Hájek's Basic Logic: Decision and Representation

Simone Bova

bova@unisi.it

Department of Mathematics and Computer Science University of Siena (Italy)

> December 19, 2007 Logic Seminar University of Barcelona (Spain)

> > Simone Bova Hájek's Basic Logic: Decision and Representation

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Outline

Motivation

- Vague Notions
- Basic Logic
- **Decision Problems** 2
 - Derivability and Validity
 - Complexity and Algorithms
- 3 **Functional Representation**
 - Free Algebras and Normal Forms
 - Open Problems

Vague Notions Basic Logic

Outline

- Vague Notions
- Basic Logic
- Decision Problems
 - Derivability and Validity
 - Complexity and Algorithms
- 3 Functional Representation
 - Free Algebras and Normal Forms
 - Open Problems

<□> < E> < E> E E ● ○<

Vague Notions Basic Logic

Sorite's Paradox

 $X_i \rightleftharpoons$ "a collection of *i* grains is a heap", $N \rightleftharpoons$ 1000000

Tentative axiomatization of the notion of heap (i = 0, ..., N - 1):

(H1) X_N (H2) $\neg X_0$ (H3.*i*) $X_{i+1} \rightarrow X_i$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Vague Notions Basic Logic

Sorite's Paradox

 $X_i \rightleftharpoons$ "a collection of *i* grains is a heap", $N \rightleftharpoons$ 1000000

Tentative axiomatization of the notion of heap (i = 0, ..., N - 1):

(H1) X_N (H2) $\neg X_0$ (H3.*i*) $X_{i+1} \rightarrow X_i$

The theory is inconsistent:

1 X_N 2 X_{N-1}

 $\frac{N+1}{N+2} \frac{X_0}{\sqrt{X_0}}$

.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Vague Notions Basic Logic

Bivalence *versus* Vagueness

We can either reject vagueness

$$0 = X_0 = \dots = X_{500000} < X_{500001} = \dots = X_N = 1$$

"500001 grains form a heap, whether 500000 do not"

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Vague Notions Basic Logic

Bivalence *versus* Vagueness

We can either reject vagueness

$$0 = X_0 = \dots = X_{500000} < X_{500001} = \dots = X_N = 1$$

"500001 grains form a heap, whether 500000 do not"

... or abjure bivalence:

$$0 = X_0 < X_1 < \dots < X_{N-1} < X_N = 1$$

"*i* grains form a heap" is less true than "*j* grains form a heap", if i < j

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hájek's Paradigm | Fuzzy Logic

Fuzzy logics are propositional logics over $\top, \bot, \odot, \rightarrow$ st:

- variables *X*, *Y*,... are interpreted over [0, 1];
- \top and \bot are interpreted over 1 and 0;
- \odot and \rightarrow are interpreted over binary functions on [0, 1];

•
$$\neg X \rightleftharpoons X \to \bot$$
.

Fuzzy conjunction and implication *must* maintain:

- the behavior of Boolean counterparts over {0, 1}²;
- intuitive properties of Boolean counterparts over [0, 1]²;
- the validity of *fuzzy modus ponens*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

Vague Notions Basic Logic

Hájek's Paradigm | Boolean Logic

Intuitive properties of Boolean conjunction and implication:

Boolean conjunction is commutative, associative, weakly increasing in both arguments, and has 1 as unit.

Boolean implication, x implies y, is 1 iff $x \le y$, weakly decreasing in x, weakly increasing in y.

◎ ▶ ★ ■ ▶ ★ ■ ▶ ■ ■ ● ● ● ●

Vague Notions Basic Logic

Hájek's Paradigm | t-Norms and Residua

Definition (Continuous *t*-Norm, Residuum)

A continuous *t*-norm \odot_* is a continuous binary function on [0, 1] that is associative, commutative, monotone $(x \le y \text{ implies } x \odot_* z \le y \odot_* z)$ and has 1 as unit $(x \odot_* 1 = x)$. Given a continuous *t*-norm \odot_* , its *residuum* is the binary function \rightarrow_* on [0, 1] defined by $x \rightarrow_* y = max\{z : x \odot_* z \le y\}$.

t-norms and their residua provide suitable interpretations for fuzzy conjunction and implication.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Vague Notions Basic Logic

Hájek's Paradigm | Gödel Logic

$$\odot_G$$
 and \rightarrow_G over $[0, 1]^2$:

 $x \odot_G y = \min(x, y)$

$$x \to_G y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$$

▶ < E > < E > E| = のQO

Vague Notions Basic Logic

Hájek's Paradigm | Łukasiewicz Logic

 \odot_L and \rightarrow_L over $[0, 1]^2$:

