A Decision Algorithm for Hájek's Basic Logic

Simone Bova joint work with Franco Montagna

{bova,montagna}@unisi.it

University of Siena, Italy

MANYVAL'06, Gargnano (Italy) March 20-22, 2006

Contribution

The tautology problem of Basic Logic is exponential-time decidable through a semantic algorithm [BHMV02, MPT03].

We describe a decision algorithm based on a different formalization of the problem.

The algorithm runs in $2^{O(n)}$ worst-case time.

Outline

Introduction 6 slides

A Complete Semantics for **BL BL** Decidability

A Decision Algorithm for BL 11 slides The Semantic Calculus RWBL The Algorithm CHECKBL Correctness and Complexity Conclusion 2 slides

RWBL Pros/Cons

Outline

Introduction

A Complete Semantics for **BL BL** Decidability

A Decision Algorithm for BL The Semantic Calculus RWBL The Algorithm CHECKBL Correctness and Complexity Conclusion

RWBL Pros/Cons

A Complete Semantics for BL

 $L = (\bot, \top, \odot, \rightarrow). p_0, p_1, \ldots$ variables. $A, B, C \in L.$

Definition [H98]. The BL Hilbert system has the axioms:

$$\begin{array}{ll} (A1) & (A \to B) \to ((B \to C) \to (A \to C)) \\ (A2) & (A \odot B) \to A \\ (A3) & (A \odot B) \to (B \odot A) \\ (A4) & (A \odot (A \to B)) \to (B \odot (B \to A)) \\ (A5a) & (A \to (B \to C)) \to ((A \odot B) \to C) \\ (A5b) & ((A \odot B) \to C) \to ((A \to (B \to C))) \\ (A6) & ((A \to B) \to C) \to (((B \to A) \to C) \to C) \\ (A7) & \bot \to A \end{array}$$

and the Modus Ponens inference rule.

Definition. BL-TAUT = { $\langle A \rangle$: **BL** $\vdash_{HBL} A$ } \subseteq {0, 1}*.

A Complete Semantics for BL

For all $x \in \mathbf{R}$, $\lfloor x \rfloor$ is the integer part of x. $\lfloor \infty \rfloor = \infty$.

Definition [MPT03]. $(\omega)[0,1] = ([0,\infty], *, \Rightarrow_*, 0, \infty)$, where:

$$x * y = \begin{cases} x & \text{if } \lfloor x \rfloor < \lfloor y \rfloor \\ y & \text{if } \lfloor x \rfloor > \lfloor y \rfloor \\ x + y - \lfloor x \rfloor - 1 & \text{if } \lfloor x \rfloor = \lfloor y \rfloor < \infty \text{ and } 1 \le x - \lfloor x \rfloor + y - \lfloor y \rfloor \\ \lfloor x \rfloor & \text{if } \lfloor x \rfloor = \lfloor y \rfloor < \infty \text{ and } 1 > x - \lfloor x \rfloor + y - \lfloor y \rfloor \\ \infty & \text{if } x = y = \infty \end{cases}$$
$$x \Rightarrow_* y = \begin{cases} y & \text{if } \lfloor y \rfloor < \lfloor x \rfloor \\ \lfloor x \rfloor + 1 - x + y & \text{if } \lfloor x \rfloor = \lfloor y \rfloor \text{ and } y < x \\ \infty & \text{if } x \le y \end{cases}$$

A Complete Semantics for BL

Definition [MPT03]. A valuation of *L* into $(\omega)[0, 1]$ is a map *v* such that:

- ▶ $v(\bot) = 0, v(\top) = \infty$ and $v(p_i) \in [0, \infty], i \in \mathbb{N}$;
- ▶ $v(A \odot B) = v(A) * v(B)$ and $v(A \rightarrow B) = v(A) \Rightarrow_* v(B)$.

Theorem [MPT03]. **BL** $\vdash_{HBL} A$ iff $(\forall v)v(A) = \infty$, *i.e.*, $(\omega)[0, 1]$ is a *complete* semantics for **BL**.

Write $A^{v} \equiv v(A)$, $A^{i} \equiv \lfloor v(A) \rfloor$, $A^{d} \equiv A^{v} - A^{i}$. $\top^{v} \equiv \top^{i}$. size(A) is the *circuit complexity* of *A*.

