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Sorite’s Paradox

Xi 
 “a collection of i grains is a heap”, N 
 1000000

Tentative axiomatization of the notion of heap (i = 0, . . . ,N − 1):

(H1) XN

(H2) ¬X0

(H3.i) Xi+1 → Xi

The theory is inconsistent:

1 XN

2 XN−1

. . . . . .

N + 1 X0

N + 2 ¬X0
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Bivalence versus Vagueness

We can either reject vagueness . . .

0 = X0 = · · · = X500000 < X500001 = ... = XN = 1

“500001 grains form a heap, whether 500000 do not”

. . . or abjure bivalence:

0 = X0 < X1 < ... < XN−1 < XN = 1

“i grains form a heap” is less true than “j grains form a heap”,
if i < j
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Hájek’s Paradigm | Fuzzy Logic

Fuzzy logics are propositional logics over >,⊥,�,→ st:
variables X ,Y , . . . are interpreted over [0,1];
> and ⊥ are interpreted over 1 and 0;
� and → are interpreted over binary functions on [0,1];
¬X 
 X → ⊥.

Fuzzy conjunction and implication must maintain:
the behavior of Boolean counterparts over {0,1}2;
intuitive properties of Boolean counterparts over [0,1]2;
the validity of fuzzy modus ponens.
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Hájek’s Paradigm | Boolean Logic

Intuitive properties of Boolean conjunction and implication:
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Boolean conjunction is
commutative, associative,
weakly increasing in both
arguments, and has 1 as unit.

0

1
x

0

1
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0
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Boolean implication, x implies y ,
is 1 iff x ≤ y , weakly decreasing in
x , weakly increasing in y .
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Hájek’s Paradigm | t-Norms and Residua

Definition (Continuous t-Norm, Residuum)

A continuous t-norm �∗ is a continuous binary function on [0,1]
that is associative, commutative, monotone
(x ≤ y implies x �∗ z ≤ y �∗ z) and has 1 as unit (x �∗ 1 = x).
Given a continuous t-norm �∗, its residuum is the binary
function →∗ on [0,1] defined by x →∗ y = max{z : x �∗ z ≤ y}.

t-norms and their residua provide suitable interpretations
for fuzzy conjunction and implication.
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Hájek’s Paradigm | Gödel Logic

�G and →G over [0,1]2:
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x �G y = min(x , y)

0

1

x

0

1

y

0

1

0

x

x →G y =

{
1 if x ≤ y
y otherwise
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Hájek’s Paradigm | Łukasiewicz Logic

�L and →L over [0,1]2:
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x �L y = max(0, x + y − 1)

0

1

x

0

1

y

0
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x

x →L y = min(1,−x + y + 1)
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Basic Logic | Logical Calculus

`BL φ iff φ is derivable in the following Hilbert calculus:

(A1) (φ→ χ) → ((χ→ ψ) → (φ→ ψ))

(A2) (φ� χ) → φ

(A3) (φ� χ) → (χ� φ)

(A4) (φ� (φ→ χ)) → (χ� (χ→ φ))

(A5) ((φ� χ) → ψ) ↔ (φ→ (χ→ ψ))

(A6) ((φ→ χ) → ψ) → (((χ→ φ) → ψ) → ψ)

(A7) ⊥ → φ

(R1) φ, φ→ χ ` χ
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Basic Logic | Semantic Completeness

BL is the logic of all continuous t-norms and their residua
[Cignoli et al., 2000]:

(i) `BL χ iff,
for every t-norm �∗ and every assignment v ,
χ evaluates to 1 with respect to �∗ and v .

(ii) φ1, . . . , φn `BL χ iff,
for every t-norm �∗ and every assignment v ,
if φ1, . . . , φn evaluate to 1 with respect to �∗ and v ,
then χ evaluates to 1 with respect to �∗ and v .
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Derivability and Validity

Let φ1, . . . , φn, χ be formulas over X1, . . . , Xn.

BL-CONSn = {〈({φ1, . . . , φm}, {χ})〉 : φ1, . . . , φm `BL χ}

BL-TAUTn = {〈χ〉 : (∅, {χ}) ∈ BL-CONSn} ⊆ BL-CONSn

There are infinitely many t-norms and infinitely many
assignments of n propositional variables over [0,1].