 $x \odot_L y = \max(0, x + y - 1)$

$$x \rightarrow_L y = \min(1, -x + y + 1)$$

<□> < □> < □> < □> = □ = のへの

Vague Notions Basic Logic

Basic Logic | Logical Calculus

 $\vdash_{BL} \phi$ iff ϕ is derivable in the following Hilbert calculus:

(A1)
$$(\phi \to \chi) \to ((\chi \to \psi) \to (\phi \to \psi))$$

(A2) $(\phi \odot \chi) \to \phi$
(A3) $(\phi \odot \chi) \to (\chi \odot \phi)$
(A4) $(\phi \odot (\phi \to \chi)) \to (\chi \odot (\chi \to \phi))$
(A5) $((\phi \odot \chi) \to \psi) \leftrightarrow (\phi \to (\chi \to \psi))$
(A6) $((\phi \to \chi) \to \psi) \to (((\chi \to \phi) \to \psi) \to \psi)$
(A7) $\bot \to \phi$
(R1) $\phi, \phi \to \chi \vdash \chi$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

Vague Notions Basic Logic

Basic Logic | Semantic Completeness

BL is the logic of all continuous *t*-norms and their residua [Cignoli et al., 2000]:

```
(i) ⊢<sub>BL</sub> χ iff,
for every t-norm ⊙<sub>*</sub> and every assignment v,
χ evaluates to 1 with respect to ⊙<sub>*</sub> and v.
(ii) φ<sub>1</sub>,..., φ<sub>n</sub> ⊢<sub>BL</sub> χ iff,
for every t-norm ⊙<sub>*</sub> and every assignment v,
if φ<sub>1</sub>,..., φ<sub>n</sub> evaluate to 1 with respect to ⊙<sub>*</sub> and v,
then χ evaluates to 1 with respect to ⊙<sub>*</sub> and v.
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Derivability and Validity Complexity and Algorithms

Outline

- Vague Notions
- Basic Logic
- 2 Decision Problems
 - Derivability and Validity
 - Complexity and Algorithms
 - 3 Functional Representation
 - Free Algebras and Normal Forms
 - Open Problems

<□> < E> < E> E E ● ○<

Derivability and Validity Complexity and Algorithms

Derivability and Validity

Let $\phi_1, \ldots, \phi_n, \chi$ be formulas over X_1, \ldots, X_n .

$$\mathsf{BL}\text{-}\mathsf{CONS}_n = \{ \langle (\{\phi_1, \dots, \phi_m\}, \{\chi\}) \rangle : \phi_1, \dots, \phi_m \vdash_{\mathsf{BL}} \chi \}$$

 $\mathsf{BL}\text{-}\mathsf{TAUT}_n = \{\langle \chi \rangle : (\emptyset, \{\chi\}) \in \mathsf{BL}\text{-}\mathsf{CONS}_n\} \subseteq \mathsf{BL}\text{-}\mathsf{CONS}_n$

Derivability and Validity Complexity and Algorithms

Derivability and Validity

Let $\phi_1, \ldots, \phi_n, \chi$ be formulas over X_1, \ldots, X_n .

$$\mathsf{BL}\text{-}\mathsf{CONS}_n = \{ \langle (\{\phi_1, \dots, \phi_m\}, \{\chi\}) \rangle : \phi_1, \dots, \phi_m \vdash_{\mathsf{BL}} \chi \}$$

 $\mathsf{BL}\text{-}\mathsf{TAUT}_n = \{\langle \chi \rangle : (\emptyset, \{\chi\}) \in \mathsf{BL}\text{-}\mathsf{CONS}_n\} \subseteq \mathsf{BL}\text{-}\mathsf{CONS}_n$

There are infinitely many *t*-norms and infinitely many assignments of n propositional variables over [0, 1].

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回< の < 0

Derivability and Validity Complexity and Algorithms

Derivability and Validity

Let $\phi_1, \ldots, \phi_n, \chi$ be formulas over X_1, \ldots, X_n .

$$\mathsf{BL}\text{-}\mathsf{CONS}_n = \{ \langle (\{\phi_1, \dots, \phi_m\}, \{\chi\}) \rangle : \phi_1, \dots, \phi_m \vdash_{\mathsf{BL}} \chi \}$$

 $\mathsf{BL}\text{-}\mathsf{TAUT}_n = \{\langle \chi \rangle : (\emptyset, \{\chi\}) \in \mathsf{BL}\text{-}\mathsf{CONS}_n\} \subseteq \mathsf{BL}\text{-}\mathsf{CONS}_n$

There are infinitely many t-norms and infinitely many assignments of n propositional variables over [0, 1].

Question: Is BL-TAUT_n decidable? And BL-CONS_n?

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回< の < 0

Derivability and Validity Complexity and Algorithms