BL Decidability

Theorem [\sim MPT03]. BL-TAUT \in **EXP**.

Input:	$A \in L$, $size(A) > 0$.
Question:	$(\forall v)A^v = \top^v?$
Answer:	Divide-and-conquer approach

- Divide: Choose a *pivot* formula in the question and *reduce* the question to *simpler* subquestions, applying the definition by cases of v to the pivot.
- **Conquer**: Answer the subquestions:
 - recursively, if they are reducible;
 - ▶ *easily*, if they are *irreducible*.
- Combine: Answer "Yes" iff the anwer to all the subquestions is "Yes".

BL Decidability

Example (trivial). $size(A) = 0, A = p_i$:

Q: $(\forall v)p_i^v = \top^v$? **A**: "No".

Example (hard). $size(A) > 0, A = (B \rightarrow C)$: **Q**: $(\forall v)(B \rightarrow C)^v = \top^v$? **A**: "Yes" iff the answer to *all* the subquestions:

$$\begin{aligned} \mathbf{Q}_{1}: & (\forall v)(C^{v} = \top^{v} \Leftarrow C^{i} < B^{i})? \\ \mathbf{Q}_{2}: & (\forall v)(1 - B^{d} + C^{v} = \top^{v} \Leftarrow (B^{i} = C^{i} \land C^{d} < B^{d}))? \\ \mathbf{Q}_{3}: & (\forall v)(\top^{v} = \top^{v} \Leftarrow B^{v} \leq C^{v})? \\ & \text{is "Yes".} \end{aligned}$$

BL Decidability

Example (hard). size(A) > 0, $A = (B \odot C)$:

Q: $(\forall v) \ \widetilde{(B \odot C)^v} = \top^v?$

A: "Yes" iff the anwer to *all* the subquestions:

$$\begin{aligned} \mathbf{Q}_{1} \colon & (\forall v)(B^{v} = \top^{v} \Leftarrow B^{i} < C^{i})? \\ \mathbf{Q}_{2} \colon & (\forall v)(C^{v} = \top^{v} \Leftarrow C^{i} < B^{i})? \\ \mathbf{Q}_{3} \colon & (\forall v)(B^{d} + C^{v} - 1 = \top^{v} \Leftarrow (B^{i} = C^{i} < \top^{v} \land 1 \le B^{d} + C^{d}))? \\ \mathbf{Q}_{4} \colon & (\forall v)(B^{i} = \top^{v} \Leftarrow (B^{i} = C^{i} < \top^{v} \land B^{d} + C^{d} < 1))? \\ \mathbf{Q}_{5} \colon & (\forall v)\underbrace{(\top^{v} = \top^{v} \Leftarrow (B^{v} = \top^{v} \land C^{v} = \top^{v})?}_{\sim clause} \\ & \text{is "Yes".} \end{aligned}$$

Issue: Generalize to clause matrices.

Outline

Introduction

A Complete Semantics for **BL BL** Decidability

 A Decision Algorithm for BL The Semantic Calculus RWBL The Algorithm CHECKBL Correctness and Complexity
 Conclusion RWBL Pros/Cons

Goal: Formalize *efficiently* the algorithm sketched above.

Idea (vague): Simplify the subquestions *as much as possible*.

Issues:

- **Subgoal 1**: Formalize the problem.
- Subgoal 2: Formalize the divide step and the recursive case of the conquer step.
- **Subgoal 3**: Formalize the easy case of the conquer step.

Subgoal 1: Find a set of *predicates* to formalize the questions.

Informal questions are clauses, *e.g.*:

$$1 - B^d + C^v = \top^v \lor B^i \neq C^i \lor B^d \le C^d.$$

Informal literals are relations over *pairs* of reals, *e.g.*:

