

Finite Projective Kleene Algebras

Simone Bova¹ Leonardo Cabrer²

¹Vanderbilt University (Nashville, USA)

²Japan Advanced Institute of Science and Technology (Nomi, Japan)

8th Studia Logica Workshop October 13-15, 2010, Buenos Aires (Argentina) MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES
Outline

Motivation

Background

Contribution

Open

MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Outline

Motivation

Background

Contribution

Open

deMorgan Algebras, or Lattices with Involution [K58]

$$\mathbf{A} = (A, \land, \lor, ', 0, 1)$$
 of type $(2, 2, 1, 0, 0)$.

A is a *deMorgan* algebra ($\mathbf{A} \in \mathcal{M}$) if:

1. $(A, \land, \lor, 0, 1)$ is a bounded distributive lattice (in \mathcal{BDL});

2. $\mathbf{A} \models x = x''$ and $\mathbf{A} \models (x \land y)' = x' \lor y'$ (' called *involution*).

A is a *Kleene* algebra ($\mathbf{A} \in \mathcal{K}$) if:

- 1. A is a deMorgan algebra;
- 2. $\mathbf{A} \models x \land x' \le y \lor y'$.

A is a *Boolean* algebra ($\mathbf{A} \in \mathcal{B}$) if:

- 1. **A** is a Kleene algebra;
- 2. $\mathbf{A} \models x \land x' = 0$.

deMorgan Algebras, or Lattices with Involution [K58]

$$\mathbf{A} = (A, \land, \lor, ', 0, 1)$$
 of type $(2, 2, 1, 0, 0)$.

A is a *deMorgan* algebra ($\mathbf{A} \in \mathcal{M}$) if:

1. $(A, \land, \lor, 0, 1)$ is a bounded distributive lattice (in \mathcal{BDL});

2. $\mathbf{A} \models x = x''$ and $\mathbf{A} \models (x \land y)' = x' \lor y'$ (' called *involution*).

A is a *Kleene* algebra ($\mathbf{A} \in \mathcal{K}$) if:

- 1. A is a deMorgan algebra;
- 2. $\mathbf{A} \models x \land x' \le y \lor y'$.

A is a *Boolean* algebra ($\mathbf{A} \in \mathcal{B}$) if:

- 1. **A** is a Kleene algebra;
- 2. $\mathbf{A} \models x \land x' = 0$.

Remark

(Additive) lattice-ordered groups (x' = -x, [K58]) and MV-algebras ($x' = \neg x$) are Kleene algebras.

Injective and Projective deMorgan Algebras

Fact (Balbes and Horn [BH70], Sikorski [S51])

- 1. $A \in \mathcal{B}$ injective iff complete.
- 2. $\mathbf{A} \in \mathcal{B}$ projective iff countable.

Fact (Cignoli [C75])

- 1. $\mathbf{A} \in \mathcal{M}$ injective iff retract of \mathbf{M}^{κ} (0 < κ).
- 2. $\mathbf{A} \in \mathcal{K}$ injective iff retract of \mathbf{K}^{κ} (0 < κ).

Injective and Projective deMorgan Algebras

Fact (Balbes and Horn [BH70], Sikorski [S51])

- 1. $A \in \mathcal{B}$ injective iff complete.
- 2. $\mathbf{A} \in \mathcal{B}$ projective iff countable.

Fact (Cignoli [C75])

- 1. $\mathbf{A} \in \mathcal{M}$ injective iff retract of \mathbf{M}^{κ} (0 < κ).
- 2. $\mathbf{A} \in \mathcal{K}$ injective iff retract of \mathbf{K}^{κ} (0 < κ).

Question

Projective Kleene and deMorgan algebras?

MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Motivation

Background

Contribution

Open

Define **B**, **K**, **M** $\in \mathcal{M}$ (call $x \in \mathbf{A} \in \mathcal{M}$ a *fixpoint* if x' = x):

- 1. $\mathbf{B} = (\{0,1\}, \wedge, \lor, ', 0, 1) \in \mathcal{M}$ with no fixpoints;
- 2. $\mathbf{K} = (\{0, 2, 1\}, \land, \lor, ', 0, 1) \in \mathcal{M}$ with one fixpoint, 2;
- 3. $\mathbf{M} = (\{0, 2, 3, 1\}, \land, \lor, ', 0, 1) \in \mathcal{M}$ with two fixpoints, 2, 3.

Theorem (Kalman, [K58]) $A \in M$ (nontrivial) subdirectly irreducible iff A is B, K, or M.