Generic *t*-Norms | 2-Variate Fragment

$$3[0,1]_{MV} = ([0,3],\odot_2,\rightarrow_2,\perp):$$

Simone Bova Hájek's Basic Logic: Decision and Representation

(ロ) (同) (三) (三) (三) (三) (○)

Derivability and Validity Complexity and Algorithms

Generic *t*-Norms | *n*-Variate Fragment

$$n+1)[0,1]_{MV} = ([0, n+1], \odot_n, \rightarrow_n, \bot):$$

$$x \odot_n y = \begin{cases} \max(x+y-(i+1), i) & \text{if } \lfloor x \rfloor = \lfloor y \rfloor = i \\ \min(x, y) & \text{if } \lfloor x \rfloor \neq \lfloor y \rfloor \end{cases}$$

$$x \rightarrow_n y = \begin{cases} n+1 & \text{if } x \le y \\ y+(i+1)-x & \text{if } \lfloor x \rfloor = \lfloor y \rfloor = i \\ y & \text{if } \lfloor y \rfloor < \lfloor x \rfloor \end{cases}$$

Let $\bot_0 \leftrightarrows \bot$, $\bot_1 \leftrightarrows 1$, ..., $\bot_n \leftrightharpoons n$, $\bot_{n+1} \leftrightharpoons \top = n+1$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Generic *t*-Norms | Decidability and Complexity

Theorem (\sim Aglianò and Montagna, 2003)

 \odot_n is generic for the n-variate fragment of BL, that is:

(*i*)
$$\vdash_{BL} \chi(X_1, \ldots, X_n)$$
 iff, for every assignment v , $v(\chi) = n + 1$ wrt \odot_n .

(*ii*)
$$\phi_1(X_1, \ldots, X_n), \ldots, \phi_m(X_1, \ldots, X_n) \vdash_{BL} \chi(X_1, \ldots, X_n)$$
 iff,
for every assignment v, if $v(\phi_1) = \cdots = v(\phi_n) = n + 1$ wrt
 \odot_n , then $v(\chi) = n + 1$ wrt \odot_n .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Generic *t*-Norms | Decidability and Complexity

Theorem (\sim Aglianò and Montagna, 2003)

 \odot_n is generic for the n-variate fragment of BL, that is:

(*i*)
$$\vdash_{BL} \chi(X_1, \ldots, X_n)$$
 iff, for every assignment v , $v(\chi) = n + 1$ wrt \odot_n .

(*ii*) $\phi_1(X_1, \ldots, X_n), \ldots, \phi_m(X_1, \ldots, X_n) \vdash_{BL} \chi(X_1, \ldots, X_n)$ *iff,* for every assignment v, if $v(\phi_1) = \cdots = v(\phi_n) = n + 1$ wrt \odot_n , then $v(\chi) = n + 1$ wrt \odot_n .

Corollary (Baaz et al., 2002; \sim Aguzzoli and Gerla, 2002) BL-CONS_n \in coNP.

"No" instances of BL-CONS_n have small witnesses wrt \odot_n .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Derivability and Validity Complexity and Algorithms

Generic *t*-Norms | Decidability and Complexity

Example: $((X_1 \rightarrow X_2) \rightarrow X_2) \rightarrow X_1 \rightleftharpoons \psi \in \mathsf{BL-TAUT}_2$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Derivability and Validity Complexity and Algorithms

Generic *t*-Norms | Decidability and Complexity

Example: $((X_1 \rightarrow X_2) \rightarrow X_2) \rightarrow X_1 \rightleftharpoons \psi \in \mathsf{BL}\text{-TAUT}_2$? No:

Sample witnesses of $\psi \notin \mathsf{BL}\text{-}\mathsf{TAUT}_2$:

(i)
$$v(X_1) = v(X_2) = 4/3;$$

(ii) any v st $0 \le v(X_2) < 1 < v(X_1) < n + 1;$
(iii) any v st $2 \le v(X_1), v(X_2) \le 3$ and $v(X_1) < v(X_2);$
(iv) $\perp \le X_2 = X_1 \rightarrow X_2 < \perp_1 < X_1 = \psi < \top = (X_1 \rightarrow X_2) \rightarrow X_2.$

Derivability and Validity Complexity and Algorithms

Generic *t*-Norms | Decidability and Complexity

Definition (Subformulae Order)

Let $\chi(X_1, \ldots, X_n)$ be a formula with *I* connectives. A *subformulae* order for χ is a partition of the subformulae of $\chi, \perp_0, \ldots, \perp_{n+1}$ and \top into $\leq n+2$ blocks. For $j = 0, \ldots, n+1$, the block B_j is linearly ordered with least element \perp_j , and holds a linear program of O(I) constraints over x_1, \ldots, x_n . The order is *consistent* if and only if there exists an assignment v of the variables in [0, n+1] that satisfies the linear orders and the linear programs.