 $B^d \leq C^d$,

and *sums of tuples* of reals, *e.g.*:

$$1 - B^d + C^v = \top^v.$$

The relations *chosen* are $(z \in \mathbf{Z})$:

$$\blacktriangleright \ B \ll_v C \text{ iff } B^i < C^i$$

- $\blacktriangleright \quad B \prec_v C \text{ iff } B^i = C^i \wedge B^d < C^d$
- $\blacktriangleright \ B \preccurlyeq_v C \text{ iff } B^i = C^i \wedge B^d \leq C^d$
- $A_1, \ldots, A_n \prec_{v,z} B_1, \ldots, B_m$ iff $A_1^i = \cdots = B_m^i < \infty$ and

$$\sum_{i=1}^{n} (A_i^d - 1) < z + \sum_{i=1}^{m} (B_i^d - 1)$$

• $A_1, \ldots, A_n \preccurlyeq_{v,z} B_1, \ldots, B_m$ iff $A_1^i = \cdots = B_m^i < \infty$ and

$$\sum_{i=1}^{n} (A_i^d - 1) \le z + \sum_{i=1}^{m} (B_i^d - 1)$$

 \emptyset contributes 0.

Example.

 $\blacktriangleright A^v = \top^v \text{ becomes } \top \preccurlyeq_v A.$

 $T^{v} = T^{v} \lor C^{v} < B^{v} \text{ becomes } T \preccurlyeq_{v} T \lor C \prec_{v} B \lor C \ll_{v} B.$

- ► $B^d + C^d < 1$ becomes $B, C \prec_{v,-1} \emptyset$.
- ▶ $1 \leq B^d + C^d$ becomes $\emptyset \preccurlyeq_{v,1} B, C$.

A question is *reducible* if it has at least one formula of complexity > 0, and *irreducible* otherwise.

Example. $\top \preccurlyeq_v p_i$ is irreducible, $\top \preccurlyeq_v p_i \odot p_j$ is reducible.

Subgoal 2. Find a set of *rules* to simplify recursively a formalized question (*minimizing* the recursions).

Example. By the interpretation of \odot :

• if
$$B^i = C^i$$
, then $(B \odot C)^i = B^i = C^i$;

• if $B^i = C^i < \infty$ and $1 \le B^d + C^d$, then $(B \odot C)^d - 1 = (B^d - 1) + (C^d - 1)$.

Let, e.g., $B^i = C^i < \infty$ and $1 \le B^d + C^d$.

- ▶ $B \odot C \ll_v A$ if and only if $B \ll_v A$
- $\blacktriangleright \ B \odot C \triangleleft_v A \text{ if and only if } B, C \triangleleft_{v,0} A$

► $\Gamma, B \odot C \triangleleft_{z,v} \Delta$ if and only if $\Gamma, B, C \triangleleft_{z,v} \Delta$ where $\triangleleft \in \{\prec, \preccurlyeq\}$.

Idea (definite): Generate subquestions with no occurrences of the *pivot*.

The *ReWriting Basic Logic calculus* has two *rewriting rules*:

$$(B \odot C) \frac{\mathbf{Q}_{\odot,1} \quad \mathbf{Q}_{\odot,2} \quad \mathbf{Q}_{\odot,3} \quad \mathbf{Q}_{\odot,4} \quad \mathbf{Q}_{\odot,5}}{\mathbf{Q}}$$
$$(B \rightarrow C) \frac{\mathbf{Q}_{\rightarrow,1} \quad \mathbf{Q}_{\rightarrow,2} \quad \mathbf{Q}_{\rightarrow,3}}{\mathbf{Q}}$$

where **Q** is the clause matrix of a reducible question, $(B \circ C)$ is the pivot and each $\mathbf{Q}_{\circ,j}$ is a clause matrix, $\circ \in \{\odot, \rightarrow\}$.

Remark: The divide step and recursive case of the conquer step are settled.

The rules meet logical and complexity requirements.

Claim 1. The rewriting rules are *sound* and *invertible*.

Proof (sketch). The rewriting rules satisfy:

•
$$(\forall v)(\mathbf{Q}_{\circ,1} \land \dots \land \mathbf{Q}_{\circ,k_{\circ}}) \Rightarrow (\forall v)\mathbf{Q}$$
, and
• $(\forall v)\mathbf{Q} \Rightarrow (\forall v)(\mathbf{Q}_{\circ,1} \land \dots \land \mathbf{Q}_{\circ,k_{\circ}})$
where $\circ \in \{\odot, \rightarrow\}, k_{\odot} = 5, k_{\rightarrow} = 3.$

Claim 2. The rewriting rules eliminate the pivot.

Proof (sketch). The pivot can be eliminated exploiting the consequences of the interpretation of \odot and \rightarrow while deriving the subquestions of a question. \Box

Subgoal 3. Find an irreducible questions *checker*.