Define **B**, **K**, **M** $\in \mathcal{M}$ (call $x \in \mathbf{A} \in \mathcal{M}$ a *fixpoint* if x' = x):

1. **B** =
$$(\{0,1\}, \land, \lor, ', 0, 1) \in \mathcal{M}$$
 with no fixpoints;

2. **K** = $(\{0,2,1\}, \land, \lor, ', 0, 1) \in \mathcal{M}$ with one fixpoint, 2;

3. $\mathbf{M} = (\{0, 2, 3, 1\}, \land, \lor, ', 0, 1) \in \mathcal{M}$ with two fixpoints, 2, 3.

Theorem (Kalman, [K58])

 $A \in \mathcal{M}$ (nontrivial) subdirectly irreducible iff A is B, K, or M.

Proof (Sketch).

 (\Leftarrow) **B**, **K**, **M** simple (\mathcal{M} semisimple).

Subdirectly Irreducible deMorgan Algebras

Define **B**, **K**, **M** $\in \mathcal{M}$ (call $x \in \mathbf{A} \in \mathcal{M}$ a *fixpoint* if x' = x):

1. **B** =
$$(\{0,1\}, \land, \lor, ', 0, 1) \in \mathcal{M}$$
 with no fixpoints;

2. **K** = $(\{0,2,1\}, \land, \lor, ', 0, 1) \in \mathcal{M}$ with one fixpoint, 2;

3. $\mathbf{M} = (\{0, 2, 3, 1\}, \land, \lor, ', 0, 1) \in \mathcal{M}$ with two fixpoints, 2, 3.

Theorem (Kalman, [K58])

 $A \in \mathcal{M}$ (nontrivial) subdirectly irreducible iff A is $B,\,K,$ or M.

Proof (Sketch).

 (\Leftarrow) **B**, **K**, **M** simple (\mathcal{M} semisimple). (\Rightarrow) **A** $\in \mathcal{M}$ (nontrivial) subdirectly irreducible. x and x' comparable for all $x \in A$. Let $x \in A$ such that $w \log x > x'$ (**A** trivial if x = x' for all $x \in A$). Then, x = 1. For all $y \in A$, if $y \neq 0, 1$, then y = y' (y fixpoint). **A** has either 0, 1, or 2 fixpoints. **A** is **B**, **K**, or **M**.

Corollary

(Nontrivial) deMorgan varieties form a 3-element chain:

$\begin{array}{rcccc} SP(\mathbf{B}) & \subset & SP(\mathbf{K}) & \subset & SP(\mathbf{M}) \\ \| & & \| & & \| \\ \mathcal{B} & \subset & \mathcal{K} & \subset & \mathcal{M} \end{array}$

Corollary

(Nontrivial) deMorgan varieties form a 3-element chain:

$\begin{array}{rcccc} SP(\mathbf{B}) & \subset & SP(\mathbf{K}) & \subset & SP(\mathbf{M}) \\ \| & & \| & & \| \\ \mathcal{B} & \subset & \mathcal{K} & \subset & \mathcal{M} \end{array}$

Proof (Sketch).

For \subseteq *,* **B** \in *S*(**K**) *and* **K** \in *S*(**M**).

Corollary

(Nontrivial) deMorgan varieties form a 3-element chain:

$$egin{array}{rcl} SP(\mathbf{B}) &\subset & SP(\mathbf{K}) &\subset & SP(\mathbf{M}) \ & \parallel & \parallel & \parallel \ \mathcal{B} &\subset & \mathcal{K} &\subset & \mathcal{M} \end{array}$$

Proof (Sketch).

For
$$\subseteq$$
, $\mathbf{B} \in S(\mathbf{K})$ and $\mathbf{K} \in S(\mathbf{M})$.
For \neq , $\mathbf{K} \not\models x \land x' = 0$ ($x = 2$), and $\mathbf{M} \not\models x \land x' \le y \lor y'$ ($x = 2, y = 3$).

Corollary

(Nontrivial) deMorgan varieties form a 3-element chain:

$$egin{array}{rcl} SP(\mathbf{B}) &\subset & SP(\mathbf{K}) &\subset & SP(\mathbf{M}) \ & \parallel & \parallel & \parallel \ \mathcal{B} &\subset & \mathcal{K} &\subset & \mathcal{M} \end{array}$$

Proof (Sketch).

For
$$\subseteq$$
, $\mathbf{B} \in S(\mathbf{K})$ and $\mathbf{K} \in S(\mathbf{M})$.
For \neq , $\mathbf{K} \not\models x \land x' = 0$ ($x = 2$), and $\mathbf{M} \not\models x \land x' \le y \lor y'$ ($x = 2, y = 3$).

Remark deMorgan varieties are locally finite.