Fact

 $\chi < \top$ holds in a consistent order iff, for some v, $v(\phi) < v(\top)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

Derivability and Validity Complexity and Algorithms

Generic *t*-Norms | Decidability and Complexity

Question: How many witnesses do we have to check, in the worst case, to conclude that a given instance χ of size *I* is not in BL-TAUT_n? What about BL-CONS_n?

<ロ> <問> < 回> < 回> < 回> < 回> < 回</p>

Derivability and Validity Complexity and Algorithms

Generic *t*-Norms | Decidability and Complexity

Question: How many witnesses do we have to check, in the worst case, to conclude that a given instance χ of size *I* is not in BL-TAUT_n? What about BL-CONS_n?

We know that testing $2^{3/2} \le 1!$ witnesses suffices wrt BL-TAUT_n [Bova and Montagna, 2007]. Wrt BL-CONS_n, the bound 1! still resists [Baaz et al., 2002].

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Free Algebras and Normal Forms Open Problems

Outline

Motivation

- Vague Notions
- Basic Logic
- 2 Decision Problems
 - Derivability and Validity
 - Complexity and Algorithms

Functional Representation

- Free Algebras and Normal Forms
- Open Problems

<□> < E> < E> E E ● ○<

Free Algebras and Normal Forms Open Problems

Algebraic Logic

Definition (*BL*-Algebras)

A *BL-algebra* is an algebra $(A, \lor, \land, \odot, \rightarrow, \top, \bot)$ of type (2, 2, 2, 2, 0, 0) such that:

(*i*)
$$(A, \odot, \top)$$
 is a commutative monoid;

(*ii*)
$$(A, \lor, \land, \top, \bot)$$
 is a bounded lattice;

(*iii*)
$$x \odot y \le z$$
 if and only if $y \le x \to z$ (residuation);

(*iv*)
$$(x \rightarrow y) \lor (y \rightarrow x)$$
 (prelinearity).

BL-algebras form an algebraic variety.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Free Algebras and Normal Forms Open Problems

Algebraic Logic

The variety of *BL*-algebras forms the algebraic semantics of *BL*.

Thus, the free *n*-generated *BL*-algebra, BL_n , *encodes* the *n*-variate fragment of *BL*, in the precise sense that BL_n is isomorphic to the Lindenbaum-Tarski algebra of the *n*-variate fragment of *BL*.

<□> < E> < E> E E ● ○<

Free Algebras and Normal Forms Open Problems

Algebraic Logic

The variety of *BL*-algebras forms the algebraic semantics of *BL*.

Thus, the free *n*-generated *BL*-algebra, BL_n , *encodes* the *n*-variate fragment of *BL*, in the precise sense that BL_n is isomorphic to the Lindenbaum-Tarski algebra of the *n*-variate fragment of *BL*.

Question: Is there an explicit description of *BL_n*?

<□> < E> < E> E E ● ○<

Free Algebras and Normal Forms Open Problems

Functional Definition

Fact (Aglianò and Montagna, 2002)

The free n-generated BL-algebra, BL_n, is the subalgebra of

 $((n+1)[0,1]_{MV})^{((n+1)[0,1]_{MV})^n}$,

generated by the projections, with pointwise defined operations.

The explicit description of BL_n amounts to the *characterization* of the class *F* of functions $f : [0, n+1]^n \rightarrow [0, n+1]$ st:

(*i*) *f* is either a projection x_1, \ldots, x_n or the constant 0;

(*ii*) *f* has the form $g_1 \circ_n g_2$, where $g_1, g_2 \in F$, $\circ_n \in \{\odot_n, \rightarrow_n\}$, and $(g_1 \circ_n g_2)(\cdot) = g_1(\cdot) \circ_n g_2(\cdot)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Free Algebras and Normal Forms Open Problems

*BL*₁ | Functional Characterization

