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Model Checking

We study a restriction of the model checking problem:

Problem MC(S,L)
Instance A finite structure A ∈ S and a logical sentence φ ∈ L.

Question A |= φ?

where:

• S is a class of partial orders (posets), ie,
reflexive antisymmetric transitive digraphs
(or, reflexo transitive closure of DAGs);

• L = FO(∃,∧,∨,¬) is existential logic, ie,
prenex FO-sentences with existential prefix and unrestricted matrix.
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Parameterized Complexity

For any class X of finite structures, MC(X ,FO) is decidable in time

O(nk)

where n is the size of the instance and k is the size of the FO-sentence.

We are interested in fixed-parameter tractable (FPT) cases of the problem, ie,
decidable in time

f (k) · poly(n)

for some fixed computable function f .
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Posets

Reflexive antisymmetric transitive digraphs, ie posets. . .

4-element connected posets. Edges are directed upwards.
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Cover Relations

. . . and their cover relations (reflexo transitive reductions).

Cover relations of 4-element connected posets. Edges are directed upwards.
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Poset Properties

We model check FO-properties of posets.

(Not of their cover relations.)
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Hardness on Digraphs
How hard is model checking FO-sentences on digraphs?

classical parameterized
complexity complexity

MC(H,FO) PSPACE-complete AW[∗]-complete

MC(E ′′,FO) PSPACE-complete ?

MC(E ′,FO) PSPACE-complete FPT

MC(E ,FO) PSPACE-complete FPT

where:

• H is the class of all digraphs;

• E only contains one digraph on 2 vertices and no edges;

• E ′ is a nontrivial bounded size class of digraphs;

• E ′′ is a nontrivial unbounded size class of digraphs. Bounded degree?



INTRODUCTION PARTIAL ORDERS EXISTENTIAL LOGIC CONCLUSION

Hardness on Digraphs
How hard is model checking FO-sentences on digraphs?

classical parameterized
complexity complexity

MC(H,FO) PSPACE-complete AW[∗]-complete

MC(E ′′,FO) PSPACE-complete ?

MC(E ′,FO) PSPACE-complete FPT

MC(E ,FO)

PSPACE-complete FPT

where:

• H is the class of all digraphs;

• E only contains one digraph on 2 vertices and no edges;

• E ′ is a nontrivial bounded size class of digraphs;

• E ′′ is a nontrivial unbounded size class of digraphs. Bounded degree?



INTRODUCTION PARTIAL ORDERS EXISTENTIAL LOGIC CONCLUSION

Hardness on Digraphs
How hard is model checking FO-sentences on digraphs?

classical parameterized
complexity complexity

MC(H,FO) PSPACE-complete AW[∗]-complete

MC(E ′′,FO) PSPACE-complete ?

MC(E ′,FO) PSPACE-complete FPT

MC(E ,FO) PSPACE-complete FPT

where:

• H is the class of all digraphs;

• E only contains one digraph on 2 vertices and no edges;

• E ′ is a nontrivial bounded size class of digraphs;

• E ′′ is a nontrivial unbounded size class of digraphs. Bounded degree?



INTRODUCTION PARTIAL ORDERS EXISTENTIAL LOGIC CONCLUSION

Hardness on Digraphs
How hard is model checking FO-sentences on digraphs?

classical parameterized
complexity complexity

MC(H,FO) PSPACE-complete AW[∗]-complete

MC(E ′′,FO) PSPACE-complete ?

MC(E ′,FO)

PSPACE-complete FPT

MC(E ,FO) PSPACE-complete FPT

where:

• H is the class of all digraphs;

• E only contains one digraph on 2 vertices and no edges;

• E ′ is a nontrivial bounded size class of digraphs;

• E ′′ is a nontrivial unbounded size class of digraphs. Bounded degree?



INTRODUCTION PARTIAL ORDERS EXISTENTIAL LOGIC CONCLUSION

Hardness on Digraphs
How hard is model checking FO-sentences on digraphs?

classical parameterized
complexity complexity

MC(H,FO) PSPACE-complete AW[∗]-complete

MC(E ′′,FO) PSPACE-complete ?

MC(E ′,FO) PSPACE-complete FPT

MC(E ,FO) PSPACE-complete FPT

where:

• H is the class of all digraphs;

• E only contains one digraph on 2 vertices and no edges;

• E ′ is a nontrivial bounded size class of digraphs;

• E ′′ is a nontrivial unbounded size class of digraphs. Bounded degree?



INTRODUCTION PARTIAL ORDERS EXISTENTIAL LOGIC CONCLUSION

Hardness on Digraphs
How hard is model checking FO-sentences on digraphs?

classical parameterized
complexity complexity

MC(H,FO) PSPACE-complete AW[∗]-complete

MC(E ′′,FO)

PSPACE-complete ?

MC(E ′,FO) PSPACE-complete FPT

MC(E ,FO) PSPACE-complete FPT

where:

• H is the class of all digraphs;

• E only contains one digraph on 2 vertices and no edges;

• E ′ is a nontrivial bounded size class of digraphs;

• E ′′ is a nontrivial unbounded size class of digraphs.

