Hájek's Basic Logic: Decision and Representation

Simone Bova
bova@unisi.it
Department of Mathematics and Computer Science
University of Siena (Italy)

December 19, 2007
Logic Seminar
University of Barcelona (Spain)

Outline

(1) Motivation

- Vague Notions
- Basic Logic
(2) Decision Problems
- Derivability and Validity
- Complexity and Algorithms
(3) Functional Representation
- Free Algebras and Normal Forms
- Open Problems

Outline

(1) Motivation

- Vague Notions
- Basic Logic
(2) Decision Problems
- Derivability and Validity
- Complexity and Algorithms
(3) Functional Representation
- Free Algebras and Normal Forms
- Open Problems

Sorite's Paradox

$X_{i} \rightleftharpoons$ "a collection of i grains is a heap", $N \rightleftharpoons 1000000$
Tentative axiomatization of the notion of heap $(i=0, \ldots, N-1)$:
(H1) X_{N}
(H2) $\neg X_{0}$
(H3.i) $X_{i+1} \rightarrow X_{i}$

Sorite's Paradox

$X_{i} \rightleftharpoons$ "a collection of i grains is a heap", $N \rightleftharpoons 1000000$
Tentative axiomatization of the notion of heap ($i=0, \ldots, N-1$):
(H1) X_{N}
(H2) $\neg X_{0}$
(H3.i) $X_{i+1} \rightarrow X_{i}$
The theory is inconsistent:
$1 X_{N}$
$2 X_{N-1}$
$N+1 X_{0}$
$N+2 \neg X_{0}$

Bivalence versus Vagueness

We can either reject vagueness

$$
0=X_{0}=\cdots=X_{500000}<X_{500001}=\ldots=X_{N}=1
$$

" 500001 grains form a heap, whether 500000 do not"

Bivalence versus Vagueness

We can either reject vagueness

$$
0=X_{0}=\cdots=X_{500000}<X_{500001}=\ldots=X_{N}=1
$$

"500001 grains form a heap, whether 500000 do not"
... or abjure bivalence:

$$
0=X_{0}<X_{1}<\ldots<X_{N-1}<X_{N}=1
$$

" i grains form a heap" is less true than " j grains form a heap", if $i<j$

Hájek's Paradigm | Fuzzy Logic

Fuzzy logics are propositional logics over $\mathrm{T}, \perp, \odot, \rightarrow$ st:

- variables X, Y, \ldots are interpreted over [0,1$]$;
- T and \perp are interpreted over 1 and 0 ;
- \odot and \rightarrow are interpreted over binary functions on $[0,1]$;
- $\neg X \rightleftharpoons X \rightarrow \perp$.

Fuzzy conjunction and implication must maintain:

- the behavior of Boolean counterparts over $\{0,1\}^{2}$;
- intuitive properties of Boolean counterparts over $[0,1]^{2}$;
- the validity of fuzzy modus ponens.

Hájek's Paradigm | Boolean Logic

Intuitive properties of Boolean conjunction and implication:

> Boolean conjunction is commutative, associative, weakly increasing in both arguments, and has 1 as unit.

Boolean implication, x implies y, is 1 iff $x \leq y$, weakly decreasing in x, weakly increasing in y.

Hájek's Paradigm | t-Norms and Residua

Definition (Continuous t-Norm, Residuum)

A continuous t-norm \odot_{*} is a continuous binary function on $[0,1]$ that is associative, commutative, monotone $\left(x \leq y\right.$ implies $\left.x \odot_{*} z \leq y \odot_{*} z\right)$ and has 1 as unit $\left(x \odot_{*} 1=x\right)$. Given a continuous t-norm \odot_{*}, its residuum is the binary function \rightarrow_{*} on $[0,1]$ defined by $x \rightarrow_{*} y=\max \left\{z: x \odot_{*} z \leq y\right\}$.
t-norms and their residua provide suitable interpretations for fuzzy conjunction and implication.

Hájek's Paradigm | Gödel Logic

\odot_{G} and \rightarrow_{G} over $[0,1]^{2}:$

$$
x \odot_{G} y=\min (x, y)
$$

$$
x \rightarrow G y= \begin{cases}1 & \text { if } x \leq y \\ y & \text { otherwise }\end{cases}
$$

Hájek's Paradigm | Łukasiewicz Logic

\odot_{L} and $\rightarrow L$ over $[0,1]^{2}:$

$$
x \odot_{L} y=\max (0, x+y-1)
$$

$$
x \rightarrow L y=\min (1,-x+y+1)
$$

Basic Logic | Logical Calculus

$\vdash_{B L} \phi$ iff ϕ is derivable in the following Hilbert calculus:
(A1) $(\phi \rightarrow \chi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\phi \rightarrow \psi))$
(A2) $(\phi \odot \chi) \rightarrow \phi$
(A3) $(\phi \odot \chi) \rightarrow(\chi \odot \phi)$
(A4) $(\phi \odot(\phi \rightarrow \chi)) \rightarrow(\chi \odot(\chi \rightarrow \phi))$
(A5) $((\phi \odot \chi) \rightarrow \psi) \leftrightarrow(\phi \rightarrow(\chi \rightarrow \psi))$
(A6) $((\phi \rightarrow \chi) \rightarrow \psi) \rightarrow(((\chi \rightarrow \phi) \rightarrow \psi) \rightarrow \psi)$
(A7) $\perp \rightarrow \phi$
(R1) $\phi, \phi \rightarrow \chi \vdash \chi$

Basic Logic | Semantic Completeness

$B L$ is the logic of all continuous t-norms and their residua [Cignoli et al., 2000]:
(i) $\vdash_{B L} \chi$ iff, for every t-norm \odot_{*} and every assignment v, χ evaluates to 1 with respect to \odot_{*} and v.
(ii) $\phi_{1}, \ldots, \phi_{n} \vdash_{B L} \chi$ iff, for every t-norm \odot_{*} and every assignment v, if $\phi_{1}, \ldots, \phi_{n}$ evaluate to 1 with respect to \odot_{*} and v, then χ evaluates to 1 with respect to \odot_{*} and v.