Free (Finitely Generated) Kleene Algebras

Corollary

The free n-generated Kleene algebra $\mathbf{F}_{\mathcal{K}}(n)$ *is the subalgebra of* $\mathbf{K}^{\mathbf{K}^n}$ *generated by the projections.*

Free (Finitely Generated) Kleene Algebras

Corollary

The free n-generated Kleene algebra $\mathbf{F}_{\mathcal{K}}(n)$ *is the subalgebra of* $\mathbf{K}^{\mathbf{K}^n}$ *generated by the projections.*

Definition

An operation $f: A^n \to A$ preserves a relation $R \subseteq A^k$ if *R* is a subalgebra of $(A, f)^k$.

Example

f preserves $\theta \subseteq A^2$ iff θ congruence on (A, f).

Free (Finitely Generated) Kleene Algebras

Corollary

The free n-generated Kleene algebra $\mathbf{F}_{\mathcal{K}}(n)$ *is the subalgebra of* $\mathbf{K}^{\mathbf{K}^n}$ *generated by the projections.*

Definition

```
An operation f: A^n \to A preserves a relation R \subseteq A^k if R is a subalgebra of (A, f)^k.
```

Example

f preserves $\theta \subseteq A^2$ iff θ congruence on (A, f).

Theorem

The universe of $\mathbf{F}_{\mathcal{K}}(n)$ is the set of all n-ary operations on $\{0, 2, 1\}$ preserving:

$$\left\{\begin{array}{rrrrr} 0 & 1 & , & 0 & 2 & 1 & 2 & 2 \\ 0 & 1 & , & 0 & 2 & 1 & 0 & 1 \end{array}\right\} = \left\{\begin{array}{rrrrr} 0 & 1 & , \mathcal{R} \right\}.$$

(Finite) Projective Algebras

Definition (Retract)

 \mathcal{V} variety. **B** $\in \mathcal{V}$ *retract* of **A** $\in \mathcal{V}$ if, there exist homomorphisms $f : \mathbf{A} \to \mathbf{B}$ and $g : \mathbf{B} \to \mathbf{A}$ such that $f \circ g = id_{\mathbf{B}}$.

(Finite) Projective Algebras

Definition (Retract)

 \mathcal{V} variety. **B** $\in \mathcal{V}$ *retract* of **A** $\in \mathcal{V}$ if, there exist homomorphisms $f : \mathbf{A} \to \mathbf{B}$ and $g : \mathbf{B} \to \mathbf{A}$ such that $f \circ g = \mathrm{id}_{\mathbf{B}}$.

Fact

B retract of **A** iff $\mathbf{B} \in H(\mathbf{A}) \cap S(\mathbf{A})$.

(Finite) Projective Algebras

Definition (Retract)

 \mathcal{V} variety. **B** $\in \mathcal{V}$ *retract* of **A** $\in \mathcal{V}$ if, there exist homomorphisms $f : \mathbf{A} \to \mathbf{B}$ and $g : \mathbf{B} \to \mathbf{A}$ such that $f \circ g = id_{\mathbf{B}}$.

Fact

B retract of **A** iff $\mathbf{B} \in H(\mathbf{A}) \cap S(\mathbf{A})$.

B is projective if every homomorphism of **B** to a quotient "lifts to the numerator".

Definition (Projective)

 \mathcal{V} variety. **B** $\in \mathcal{V}$ *projective* if, for every **A**, **C** $\in \mathcal{V}$, every surjective homomorphism $f : \mathbf{A} \to \mathbf{C}$, and every homomorphism $h : \mathbf{B} \to \mathbf{C}$, there exists a homomorphism $g : \mathbf{B} \to \mathbf{A}$ such that $f \circ g = h$.

BACKGROUND

CONTRIBUTION

Open

References

(Finite) Projective Algebras

Theorem

 \mathcal{V} variety. $\mathbf{B} \in \mathcal{V}$ projective iff **B** retract of $\mathbf{F}_{\mathcal{V}}(\kappa)$ for some cardinal κ .

(Finite) Projective Algebras

Theorem

 \mathcal{V} variety. $\mathbf{B} \in \mathcal{V}$ projective iff **B** retract of $\mathbf{F}_{\mathcal{V}}(\kappa)$ for some cardinal κ .

Proof (Sketch).

 (\Rightarrow) If **B** is projective, then **B** is a retract of every algebra that homomorphically maps onto it, but **B** $\in H(\mathbf{F}_V(\kappa))$ for some cardinal κ .

(Finite) Projective Algebras

Theorem

 \mathcal{V} variety. $\mathbf{B} \in \mathcal{V}$ projective iff \mathbf{B} retract of $\mathbf{F}_{\mathcal{V}}(\kappa)$ for some cardinal κ .

Proof (Sketch).

