main Result
Theorem
Both E and H are PSPACE-complete.
Proof.

As E C H, it is sufficient to show the following two facts.

Lemma
E is PSPACE-hard (GBL-equations are PSPACE-hard). *

Lemma ([BMO09])
H is in PSPACE (GBL-quasiequations are in PSPACE).

O

J:Adap’cation of [S03] to the nonidempotent case. Conjectured in [BM09].
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t GBL-term. = t\ 1, 2 =t-t,2t = ((1\ L) - (F\ L))\ L.

Definition (Reduction K)

For all sentences A = Q- - - Qiy1Bst Qi € {V,3} and B = Vj:],“.,m Djisa
Boolean DNF, define K(A) = t;(y1, ..., Y1, Ya+i, - - - , Y1) inductively by:
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Commutative GBL-Equations are PSPACE-Hard

Notation
t GBL-term. = t\ 1, 2 =t-t,2t = ((1\ L) - (F\ L))\ L.

Definition (Reduction K)
For all sentences A = Q- - - Qiy1Bst Qi € {V,3} and B = Vj:],“.,m Djisa
Boolean DNF, define K(A) = t;(y1, ..., Y1, Ya+i, - - - , Y1) inductively by:

o=\ Dilye/2ye ~ye/2 | k=1,....1];

j=1,..., m
b (o \Yr D\ \Yirr V 77 \yirr), i Qi =3;
L@ VIOt if Qi = V.
Lemma
E is PSPACE-hard.
Proof (Sketch).

K(A) is logspace computable in the size of A. A (nontrivial) induction on
k=0,1,...,Ishows that 2 = A iff K(A) fails over a finite poset product iff
K(A) ¢ E. Thus, QBF <}, E via K, but QBF is PSPACE-hard [Pap94]. O
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A=Yy (- Ay2) V (1 A —y2)).

Inductive computation of K(A) = t2(y1, Y2, Y3, Y4):
to = (2]/71 A Zyz) \% (2y1 A 2]]2),
h= (i Vi’)\h,
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Example

A=Yy (- Ay2) V (1 A —y2)).

Inductive computation of K(A) = t2(y1, Y2, Y3, Y4):
to = (251 A2y2) V (201 A 2172),
= (i Vin*)\ho,
= (1\y)\ (3 \ys V 12°\ys)
= (3 V)N (@17 A 2p2) V (21 A 2572))) \ya) \(3\va V 127\ 1)

2} A... the lemma yields a finite countermodel A to K(A)
(takeyy = a,y>» = b,ys = 0):

(T7 ST? 1)
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Tight Tree Embedding Lemma

Theorem (Tight Tree Embedding, [BM09])

Let Q be a GBL-quasiequation of size n. Then, Q fails in CBGBL iff

Q fails in a poset product Q)...p[lp(x)] over a finite rooted tree (P, <p) such that:
1. |P| € exp(poly(n));
2. max{|S| | S chain in P} € poly(n);
3. Ip(x) € exp(poly(n)) forall x € P.

Proof (Sketch).

[BMO09, Lemma 2] Every finite countermodel to Q embeds into some finite poset
product @, p[lp(x)] where P is satisfies conditions (1)-(3). (1)-(2) obtained
combinatorially, (3) obtained geometrically along the lines of [M87]. O
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Commutative GBL-Quasiequations are in PSPACE

Lemma
H is in PSPACE.

Proof (Sketch).

[BMO09, Lemma 4] We describe a nondeterministic polynomial space algorithm that
decides the complement of H. But c-NPSPACE = PSPACE [Pap94].

Let Q be a GBL-quasiequation. The idea of the algorithm is to search exhaustively the
space of countermodels (poset products) satisfying conditions (1)-(3) in the tight
embedding theorem wrt Q. (1)-(3) allow to implement a terminating search in
polyspace. O
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Pseudocode

FINDCOUNTERMODEL(Q = ({51, - . . ,5¢}, 1))

1 guessh(vy) = (hy(v1),...,(v1)) € Ip(o)]) » Y1, - - .,y variablesin Q
2 H«— () +h(v)

3 guessi(vy) € {0,1}" » ry, ..., ry subterms of form riy \riy in Q, r; evaluated pointwise at vy iff i(01); = 1
4 T—()+i(o)

5 ifnot(t < T =51 = ... =satv; wrth(vy),i(vy))

6 output 0 B countermodel not found

7 guess B = |P|

8 be2,j—1

9 whileb < B

10 ifG = Tand {i | i(); = 0} = 0)

11 output 1 » countermodel found

12 elseif(j > land {i | i(v;); = 0} = 0)

13 j < j—1H < H—h(v) » backtrack

14 elseif({i | i(vj); = 0} = 0)

15 je—j+1b— b+ 1p iterate

16 guess h(vj) = (h1(v)), ... . ly(v) € [Ip(?)f)]l

17 H «— H+h(y))

18 guessi(v;) € {0,1}"

19 T—I+i()

20 if(h(v;) sound wrt h(v;_1),i(vj) > i(vj_1), and u;; < uj, atv; wrth(v;), i(o)) forallisti(vj_q); = 1)
21 i(vg); < lforallk < jandisti(vj); =1,i(v); =0

22 else output 0 » countermodel not found

23 endwhile
24 output 0 » countermodel not found
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Open Problems

1. Hardness of unbounded commutative case (easy).

2. Decidability of noncommutative GBL-equations (difficult).
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