Question: Is BL-TAUTn decidable? And BL-CONSn?
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Generic t-Norms | 2-Variate Fragment

3[0,1]MV = ([0,3],�2,→2,⊥):
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x1 �2 x2 =

8>>><>>>:
max(x1 + x2 − 1, 0) if 0 ≤ x1, x2 < 1
max(x1 + x2 − 2, 1) if 1 ≤ x1, x2 < 2
max(x1 + x2 − 3, 2) if 2 ≤ x1, x2 ≤ 3
min(x1, x2) if bx1c 6= bx2c
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0
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x1 →2 x2 =

8>>>>><>>>>>:

3 if x1 ≤ x2

x2 − x1 + 1 if 0 ≤ x1, x2 < 1
x2 − x1 + 2 if 1 ≤ x1, x2 < 2
x2 − x1 + 3 if 2 ≤ x1, x2 ≤ 3
x2 if bx2c < bx1c
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Generic t-Norms | n-Variate Fragment

(n + 1)[0,1]MV = ([0,n + 1],�n,→n,⊥):

x �n y =

{
max(x + y − (i + 1), i) if bxc = byc = i
min(x , y) if bxc 6= byc

x →n y =


n + 1 if x ≤ y
y + (i + 1)− x if bxc = byc = i
y if byc < bxc

Let ⊥0 � ⊥, ⊥1 � 1, . . . , ⊥n � n, ⊥n+1 � > = n + 1.
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Generic t-Norms | Decidability and Complexity

Theorem (∼ Aglianò and Montagna, 2003)
�n is generic for the n-variate fragment of BL, that is:
(i) `BL χ(X1, . . . ,Xn) iff, for every assignment v,

v(χ) = n + 1 wrt �n.
(ii) φ1(X1, . . . ,Xn), . . . , φm(X1, . . . ,Xn) `BL χ(X1, . . . ,Xn) iff,

for every assignment v, if v(φ1) = · · · = v(φn) = n + 1 wrt
�n, then v(χ) = n + 1 wrt �n.

Corollary (Baaz et al., 2002; ∼ Aguzzoli and Gerla, 2002)

BL-CONSn ∈ coNP.

“No” instances of BL-CONSn have small witnesses wrt �n.
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Theorem (∼ Aglianò and Montagna, 2003)
�n is generic for the n-variate fragment of BL, that is:
(i) `BL χ(X1, . . . ,Xn) iff, for every assignment v,

v(χ) = n + 1 wrt �n.
(ii) φ1(X1, . . . ,Xn), . . . , φm(X1, . . . ,Xn) `BL χ(X1, . . . ,Xn) iff,

for every assignment v, if v(φ1) = · · · = v(φn) = n + 1 wrt
�n, then v(χ) = n + 1 wrt �n.

Corollary (Baaz et al., 2002; ∼ Aguzzoli and Gerla, 2002)

BL-CONSn ∈ coNP.

“No” instances of BL-CONSn have small witnesses wrt �n.
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Generic t-Norms | Decidability and Complexity

Example: ((X1 → X2)→ X2)→ X1 
 ψ ∈ BL-TAUT2?

No:
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= ψBL2 6=
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Sample witnesses of ψ /∈ BL-TAUT2:

(i) v(X1) = v(X2) = 4/3;

(ii) any v st 0 ≤ v(X2) < 1 < v(X1) < n + 1;

(iii) any v st 2 ≤ v(X1), v(X2) ≤ 3 and v(X1) < v(X2);

(iv) ⊥ ≤ X2 = X1 → X2 < ⊥1 < X1 = ψ < > = (X1 → X2)→ X2.
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Generic t-Norms | Decidability and Complexity

Definition (Subformulae Order)

Let χ(X1, . . . ,Xn) be a formula with l connectives. A subformulae
order for χ is a partition of the subformulae of χ, ⊥0, . . . , ⊥n+1 and >
into ≤ n + 2 blocks. For j = 0, . . . ,n + 1, the block Bj is linearly
ordered with least element ⊥j , and holds a linear program of O(l)
constraints over x1, . . . , xn. The order is consistent if and only if there
exists an assignment v of the variables in [0,n + 1] that satisfies the
linear orders and the linear programs.

Fact

χ < > holds in a consistent order iff, for some v, v(φ) < v(>).
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Generic t-Norms | Decidability and Complexity

Question: How many witnesses do we have to check, in the
worst case, to conclude that a given instance χ of size l is not in
BL-TAUTn? What about BL-CONSn?