 $\begin{array}{l} (\Rightarrow) \ If \ {\bf B} \ is \ projective, \\ then \ {\bf B} \ is \ a \ retract \ of \ every \ algebra \ that \ homomorphically \ maps \ onto \ it, \\ but \ {\bf B} \ \in \ H({\bf F}_V(\kappa)) \ for \ some \ cardinal \ \kappa. \\ (\Leftarrow) \ If \ {\bf A} \ is \ a \ retract \ of \ {\bf F}_V(\kappa), \\ since \ {\bf F}_V(\kappa) \ is \ projective \ (claim, \ any \ free \ algebra \ is \ projective), \\ {\bf A} \ is \ projective \ (claim, \ any \ retract \ of \ a \ projective \ is \ projective). \end{array}$

(Finite) Projective Algebras

Theorem

 \mathcal{V} variety. $\mathbf{B} \in \mathcal{V}$ projective iff \mathbf{B} retract of $\mathbf{F}_{\mathcal{V}}(\kappa)$ for some cardinal κ .

Proof (Sketch).

 $\begin{array}{l} (\Rightarrow) \ If \ {\bf B} \ is \ projective, \\ then \ {\bf B} \ is \ a \ retract \ of \ every \ algebra \ that \ homomorphically \ maps \ onto \ it, \\ but \ {\bf B} \ \in \ H({\bf F}_V(\kappa)) \ for \ some \ cardinal \ \kappa. \\ (\Leftarrow) \ If \ {\bf A} \ is \ a \ retract \ of \ {\bf F}_V(\kappa), \\ since \ {\bf F}_V(\kappa) \ is \ projective \ (claim, \ any \ free \ algebra \ is \ projective), \\ {\bf A} \ is \ projective \ (claim, \ any \ retract \ of \ a \ projective \ is \ projective). \end{array}$

Corollary

 \mathcal{V} locally finite variety. $\mathbf{B} \in \mathcal{V}_{\text{fin}}$ projective iff \mathbf{B} retract of $\mathbf{F}_{\mathcal{V}}(n)$ for $n < \omega$.

MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Motivation

Background

Contribution

Open

Characterize finite projective Kleene algebras,

Characterize finite projective Kleene algebras, ie, retracts of $\mathbf{F}_{\mathcal{K}}(n)$ for $n < \omega$,

Characterize finite projective Kleene algebras, ie, retracts of $\mathbf{F}_{\mathcal{K}}(n)$ for $n < \omega$, ie, $H(\mathbf{F}_{\mathcal{K}}(n)) \cap S(\mathbf{F}_{\mathcal{K}}(n))$ for $n < \omega$.

CONTRIBUTION

REFERENCES

Notation | n = 2

$$\mathbf{F}_{\mathcal{K}}(2) \ni \frac{\begin{array}{cccc} f & 0 & 2 & 1 \\ \hline 0 & 1 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 1 & 0 & 2 & 0 \end{array}$$

BACKGROUND

CONTRIBUTION

Open

References

Notation | n = 2

$$\mathbf{F}_{\mathcal{K}}(2) \ni \frac{\begin{array}{c|cccc} f & 0 & 2 & 1 \\ \hline 0 & 1 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 1 & 0 & 2 & 0 \end{array}} = \begin{array}{ccccc} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 0 & 2 & 0 \end{array}$$

CONTRIBUTION

References

Notation | n = 2

$$\mathbf{F}_{\mathcal{K}}(2) \ni \frac{\begin{array}{ccccc} f & 0 & 2 & 1 \\ \hline 0 & 1 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 1 & 0 & 2 & 0 \end{array}} = \begin{array}{cccccc} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 0 & 2 & 0 \end{array} \longleftrightarrow$$

BACKGROUND

CONTRIBUTION

Open

REFERENCES

(*Puzzling*) Notation | n = 2

$$\left\{\begin{array}{ccc|c} a & 2_a & a \\ 2 & 2 & 2_a \\ b & 2 & a \end{array} \middle| 2_a \in \{2, a\} \right\}_{a \neq b \in \{0, 1\}}$$

BACKGROUND

CONTRIBUTION

Open

REFERENCES

(*Puzzling*) Notation | n = 2

(*Puzzling*) Notation | n = 2

Proposition

θ is a congruence on $\mathbf{F}_{\mathcal{K}}(n)$ iff, there exists $X \subseteq \{0, 2, 1\}^n$ such that $f \equiv_{\theta} g$ iff f(x) = g(x) for all $x \in X$ (write θ_X).

Quotients

Proposition

 θ is a congruence on $\mathbf{F}_{\mathcal{K}}(n)$ iff, there exists $X \subseteq \{0, 2, 1\}^n$ such that $f \equiv_{\theta} g$ iff f(x) = g(x) for all $x \in X$ (write θ_X).

