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deMorgan Algebras, or Lattices with Involution [K58]

A = (A,∧,∨,′ , 0, 1) of type (2, 2, 1, 0, 0).

A is a deMorgan algebra (A ∈M) if:
1. (A,∧,∨, 0, 1) is a bounded distributive lattice (in BDL);
2. A |= x = x′′ and A |= (x ∧ y)′ = x′ ∨ y′ (′ called involution).

A is a Kleene algebra (A ∈ K) if:
1. A is a deMorgan algebra;
2. A |= x ∧ x′ ≤ y ∨ y′.

A is a Boolean algebra (A ∈ B) if:
1. A is a Kleene algebra;
2. A |= x ∧ x′ = 0.

Remark
(Additive) lattice-ordered groups (x′ = −x, [K58]) and MV-algebras (x′ = ¬x)
are Kleene algebras.
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Injective and Projective deMorgan Algebras

Fact (Balbes and Horn [BH70], Sikorski [S51])

1. A ∈ B injective iff complete.
2. A ∈ B projective iff countable.

Fact (Cignoli [C75])

1. A ∈M injective iff retract of Mκ (0 < κ).
2. A ∈ K injective iff retract of Kκ (0 < κ).

Question
Projective Kleene and deMorgan algebras?
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Subdirectly Irreducible deMorgan Algebras

Define B,K,M ∈M (call x ∈ A ∈M a fixpoint if x′ = x):
1. B = ({0, 1},∧,∨,′ , 0, 1) ∈Mwith no fixpoints;
2. K = ({0, 2, 1},∧,∨,′ , 0, 1) ∈Mwith one fixpoint, 2;
3. M = ({0, 2, 3, 1},∧,∨,′ , 0, 1) ∈Mwith two fixpoints, 2, 3.

Theorem (Kalman, [K58])
A ∈M (nontrivial) subdirectly irreducible iff A is B, K, or M.

Proof (Sketch).
(⇐) B, K, M simple (M semisimple).
(⇒) A ∈M (nontrivial) subdirectly irreducible.
x and x′ comparable for all x ∈ A.
Let x ∈ A such that wlog x > x′ (A trivial if x = x′ for all x ∈ A). Then, x = 1.
For all y ∈ A, if y 6= 0, 1, then y = y′ (y fixpoint).
A has either 0, 1, or 2 fixpoints.
A is B, K, or M.
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Subdirectly Irreducible deMorgan Algebras

Corollary
(Nontrivial) deMorgan varieties form a 3-element chain:

SP(B) ⊂ SP(K) ⊂ SP(M)
‖ ‖ ‖
B ⊂ K ⊂ M

Proof (Sketch).
For ⊆, B ∈ S(K) and K ∈ S(M).
For 6=, K 6|= x ∧ x′ = 0 (x = 2), and M 6|= x ∧ x′ ≤ y ∨ y′ (x = 2, y = 3).

Remark
deMorgan varieties are locally finite.
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Free (Finitely Generated) Kleene Algebras

Corollary
The free n-generated Kleene algebra FK(n) is the subalgebra of KKn

generated by the projections.

Definition
An operation f : An → A preserves a relation R ⊆ Ak

if R is a subalgebra of (A, f )k.

Example
f preserves θ ⊆ A2 iff θ congruence on (A, f ).

Theorem
The universe of FK(n) is the set of all n-ary operations on {0, 2, 1}
preserving: {

0 1 ,
0 2 1 2 2
0 2 1 0 1

}
= { 0 1 ,R}.
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(Finite) Projective Algebras

Definition (Retract)
V variety. B ∈ V retract of A ∈ V if,
there exist homomorphisms f : A→ B and g : B→ A
such that f ◦ g = idB.

Fact
B retract of A iff B ∈ H(A) ∩ S(A).

B is projective if every homomorphism of B to a quotient
“lifts to the numerator”.

Definition (Projective)
V variety. B ∈ V projective if, for every A,C ∈ V ,
every surjective homomorphism f : A→ C,
and every homomorphism h : B→ C,
there exists a homomorphism g : B→ A such that f ◦ g = h.
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(Finite) Projective Algebras

Theorem
V variety. B ∈ V projective iff
B retract of FV(κ) for some cardinal κ.

Proof (Sketch).
(⇒) If B is projective,
then B is a retract of every algebra that homomorphically maps onto it,
but B ∈ H(FV(κ)) for some cardinal κ.
(⇐) If A is a retract of FV(κ),
since FV(κ) is projective (claim, any free algebra is projective),
A is projective (claim, any retract of a projective is projective).

Corollary
V locally finite variety. B ∈ Vfin projective iff
B retract of FV(n) for n < ω.



MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

(Finite) Projective Algebras

Theorem
V variety. B ∈ V projective iff
B retract of FV(κ) for some cardinal κ.
Proof (Sketch).
(⇒) If B is projective,
then B is a retract of every algebra that homomorphically maps onto it,
but B ∈ H(FV(κ)) for some cardinal κ.

(⇐) If A is a retract of FV(κ),
since FV(κ) is projective (claim, any free algebra is projective),
A is projective (claim, any retract of a projective is projective).

Corollary
V locally finite variety. B ∈ Vfin projective iff
B retract of FV(n) for n < ω.



MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

(Finite) Projective Algebras

Theorem
V variety. B ∈ V projective iff
B retract of FV(κ) for some cardinal κ.
Proof (Sketch).
(⇒) If B is projective,
then B is a retract of every algebra that homomorphically maps onto it,
but B ∈ H(FV(κ)) for some cardinal κ.
(⇐) If A is a retract of FV(κ),
since FV(κ) is projective (claim, any free algebra is projective),
A is projective (claim, any retract of a projective is projective).