Bounded degree?



INTRODUCTION PARTIAL ORDERS EXISTENTIAL LOGIC CONCLUSION

Hardness on Digraphs
How hard is model checking FO-sentences on digraphs?

classical parameterized
complexity complexity

MC(H,FO) PSPACE-complete AW[∗]-complete

MC(E ′′,FO) PSPACE-complete ?

MC(E ′,FO) PSPACE-complete FPT

MC(E ,FO) PSPACE-complete FPT

where:

• H is the class of all digraphs;

• E only contains one digraph on 2 vertices and no edges;

• E ′ is a nontrivial bounded size class of digraphs;

• E ′′ is a nontrivial unbounded size class of digraphs. Bounded degree?



INTRODUCTION PARTIAL ORDERS EXISTENTIAL LOGIC CONCLUSION

Digraphs versus Posets
Which digraph properties help in parameterized model checking?

Let S be a class of digraphs (unbounded size).

1 S “nowhere dense”⇒MC(S,FO) tractable∗

2 S bounded “directed cliquewidth”⇒MC(S,FO) tractable

3 Su “somewhere dense”, closed under substructures⇒MC(S,FO) hard

Posets?

¬1 “somewhere dense”

¬2 unbounded “directed cliquewidth”

¬3 not closed under substructures

1

∗Grohe, Kreutzer, Siebertz (2014). Example: Bounded degree digraphs
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†Courcelle, Makowsky, Rotics (2000). Example: Acyclic tournaments
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‡Dvǒrák, Král, Thomas (2010); Kreutzer (2011). Example: DAGs
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Hardness on Posets

Model checking FO-sentences on posets is as hard as on graphs:

|= ∀x∃yExy

m

|= (∀x “minimal ”)(∃y “minimal”)(x 6= y ∧ ∃z(x < z ∧ y < z))

So, as for graphs, the model checking problem

is hard on any nontrivial class of posets wrt classical complexity,

but is FPT on nontrivial classes of posets.
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Poset Invariants

Which poset properties help in parameterized model checking?

Let P = (P,≤P) be a poset.

• size(P) = |P|. Eg size
( )

= 4.

• width(P) = max{|A| : A antichain in P}. Eg width
( )

= 2.

• degree(P) = degree(≤P). Eg degree
( )

= 3.

• cover-degree(P) = degree(cover(≤P)). Eg cover-degree
( )

= 2.

• depth(P) = max{|C| : C chain in P}. Eg depth
( )

= 2.
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Known and Easy Facts

S ranges over classes of posets.

• (∀S) (S bounded degree⇒MC(S,FO) tractable).

• (∃S) (S bounded depth & MC(S,FO) hard). Easy.

• (∃S) (S bounded cover-degree & MC(S,FO) hard). Easy.

width

cover-degree

degree

depth

size

Figure: Relations between poset invariants.
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Bounded Width Posets have Unbounded Cliquewidth
How hard is model checking FO-sentences on bounded width posets?

Sparsity does not help. Cliquewidth?

Observation [B, Ganian, Szeider ’14].
Posets of width 2 have unbounded directed cliquewidth.

Idea: There exists a class G of width 2 posets (folded grids) such that
undirected(cover(G)) = G′ have unbounded treewidth (plus theory. . .).
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Bounded Width Posets are Challenging

Understanding FO-logic on bounded width posets seems challenging.

Not a new phenomenon, eg, the complexity of
the dimension problem on bounded width posets is open.§

First understand syntactic fragments of prenex negation FO-logic,
obtained by restricting quantifiers/connectives allowed in prefix/matrix.

“Hard enough” fragments are interesting by theirselves
(and maybe help understanding the general case).

§Yannakakis (1982)
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Existential Logic versus Embedding

Existential logic, ie, prenex negation FO-sentences with existential prefix.

Model checking existential logic encompasses fundamental computational tasks.

• HOM(S): Is there a homomorphism from A to B ∈ S?

MC(S,FO(∃,∧)) in PTIME⇐⇒ HOM(S) in PTIME. ¶

• EMB(S): Is there a copy of A among induced substructures of B ∈ S?

The parameter is k = ‖A‖.

Proposition [B, Ganian, Szeider ’14].
MC(S,FO(∃,∧,¬)) in FPT⇐⇒MC(S,FO(∃,∧,∨,¬)) in FPT

⇐⇒ EMB(S) in FPT.
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Embedding is “Hard Enough”

Model checking existential logic is “hard enough” on posets.

Classical complexity:

• MC(
{ }

,FO(∃,∧,¬)) is NP-hard. Uses Pratt and Tiuryn (1996).

Parameterized complexity, where S ranges over classes of posets:

• (∀S)(S bounded degree⇒ EMB(S) is FPT). From Seese (1996).

• (∃S)(S bounded depth & EMB(S) W[1]-hard).