Example (n = 1)

The congruence on $\mathbf{F}_{\mathcal{K}}(1)$ corresponding to $X = \{0, 2, 1\}$ is $\theta_X = \{\{(0, 0, 0)\}, \{(a, 2, b) \mid a, b \in \{0, 1\}\}, \{(1, 1, 1)\}\}.$

Quotients

Proposition

 θ is a congruence on $\mathbf{F}_{\mathcal{K}}(n)$ iff, there exists $X \subseteq \{0, 2, 1\}^n$ such that $f \equiv_{\theta} g$ iff f(x) = g(x) for all $x \in X$ (write θ_X).

Example (n = 1)

The congruence on $\mathbf{F}_{\mathcal{K}}(1)$ corresponding to $X = \{0, 2, 1\}$ is $\theta_X = \{\{(0, 0, 0)\}, \{(a, 2, b) \mid a, b \in \{0, 1\}\}, \{(1, 1, 1)\}\}.$

Proof (Sketch).

(\Leftarrow) For every $x \subseteq \{0, 2, 1\}^n$, the relation θ on $\mathbf{F}_{\mathcal{K}}(n)$ such that, $(f, g) \in \theta$ iff f(x) = g(x), is a maximal congruence on $\mathbf{F}_{\mathcal{K}}(n)$, say θ_x ; and, $\theta_X = \bigwedge_{x \in X} \theta_x$.

Quotients

Proposition

 θ is a congruence on $\mathbf{F}_{\mathcal{K}}(n)$ iff, there exists $X \subseteq \{0, 2, 1\}^n$ such that $f \equiv_{\theta} g$ iff f(x) = g(x) for all $x \in X$ (write θ_X).

Example (n = 1)

The congruence on $\mathbf{F}_{\mathcal{K}}(1)$ corresponding to $X = \{0, 2, 1\}$ is $\theta_X = \{\{(0, 0, 0)\}, \{(a, 2, b) \mid a, b \in \{0, 1\}\}, \{(1, 1, 1)\}\}.$

Proof (Sketch).

(⇐) For every $x \subseteq \{0, 2, 1\}^n$, the relation θ on $\mathbf{F}_{\mathcal{K}}(n)$ such that, $(f, g) \in \theta$ iff f(x) = g(x), is a maximal congruence on $\mathbf{F}_{\mathcal{K}}(n)$, say θ_x ; and, $\theta_x = \bigwedge_{x \in X} \theta_x$. (⇒) Assume that θ is a congruence on $\mathbf{F}_{\mathcal{K}}(n)$ but for every $x \subseteq \{0, 2, 1\}^n$ there exist $f \equiv_{\theta} g$ such that $f(x) \neq g(x)$, then preservation fails (contradiction).

Quotients | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\} \Rightarrow \theta_X \in \operatorname{Con}(\mathbf{F}_{\mathcal{K}}(2)):$$

1

Quotients | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\} \Rightarrow \theta_X \in \operatorname{Con}(\mathbf{F}_{\mathcal{K}}(2)):$$

$$\left\{\begin{array}{rrrr} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right\}, \left\{\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right\},$$

Characterize $X \subseteq \{0, 2, 1\}^n$ such that $\mathbf{F}_K(n)/\theta_X \in S(\mathbf{F}_K(n))$.

Characterize $X \subseteq \{0, 2, 1\}^n$ such that $\mathbf{F}_K(n)/\theta_X \in S(\mathbf{F}_K(n))$.

 $\mathcal{R}^n = (\{0, 2, 1\}^n, \leq), n$ -th power of the poset \mathcal{R} , a meet semilattice. $\mathcal{X} = (X, \leq |_X)$ for $X \subseteq \{0, 2, 1\}^n$.

Characterize $X \subseteq \{0, 2, 1\}^n$ such that $\mathbf{F}_K(n)/\theta_X \in S(\mathbf{F}_K(n))$.

 $\mathcal{R}^n = (\{0, 2, 1\}^n, \leq), n$ -th power of the poset \mathcal{R} , a meet semilattice. $\mathcal{X} = (X, \leq |_X)$ for $X \subseteq \{0, 2, 1\}^n$.

A *retraction* of a poset **P** onto $X \subseteq P$ is a map of *P* such that r(P) = X, $r|_X = id_X$, and $r(x) \leq r(y)$ if $x \leq y$.

Characterize $X \subseteq \{0, 2, 1\}^n$ such that $\mathbf{F}_K(n)/\theta_X \in S(\mathbf{F}_K(n))$.

 $\mathcal{R}^n = (\{0, 2, 1\}^n, \leq), n$ -th power of the poset \mathcal{R} , a meet semilattice. $\mathcal{X} = (X, \leq |_X)$ for $X \subseteq \{0, 2, 1\}^n$.

A *retraction* of a poset **P** onto $X \subseteq P$ is a map of *P* such that r(P) = X, $r|_X = id_X$, and $r(x) \le r(y)$ if $x \le y$.