Claim 3. CHECKAX($\langle \mathbf{Q} \rangle$) = 1 iff \mathbf{Q} is irreducible and the answer to the question ($\forall v$) \mathbf{Q} is "Yes".

Proof (*sketch*). If **Q** is reducible, output 0. Otherwise, the negation \neg **Q** is a conjunction of atomic literals and, by the interpretation of the language, there exists a *linear program P* such that *P* is *feasible* iff ($\exists v$) \neg **Q**. So, output 1 iff *P* is *un*feasible. \Box

Remark: The easy case of the conquer step is settled.

The Algorithm CHECKBL

Input: $\langle A \rangle \in \{0, 1\}^*$. Output: 1 iff **BL** $\vdash_{HBL} A$.

CHECKBL($\langle A \rangle$)

- $A = A_1 >_c \cdots >_c A_n$, $size(A_i) > 0$;
- initialize a *labelled tree* T_A with root $A^v = \top^v$;
- ▶ for i = 1,..., n, extend the *leaves* of T_A applying the rewriting rule with pivot A_i, until all the leaves are irreducible or the loop terminates;
- after $m \leq n$ steps, T_A has leaves $\{\mathbf{Q}_1, \ldots, \mathbf{Q}_k\}$;
- output 1 iff the checker outputs 1 for all the \mathbf{Q}_j 's.

Correctness and Complexity

Theorem [BM]. $\langle A \rangle \in$ BL-TAUT iff CHECKBL $(\langle A \rangle) = 1$.

Proof (sketch). By Claim 1, the rewriting procedure

$$\{\mathbf{Q}\} = T_0 \xrightarrow{A_1} T_1 \xrightarrow{A_2} \dots \xrightarrow{A_{m-1}} T_m = \{\mathbf{Q}_1, \dots, \mathbf{Q}_k\},\$$

satisfies $(\forall v)\mathbf{Q}$ iff $(\forall v)\mathbf{Q}_i$ for all i = 1, ..., k. By Claim 2, $\mathbf{Q}_1, ..., \mathbf{Q}_k$ are irreducible, since the pivot A_i of the *i*th rewriting does not occur in the external nodes of T_{i+1} . By Claim 3, the output is 1 iff $(\forall v)\mathbf{Q}$. \Box

Correctness and Complexity

Theorem [BM]. BL-TAUT \in **DTIME**($2^{O(n)}$).

Proof (sketch). In the worst case, T_A has $5^{n+1} - 1$ nodes. Each node can be encoded in $O(n^2)$ space. So, T_A can be encoded in $2^{O(n)}$ space.

The construction is feasible in time polynomial in the size of T_A , and each leaf can be checked in time polynomial in n and the *size* of the corresponding linear program [Y91]. \Box

Outline

Introduction

A Complete Semantics for **BL BL** Decidability

A Decision Algorithm for BL The Semantic Calculus RWBL The Algorithm CHECKBL Correctness and Complexity

Conclusion

RWBL Pros/Cons

RWBL Pros/Cons

Pro: the *size* of the proof trees is improved:

	[MPT03]	RWBL
height \leq	n^3	n
width \leq	$2^{O(n^3)}$	$2^{O(n)}$

Pro: suitable for *automatic proof search*.

Con: *slower* than Boolean logic propositional proof systems.

Con: *strongly coupled* with linear programming.

References

[A04]	S. Aguzzoli.
	Uniform description of calculi for all <i>t</i> -norm logics.
[BM]	S. Bova, F. Montagna. Manuscript.
	Proof Search in Hájek's Basic Logic.
[BHMV02]	M. Baaz, P. Hájek, F. Montagna, H. Veith.
	Complexity of <i>t</i> -tautologies.
[H98]	P. Hájek.
	Metamathematics of Fuzzy Logic.
[CFM04]	A. Ciabattoni, C. G. Fermüller, G. Metcalfe.
	Uniform rules and dialogue games for fuzzy logics.
[MPT03]	F. Montagna, G. M. Pinna, E. B. P. Tiezzi.
	A tableau calculus for Hájek's logic BL.
[Y91]	Y. Ye.
	An $O(n^3L)$ potential reduction algorithm for linear programming.