• (∃S)(S bounded cover-degree & EMB(S) W[1]-hard).
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Embedding is FPT on Bounded Width Posets

How hard is the embedding problem on bounded width posets?

Theorem [B, Ganian, Szeider ’14]. Embedding is FPT on bounded width posets.

degree

size

width

cover-degree depth

Figure: Parameterized complexity of embedding wrt poset invariants.



INTRODUCTION PARTIAL ORDERS EXISTENTIAL LOGIC CONCLUSION

Embedding is FPT on Bounded Width Posets

How hard is the embedding problem on bounded width posets?

Theorem [B, Ganian, Szeider ’14]. Embedding is FPT on bounded width posets.

degree

size

width

cover-degree depth

Figure: Parameterized complexity of embedding wrt poset invariants.



INTRODUCTION PARTIAL ORDERS EXISTENTIAL LOGIC CONCLUSION

Embedding is FPT on Bounded Width Posets

Theorem [B, Ganian, Szeider ’14]. Embedding is FPT on bounded width posets.

Idea. For every poset P, every “coordinatization” of P,
and every “coloring” of P, let the compilation of P be the structure

P∗ = compile(P, a “coordinatization” of P, a “coloring” of P)

such that:

1. P∗ “has a semilattice polymorphism”.
=⇒ HOM(P∗) = {B : B maps homomorphically to P∗} is in PTIME. ‖

2. Let Q and P be posets. The following are equivalent:
– Q embeds into P
– (∀ compilations P∗ of P) (∃ compilation Q∗ of Q) (Q∗ ∈ HOM(P∗))

‖Jeavons, Cohen, Gyssens (1997)
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Embedding is FPT on Bounded Width Posets

P

w

v

v

glb(v,w)

P∗ |= “glb(v,w) semilattice polymorphism”
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x

x ‖ y

y

P∗ |= Incomparable(x, y)

P |= x ‖ y
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P |= x > y

P∗ |= Above(x, y)
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P∗ |= Below(x, y)

x < y



INTRODUCTION PARTIAL ORDERS EXISTENTIAL LOGIC CONCLUSION

Embedding is FPT on Bounded Width Posets

Theorem [B, Ganian, Szeider ’14]. Embedding is FPT on bounded width posets.

Idea (Cont’d). Given posets Q and P.

– Compute a compilation P∗ of P.

– Guess a compilation Q∗ of Q.

– Accept if and only if Q∗ maps homomorphically to P∗.

The algorithm runs in 2O(‖Q‖ log ‖Q‖)nO(width(P)) time.
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Classical Complexity of Embedding

We observed that:

• EMB(S) in FPT⇔MC(S,FO(∃,∧,¬)) in FPT.

• EMB(S) in PTIME 6⇒MC(S,FO(∃,∧,¬)) in PTIME. S =
{ }

.

Two involved reductions complete the classical complexity classification:
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Figure: Parameterized vs. classical complexity of embedding wrt poset invariants.
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Isomorphism of Bounded Width Posets in Polytime

Proposition [B, Ganian, Szeider ’14].
The isomorphism problem is in PTIME on bounded width posets.

Idea: Given posets Q and P, where P has width ≤ w.

– Reject if width(Q) > w.

– Compute the distributive lattices Q∗ and P∗

formed by the downsets of P and Q ordered by inclusion.

– Accept if and only if Q∗ and P∗ are isomorphic
(distributive lattice isomorphism is in PTIME).∗∗

The algorithm runs in nO(w) time.

∗∗Gorazd, Idziak (1995)
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More Fragments, More Posets

This paper classifies all FO-fragments of the form FO(Q, C),
where Q ∈ {∀, ∃} and C ⊆ {∧,∨,¬}, wrt natural poset invariants.

More fragments:

• A companion paper classifies FO(∀,∃,∧) wrt same poset invariants.

• FO(∀,∃,∧,∨)? FO? Our techniques do not easily generalize.

More posets:

• Bounded dimension posets (above width and degree)?
We know that FO is hard. Embedding?

• Lattices? Hard. Distributive lattices?

Thank you for your attention!
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More fragments:

• A companion paper classifies FO(∀, ∃,∧) wrt same poset invariants.

• FO(∀,∃,∧,∨)? FO? Our techniques do not easily generalize.

More posets:

• Bounded dimension posets (above width and degree)?
We know that FO is hard. Embedding?

• Lattices? Hard. Distributive lattices?

Thank you for your attention!
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Bounded Width Posets have Unbounded Cliquewidth

Posets of width 2 have unbounded directed cliquewidth [BGS’14].

Idea (Cont’d): cover(G) has bounded degree.

If S is a class of digraphs of bounded degree,
then undirected(S) has bounded treewidth
iff S has bounded directed cliquewidth (Courcelle).
=⇒ cover(G) has unbounded directed cliquewidth.

If a class of DAGs has unbounded directed cliquewidth,
then their reflexo transitive closures have unbounded directed cliquewidth
(Courcelle).
=⇒ G has unbounded directed cliquewidth.
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