Proposition

Let $X \subseteq \{0, 2, 1\}^n$. Then, $\mathbf{F}_K(n)/\theta_X \in S(\mathbf{F}_K(n))$ iff there is a retraction r of \mathcal{R}^n onto X such that $r|_{\{0,1\}^n} \subseteq \{0,1\}^n$.

Characterize $X \subseteq \{0, 2, 1\}^n$ such that $\mathbf{F}_K(n)/\theta_X \in S(\mathbf{F}_K(n))$.

 $\mathcal{R}^n = (\{0, 2, 1\}^n, \leq), n$ -th power of the poset \mathcal{R} , a meet semilattice. $\mathcal{X} = (X, \leq |_X)$ for $X \subseteq \{0, 2, 1\}^n$.

A *retraction* of a poset **P** onto $X \subseteq P$ is a map of *P* such that r(P) = X, $r|_X = id_X$, and $r(x) \le r(y)$ if $x \le y$.

Proposition

Let $X \subseteq \{0, 2, 1\}^n$. Then, $\mathbf{F}_K(n)/\theta_X \in S(\mathbf{F}_K(n))$ iff there is a retraction r of \mathcal{R}^n onto X such that $r|_{\{0,1\}^n} \subseteq \{0,1\}^n$.

Proof (Sketch).

For each block B of θ_X , pick the $f_B \in B$ such that, for all $y \in \{0, 2, 1\}^n \setminus X$,

$$f_B(y) = f_B(r(y)).$$

Check that $\{f_B \mid B \text{ block of } \theta_X\}$ *is a subuniverse of* $\mathbf{F}_K(n)$ *.*

Projective | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\}$$

Projective | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\} \text{ admits } r = \begin{array}{c} (1,0), (1,1) \mapsto (0,0) \\ (2,0), (1,2), (2,1) \mapsto (2,2) \end{array},$$

Projective | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\} \text{ admits } r = \begin{array}{c} (1,0), (1,1) \mapsto (0,0) \\ (2,0), (1,2), (2,1) \mapsto (2,2) \end{array},$$

so form subuniverse of $\mathbf{F}_{K}(2)$ choosing in each block of θ_{X} ...

Projective | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\} \text{ admits } r = \begin{array}{c} (1,0), (1,1) \mapsto (0,0) \\ (2,0), (1,2), (2,1) \mapsto (2,2) \end{array},$$

so form subuniverse of $\mathbf{F}_{K}(2)$ choosing in each block of θ_{X} ...

 $\left\{\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right\}, \left\{\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right\},$

Projective | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\} \text{ admits } r = \begin{array}{c} (1,0), (1,1) \mapsto (0,0) \\ (2,0), (1,2), (2,1) \mapsto (2,2) \end{array},$$

so form subuniverse of $\mathbf{F}_{K}(2)$ choosing in each block of $\theta_{X} \dots$

{	0 0 0	0 0 0	$\left. \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\},$	{	1 1 1 1 1 1	1 1 1	},					
{	a a a	2 _a 2 2 _a	$\frac{a}{2_a}$,	a a a	2 <i>a</i> 2 2	a 2 , b	a a a	2 2 2 _a	b $a2 , 2a$ a	2 2 2	b 2 _a b	$\left \begin{array}{c} 2_{a} \in \{2, a\} \end{array} \right\}_{a \neq b \in \{0, 1\}},$
{	<mark>а</mark> 2 а	2 _a 2 2 _a	$a 2_a$, a	а 2 а	2 <i>a</i> 2 2	a 2 , b	а 2 а	2 2 2 _a	b a 2 , 2 a a	2 2 2	b 2 _a b	$\left \begin{array}{c} 2_a \in \{2,a\} \end{array} \right\}_{a \neq b \in \{0,1\}},$
{	<mark>a</mark> 2 b	2 _a 2 2	$\frac{a}{2_a}$,	а 2 b	2_a 2 2_b	a 2 , b	а 2 b	2 2 2	b a 2 , 2 a b	2 2 2 _b	b 2 _b b	$\left \begin{array}{c} 2_a \in \{2, a\}, \\ 2_b \in \{2, b\} \end{array}\right _{a \neq b \in \{0, 1\}}$