The explicit description of BL_1 amounts to the characterization of the functions $f : [0,2] \rightarrow [0,2]$ that are definable as arbitrary compositions of the projection x and the constant 0 via the operations \odot_1 and \rightarrow_1 :

$$x \odot_{1} y = \begin{cases} \max(x + y - 1, 0) & \text{if } 0 \le x, y < 1\\ \max(x + y - 2, 1) & \text{if } 1 \le x, y \le 2\\ \min(x, y) & \text{if } \lfloor x \rfloor \neq \lfloor y \rfloor \end{cases}$$
$$x \to_{1} y = \begin{cases} 2 & \text{if } x \le y\\ y + 1 - x & \text{if } 0 \le x, y < 1\\ y + 2 - x & \text{if } 1 \le x, y \le 2\\ y & \text{if } \lfloor y \rfloor < \lfloor x \rfloor \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Free Algebras and Normal Forms Open Problems

*BL*₁ | McNaughton Functions

Definition (McNaughton Function)

A continuous *n*-variate function over [0, 1] is a *McNaughton function* iff there are linear polynomials p_1, \ldots, p_k with integer coefficients such that, for every $x \in [0, 1]^n$, there is $j \in [k]$ such that $f(x) = p_j(x)$.

Figure: 1-variate McNaughton functions $f, g_1, g_2 : [0, 1] \rightarrow [0, 1]$.

Free Algebras and Normal Forms Open Problems

BL₁ | Lifting

Figure: $f, g_1, g_2 : [0, 1] \to [0, 1]$.

(ロ) (四) (三) (三) (三) (三) (○) (○)

Free Algebras and Normal Forms Open Problems

BL₁ | Lifting

Figure: $lift_1(f)$, $lift_2(g_1)$, $lift_2(g_2) : [0, 2] \rightarrow [0, 2]$.

1= nac

Free Algebras and Normal Forms Open Problems

BL₁ | Masking

Figure: $lift_2(g_1), lift_2(g_2) : [0, 2] \rightarrow [0, 2].$

Simone Bova Hájek's Basic Logic: Decision and Representation

(ロ) (四) (三) (三) (三) (三) (○) (○)

Free Algebras and Normal Forms Open Problems

BL₁ | Masking

Figure: $\textit{lift}_2(g_1), \textit{lift}_2(g_2) : [0, 2] \rightarrow [0, 2].$

Figure: $mask_1(lift_2(g_1)), mask_2(lift_2(g_2)) : [0,2] \rightarrow [0,2].$

ELE DQC

Free Algebras and Normal Forms Open Problems

$BL_1 \mid \land$ 'ing

Figure: $mask_1(lift_2(g_1)), mask_2(lift_2(g_2)) : [0, 2] \rightarrow [0, 2].$

(ロ) (四) (三) (三) (三) (三) (○) (○)

Free Algebras and Normal Forms Open Problems

$BL_1 \mid \land$ 'ing

Figure: $mask_1(lift_2(g_1)), mask_2(lift_2(g_2)) : [0,2] \rightarrow [0,2].$

Figure: $mask_1(lift_2(g_1)) \land mask_2(lift_2(g_2)) : [0,2] \rightarrow [0,2]$.

= 990

Free Algebras and Normal Forms Open Problems

BL₁ | Explicit Description

Theorem (\sim Montagna, 2000)

Let f, g_1, g_2 be McNaughton functions, st f(1) = 0, $g_1(1) = g_2(1) = 1$. The free 1-generated BL-algebra, BL₁, is the algebra of 1-variate functions over [0, 2] of the form $lift_1(f)$ or mask₁($lift_2(g_1)$) \land mask₂($lift_2(g_2)$):

with pointwise defined operations \odot_1 and \rightarrow_1 .

◆□▶ ◆□▶ ★ □▶ ★ □▶ ● □ ● ● ●

Free Algebras and Normal Forms Open Problems

Open Problems

- (*i*) Give the functional characterization of BL_n for $2 \le n < \omega$.
- (ii) Compute deductive interpolants in BL.
- (*iii*) Provide a combinatorial characterization of *finite n*-generated free *BL*-algebras.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

References

- P. Aglianò and F. Montagna.
 Varieties of *BL*-Algebras I: General Properties.
 Journal of Pure and Applied Algebra, 181:105–129, 2003.
- M. Baaz, P. Hájek, F. Montagna and H. Veith. Complexity of *t*-Tautologies. Annals of Pure and Applied Logic, 113:3–11, 2002.
- S. Bova and F. Montagna.
 Proof Search in Hájek's Basic Logic.
 To appear in ACM Transactions on Computational Logic.

◎ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ○ ○ ○