Corollary
V locally finite variety. B ∈ Vfin projective iff
B retract of FV(n) for n < ω.



MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

(Finite) Projective Algebras

Theorem
V variety. B ∈ V projective iff
B retract of FV(κ) for some cardinal κ.
Proof (Sketch).
(⇒) If B is projective,
then B is a retract of every algebra that homomorphically maps onto it,
but B ∈ H(FV(κ)) for some cardinal κ.
(⇐) If A is a retract of FV(κ),
since FV(κ) is projective (claim, any free algebra is projective),
A is projective (claim, any retract of a projective is projective).

Corollary
V locally finite variety. B ∈ Vfin projective iff
B retract of FV(n) for n < ω.



MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Outline

Motivation

Background

Contribution

Open



MOTIVATION BACKGROUND CONTRIBUTION OPEN REFERENCES

Goal

Characterize finite projective Kleene algebras,

ie, retracts of FK(n) for n < ω,
ie, H(FK(n)) ∩ S(FK(n)) for n < ω.
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Notation | n = 2

FK(2) 3
f 0 2 1
0 1 2 1
2 2 2 2
1 0 2 0
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(Puzzling) Notation | n = 2


a 2a a
2 2 2a
b 2 a

∣∣∣∣∣∣ 2a ∈ {2, a}


a 6=b∈{0,1}
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Quotients

Proposition
θ is a congruence on FK(n) iff, there exists X ⊆ {0, 2, 1}n such that
f ≡θ g iff f (x) = g(x) for all x ∈ X (write θX).

Example (n = 1)
The congruence on FK(1) corresponding to X = {0, 2, 1} is
θX = {{(0, 0, 0)}, {(a, 2, b) | a, b ∈ {0, 1}}, {(1, 1, 1)}}.

Proof (Sketch).
(⇐) For every x ⊆ {0, 2, 1}n, the relation θ on FK(n) such that, (f , g) ∈ θ iff
f (x) = g(x), is a maximal congruence on FK(n), say θx; and, θX =

V
x∈X θx.

(⇒) Assume that θ is a congruence on FK(n) but for every x ⊆ {0, 2, 1}n there
exist f ≡θ g such that f (x) 6= g(x), then preservation fails (contradiction).
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Projective

Characterize X ⊆ {0, 2, 1}n such that FK(n)/θX ∈ S(FK(n)).

Rn = ({0, 2, 1}n,≤), n-th power of the posetR, a meet
semilattice. X = (X,≤ |X) for X ⊆ {0, 2, 1}n.

A retraction of a poset P onto X ⊆ P is a map of P such that
r(P) = X, r|X = idX, and r(x) ≤ r(y) if x ≤ y.

Proposition
Let X ⊆ {0, 2, 1}n. Then, FK(n)/θX ∈ S(FK(n)) iff
there is a retraction r ofRn onto X such that r|{0,1}n ⊆ {0, 1}n.
Proof (Sketch).
For each block B of θX, pick the fB ∈ B such that, for all y ∈ {0, 2, 1}n \ X,

fB(y) = fB(r(y)).

Check that {fB | B block of θX} is a subuniverse of FK(n).
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Projective | Example n = 2

{0, 2, 1}2 ⊇ X =


(0, 0) (2, 0) (1, 0)
(0, 2) (2, 2) (1, 2)
(0, 1) (2, 1) (1, 1)
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so form subuniverse of FK(2) choosing in each block of θX . . .8<: 0 0 0
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9=; ,
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9=; ,
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a 2a a
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Subuniverse of FK(2) . . . found!

0 0 0
0 0 0
0 0 0

,
1 1 1
1 1 1
1 1 1

,

0 2 0
0 2 2
0 2 0

,
1 2 1
1 2 2
1 2 1

,

0 2 0
2 2 2
0 2 0

,
1 2 1
2 2 2
1 2 1

,

0 2 0
2 2 2
1 2 0

,
1 2 1
2 2 2
0 2 1



.
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Main Result

Theorem
Rn retracts onto X ⊆ {0, 2, 1}n “respecting” {0, 1}n iff:

(R1)
∧

X ∈ X.
(R2) For all x ∈ X \ {0, 1}n, there is y ∈ X ∩ {0, 1}n st x ≤ y.

(R3)1 For all Y ⊆ X, if Y has an upper bound inRn,
then Y has an upper bound in X.

Proof (Sketch).
(⇒) Counterexamples. For (R1), X = {0, 1} ⊆ {0, 2, 1}.
For (R2), X = {2} ⊆ {0, 2, 1}.
For (R3), X = {(2, 2, 2), (2, 2, 0), (2, 0, 2), (1, 1, 0), (1, 0, 1)} ⊆ {0, 2, 1}3.
(⇐) For x ∈ Rn, let {0, 2, 1}n ⊇ Y = (x] ∩ X. Let U = {x, . . . } 6= ∅ be the set of
upper bounds of Y inRn. By (R3), Y has an upper bound in X, say
b =

V
X (U ∩ X), noticing that X is a finite meet semilattice (hence complete). The

desired retraction sends x to b.

1Called well-embeddability in [BB89].
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Open

Generalize:
1. retracts of FK(κ) for κ infinite cardinal,

ie, projective Kleene algebras;
2. retracts of FM(n) for n < ω,

ie, finite projective deMorgan algebras.
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