Projective | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\} \text{ admits } r = \begin{array}{c} (1,0), (1,1) \mapsto (0,0) \\ (2,0), (1,2), (2,1) \mapsto (2,2) \end{array},$$

so form subuniverse of $\mathbf{F}_{K}(2)$ choosing in each block of $\theta_{X} \dots$

$$\begin{cases} \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}, \left\{ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right\}, \\\\ \left\{ \begin{array}{ccc} a & 2_a & a \\ a & 2_a & a \end{array} \right| 2_a \in \{2, a\} \right\}_{a \neq b \in \{0, 1\}}, \\\\ \left\{ \begin{array}{ccc} a & 2_a & a \\ 2 & 2 & 2_a \\ a & 2_a & a \end{array} \right| 2_a \in \{2, a\} \right\}_{a \neq b \in \{0, 1\}}, \\\\ \left\{ \begin{array}{ccc} a & 2_a & a \\ 2 & 2 & 2_a \\ a & 2_a & a \end{array} \right| 2_a \in \{2, a\} \right\}_{a \neq b \in \{0, 1\}}. \end{cases}$$

Projective | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\} \text{ admits } r = \begin{array}{c} (1,0), (1,1) \mapsto (0,0) \\ (2,0), (1,2), (2,1) \mapsto (2,2) \end{array},$$

so form subuniverse of $\mathbf{F}_K(2)$ choosing in each block of $\theta_X \dots$

$$\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}, \left\{ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right\}, \\ \left\{ \begin{array}{cccc} 0 & 2_0 & 0 \\ 0 & 2 & 2_0 \\ 0 & 2_0 & a \end{array} \right| 2_0 \in \{2, 0\} \right\}, \left\{ \begin{array}{cccc} 1 & 2_1 & 1 \\ 1 & 2 & 2_1 \\ 1 & 2_1 & 1 \end{array} \right| 2_1 \in \{2, 1\} \right\}, \\ \left\{ \begin{array}{cccc} 0 & 2_0 & 0 \\ 2 & 2 & 2_0 \\ 0 & 2_0 & 0 \end{array} \right| 2_0 \in \{2, 0\} \right\}, \left\{ \begin{array}{cccc} 1 & 2_1 & 1 \\ 2 & 2 & 2_1 \\ 1 & 2_1 & 1 \end{array} \right| 2_1 \in \{2, 1\} \right\}, \\ \left\{ \begin{array}{cccc} 0 & 2_0 & 0 \\ 2 & 2 & 2_0 \\ 0 & 2_0 & 0 \end{array} \right| 2_0 \in \{2, 0\} \right\}, \left\{ \begin{array}{cccc} 1 & 2_1 & 1 \\ 2 & 2 & 2_1 \\ 1 & 2_1 & 1 \end{array} \right| 2_1 \in \{2, 1\} \right\}, \\ \left\{ \begin{array}{cccc} 0 & 2_0 & 0 \\ 2 & 2 & 2_0 \\ 1 & 2 & 0 \end{array} \right| 2_0 \in \{2, 0\} \right\}, \left\{ \begin{array}{cccc} 1 & 2_1 & 1 \\ 2 & 2 & 2_1 \\ 0 & 2 & 1 \end{array} \right| 2_1 \in \{2, 1\} \right\}.$$

Projective | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\} \text{ admits } r = \begin{array}{c} (1,0), (1,1) \mapsto (0,0) \\ (2,0), (1,2), (2,1) \mapsto (2,2) \end{array},$$

so form subuniverse of $\mathbf{F}_K(2)$ choosing in each block of $\theta_X \dots$

$$\left\{\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right\}, \left\{\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right\}, \\\left\{\begin{array}{ccc} 0 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{array}\right\}, \left\{\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 1 \end{array}\right\}, \\\left\{\begin{array}{ccc} 0 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 0 \end{array}\right\}, \left\{\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 1 \end{array}\right\}, \\\left\{\begin{array}{ccc} 0 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 0 \end{array}\right\}, \left\{\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 1 \end{array}\right\}, \\\left\{\begin{array}{ccc} 0 & 2 & 0 \\ 2 & 2 & 2 \\ 1 & 2 & 0 \end{array}\right\}, \left\{\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 1 \end{array}\right\}, \\\left\{\begin{array}{ccc} 0 & 2 & 0 \\ 2 & 2 & 2 \\ 1 & 2 & 0 \end{array}\right\}, \left\{\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 0 & 2 & 1 \end{array}\right\}.$$

٠

Projective | *Example* n = 2

$$\{0,2,1\}^2 \supseteq X = \left\{ \begin{array}{ccc} (0,0) & (2,0) & (1,0) \\ (0,2) & (2,2) & (1,2) \\ (0,1) & (2,1) & (1,1) \end{array} \right\} \text{ admits } r = \begin{array}{c} (1,0), (1,1) \mapsto (0,0) \\ (2,0), (1,2), (2,1) \mapsto (2,2) \end{array},$$

Subuniverse of $\mathbf{F}_{K}(2)$. . . found!