We know that testing 23l ≤ l! witnesses suffices wrt BL-TAUTn
[Bova and Montagna, 2007]. Wrt BL-CONSn, the bound l! still
resists [Baaz et al., 2002].
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Algebraic Logic

Definition (BL-Algebras)

A BL-algebra is an algebra (A,∨,∧,�,→,>,⊥) of type
(2,2,2,2,0,0) such that:
(i) (A,�,>) is a commutative monoid;
(ii) (A,∨,∧,>,⊥) is a bounded lattice;
(iii) x � y ≤ z if and only if y ≤ x → z (residuation);
(iv) (x → y) ∨ (y → x) (prelinearity).

BL-algebras form an algebraic variety.
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The variety of BL-algebras forms the algebraic semantics of BL.

Thus, the free n-generated BL-algebra, BLn, encodes the
n-variate fragment of BL, in the precise sense that BLn is
isomorphic to the Lindenbaum-Tarski algebra of the n-variate
fragment of BL.

Question: Is there an explicit description of BLn?
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Functional Definition

Fact (Aglianò and Montagna, 2002)
The free n-generated BL-algebra, BLn, is the subalgebra of

((n + 1)[0,1]MV )((n+1)[0,1]MV )n
,

generated by the projections, with pointwise defined operations.

The explicit description of BLn amounts to the characterization
of the class F of functions f : [0,n + 1]n → [0,n + 1] st:
(i) f is either a projection x1, . . . , xn or the constant 0;
(ii) f has the form g1 ◦n g2, where g1,g2 ∈ F , ◦n ∈ {�n,→n},

and (g1 ◦n g2)(·) = g1(·) ◦n g2(·).
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BL1 | Functional Characterization

The explicit description of BL1 amounts to the characterization
of the functions f : [0,2] → [0,2] that are definable as arbitrary
compositions of the projection x and the constant 0 via the
operations �1 and →1:

x �1 y =


max(x + y − 1,0) if 0 ≤ x , y < 1
max(x + y − 2,1) if 1 ≤ x , y ≤ 2
min(x , y) if bxc 6= byc

x →1 y =


2 if x ≤ y
y + 1− x if 0 ≤ x , y < 1
y + 2− x if 1 ≤ x , y ≤ 2
y if byc < bxc
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BL1 | McNaughton Functions

Definition (McNaughton Function)

A continuous n-variate function over [0,1] is a McNaughton
function iff there are linear polynomials p1, . . . ,pk with integer
coefficients such that, for every x ∈ [0,1]n, there is j ∈ [k ] such
that f (x) = pj(x).
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Figure: 1-variate McNaughton functions f ,g1,g2 : [0,1] → [0,1].
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BL1 | Lifting
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Figure: f ,g1,g2 : [0,1] → [0,1].

1
�����

2
1 2

x_1

1

2

1
�����

3
2
�����

3
5
�����

6
1 4

�����

3
5
�����

3
11
��������

6
2

x_1

1
�����

2

1

3
�����

2

2

2
�����

3
1 5

�����

3
2

x_1

1

2

Figure: lift1(f ), lift2(g1), lift2(g2) : [0,2] → [0,2].
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BL1 | Lifting
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Figure: lift1(f ), lift2(g1), lift2(g2) : [0,2] → [0,2].

Simone Bova Hájek’s Basic Logic: Decision and Representation



Motivation
Decision Problems

Functional Representation

Free Algebras and Normal Forms
Open Problems

BL1 | Masking
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Figure: lift2(g1), lift2(g2) : [0,2] → [0,2].
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Figure: mask1(lift2(g1)),mask2(lift2(g2)) : [0,2] → [0,2].
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Figure: mask1(lift2(g1)),mask2(lift2(g2)) : [0,2] → [0,2].
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Figure: mask1(lift2(g1)) ∧mask2(lift2(g2)) : [0,2] → [0,2].
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Figure: mask1(lift2(g1)),mask2(lift2(g2)) : [0,2] → [0,2].
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Figure: mask1(lift2(g1)) ∧mask2(lift2(g2)) : [0,2] → [0,2].
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BL1 | Explicit Description

Theorem (∼ Montagna, 2000)

Let f ,g1,g2 be McNaughton functions, st f (1) = 0,
g1(1) = g2(1) = 1. The free 1-generated BL-algebra, BL1, is
the algebra of 1-variate functions over [0,2] of the form lift1(f )
or mask1(lift2(g1)) ∧mask2(lift2(g2)):
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with pointwise defined operations �1 and →1.
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Open Problems

(i) Give the functional characterization of BLn for 2 ≤ n < ω.
(ii) Compute deductive interpolants in BL.
(iii) Provide a combinatorial characterization of finite

n-generated free BL-algebras.
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