ſ	0 0	0 0	$\begin{array}{c} 0\\ 0 \end{array}$,	1 1	1 1	1 1	,)
	0	0	0	1	1	1	7	
	0 0 0	2 2 2	0 2 , 0	1 1 1	2 2 2	1 2 1	,	
	0 2 0	2 2 2	$\begin{array}{c} 0\\ 2\\ 0\end{array}$,	1 2 1	2 2 2	1 2 1	,	
	0 2 1	2 2 2	$\begin{array}{c} 0\\ 2\\ 0\end{array}$	1 2 0	2 2 2	1 2 1		

Main Result

Theorem

 \mathcal{R}^n retracts onto $X \subseteq \{0, 2, 1\}^n$ "respecting" $\{0, 1\}^n$ iff:

(R1) $\bigwedge X \in X$.

(*R*2) For all $x \in X \setminus \{0,1\}^n$, there is $y \in X \cap \{0,1\}^n$ st $x \le y$.

(R3)¹ For all $Y \subseteq X$, if Y has an upper bound in \mathbb{R}^n , then Y has an upper bound in X.

¹Called *well-embeddability* in [BB89].

Main Result

Theorem

 \mathcal{R}^n retracts onto $X \subseteq \{0, 2, 1\}^n$ "respecting" $\{0, 1\}^n$ iff:

(R1) $\bigwedge X \in X$.

(*R*2) For all $x \in X \setminus \{0,1\}^n$, there is $y \in X \cap \{0,1\}^n$ st $x \le y$.

(R3)¹ For all $Y \subseteq X$, if Y has an upper bound in \mathbb{R}^n , then Y has an upper bound in X.

Proof (Sketch).

(⇒) Counterexamples. For (R1), $X = \{0, 1\} \subseteq \{0, 2, 1\}$. For (R2), $X = \{2\} \subseteq \{0, 2, 1\}$. For (R3), $X = \{(2, 2, 2), (2, 2, 0), (2, 0, 2), (1, 1, 0), (1, 0, 1)\} \subseteq \{0, 2, 1\}^3$.

¹Called *well-embeddability* in [BB89].

Main Result

Theorem

 \mathcal{R}^n retracts onto $X \subseteq \{0, 2, 1\}^n$ "respecting" $\{0, 1\}^n$ iff:

(R1) $\bigwedge X \in X$.

(*R*2) For all $x \in X \setminus \{0,1\}^n$, there is $y \in X \cap \{0,1\}^n$ st $x \le y$.

(R3)¹ For all $Y \subseteq X$, if Y has an upper bound in \mathbb{R}^n , then Y has an upper bound in X.

Proof (Sketch).

(⇒) Counterexamples. For (R1), $X = \{0, 1\} \subseteq \{0, 2, 1\}$. For (R2), $X = \{2\} \subseteq \{0, 2, 1\}$. For (R3), $X = \{(2, 2, 2), (2, 2, 0), (2, 0, 2), (1, 1, 0), (1, 0, 1)\} \subseteq \{0, 2, 1\}^3$. (⇐) For $x \in \mathbb{R}^n$, let $\{0, 2, 1\}^n \supseteq Y = (x] \cap X$. Let $U = \{x, ...\} \neq \emptyset$ be the set of upper bounds of Y in \mathbb{R}^n . By (R3), Y has an upper bound in X, say $b = \bigwedge_{\mathcal{X}} (U \cap X)$, noticing that \mathcal{X} is a finite meet semilattice (hence complete). The desired retraction sends x to b.

¹Called *well-embeddability* in [BB89].

BACKGROUND

CONTRIBUTION

Open

REFERENCES

Outline

Motivation

Background

Contribution

Open

Background

Contribution

Open

References

Open

Generalize:

- retracts of F_K(κ) for κ infinite cardinal, ie, projective Kleene algebras;
- retracts of F_M(n) for n < ω,
 ie, finite projective deMorgan algebras.

Motivation

References

R. Balbes.

Projective and Injective Distributive Lattices. Pacific J. Math., 21:405–420, 1967.

R. Balbes and A. Horn.

Injective and Projective Heyting Algebras. Trans. Amer. Math. Soc., 148:549–559, 1970.

J. Berman and W. J. Blok.

Generalizations of Tarski's Fixed Point Theorem for Order Varieties of Complete Meet Semilattices. Order, 5:381–392, 1989.

J. Berman and W. J. Blok.

Stipulations, Multivalued Logic, and De Morgan Algebras. Mult.-Valued Log., 7(5-6):391–416, 2001.

R. Cignoli.

Injective De Morgan and Kleene algebras. Proc. Amer. Math. Soc., 47:269–278, 1975.

J. A. Kalman.

Lattices with Involution. Trans. Amer. Math. Soc., 87:485–491, 1958.

R. Sikorski.

Homomorphisms, mappings and retracts. *Colloquium Math.*, 2:202–211, 1951.

BACKGROUND

Contribution

Open

REFERENCES

Thank you!