Outline

(1) Motivation

- Vague Notions
- Basic Logic

2 Decision Problems

- Derivability and Validity
- Complexity and Algorithms
(3) Functional Representation
- Free Algebras and Normal Forms
- Open Problems

Derivability and Validity

Let $\phi_{1}, \ldots, \phi_{n}, \chi$ be formulas over X_{1}, \ldots, X_{n}.
$\mathrm{BL}^{-\mathrm{CONS}_{n}}=\left\{\left\langle\left(\left\{\phi_{1}, \ldots, \phi_{m}\right\},\{\chi\}\right)\right\rangle: \phi_{1}, \ldots, \phi_{m} \vdash_{B L} \chi\right\}$
$\mathrm{BL}-\mathrm{TAUT}_{n}=\left\{\langle\chi\rangle:(\emptyset,\{\chi\}) \in{\left.\mathrm{BL}-\mathrm{CONS}_{n}\right\} \subseteq \mathrm{BL}^{\prime}-\mathrm{CONS}_{n}}\right.$

Derivability and Validity

Let $\phi_{1}, \ldots, \phi_{n}, \chi$ be formulas over X_{1}, \ldots, X_{n}.
$\mathrm{BL}^{-\mathrm{CONS}_{n}}=\left\{\left\langle\left(\left\{\phi_{1}, \ldots, \phi_{m}\right\},\{\chi\}\right)\right\rangle: \phi_{1}, \ldots, \phi_{m} \vdash_{B L} \chi\right\}$

There are infinitely many t-norms and infinitely many assignments of n propositional variables over $[0,1]$.

Derivability and Validity

Let $\phi_{1}, \ldots, \phi_{n}, \chi$ be formulas over X_{1}, \ldots, X_{n}.
$\mathrm{BL}^{-\mathrm{CONS}_{n}}=\left\{\left\langle\left(\left\{\phi_{1}, \ldots, \phi_{m}\right\},\{\chi\}\right)\right\rangle: \phi_{1}, \ldots, \phi_{m} \vdash_{B L} \chi\right\}$
$\mathrm{BL}-\mathrm{TAUT}_{n}=\left\{\langle\chi\rangle:(\emptyset,\{\chi\}) \in{\left.\mathrm{BL}-\mathrm{CONS}_{n}\right\} \subseteq \mathrm{BL}^{\prime}-\mathrm{CONS}_{n}}\right.$
There are infinitely many t-norms and infinitely many assignments of n propositional variables over $[0,1]$.

Question: Is $\mathrm{BL}^{-T A U T}{ }_{n}$ decidable? And $\mathrm{BL}^{-\mathrm{CONS}_{n}}$?

Generic t-Norms | 2-Variate Fragment

$$
3[0,1]_{M V}=\left([0,3], \odot_{2}, \rightarrow_{2}, \perp\right):
$$

$$
x_{1} \odot_{2} x_{2}= \begin{cases}\max \left(x_{1}+x_{2}-1,0\right) & \text { if } 0 \leq x_{1}, x_{2}<1 \\ \max \left(x_{1}+x_{2}-2,1\right) & \text { if } 1 \leq x_{1}, x_{2}<2 \\ \max \left(x_{1}+x_{2}-3,2\right) & \text { if } 2 \leq x_{1}, x_{2} \leq 3 \\ \min \left(x_{1}, x_{2}\right) & \text { if }\left\lfloor x_{1}\right\rfloor \neq\left\lfloor x_{2}\right\rfloor\end{cases}
$$

$$
x_{1} \rightarrow_{2} x_{2}= \begin{cases}3 & \text { if } x_{1} \leq x_{2} \\ x_{2}-x_{1}+1 & \text { if } 0 \leq x_{1}, x_{2}<1 \\ x_{2}-x_{1}+2 & \text { if } 1 \leq x_{1}, x_{2}<2 \\ x_{2}-x_{1}+3 & \text { if } 2 \leq x_{1}, x_{2} \leq 3 \\ x_{2} & \text { if }\left\lfloor x_{2}\right\rfloor<\left\lfloor x_{1}\right\rfloor\end{cases}
$$

Generic t-Norms | n-Variate Fragment

$$
\begin{aligned}
&(n+1)[0,1]_{M V}=\left([0, n+1], \odot_{n}, \rightarrow_{n}, \perp\right): \\
& x \odot_{n} y= \begin{cases}\max (x+y-(i+1), i) & \text { if }\lfloor x\rfloor=\lfloor y\rfloor=i \\
\min (x, y) & \text { if }\lfloor x\rfloor \neq\lfloor y\rfloor\end{cases} \\
& x \rightarrow_{n} y= \begin{cases}n+1 & \text { if } x \leq y \\
y+(i+1)-x & \text { if }\lfloor x\rfloor=\lfloor y\rfloor=i \\
y & \text { if }\lfloor y\rfloor<\lfloor x\rfloor\end{cases} \\
& \text { Let } \perp_{0} \leftrightharpoons \perp_{,}, \perp_{1} \leftrightharpoons 1, \ldots, \perp_{n} \leftrightharpoons n, \perp_{n+1} \leftrightharpoons T=n+1 .
\end{aligned}
$$

Generic t-Norms | Decidability and Complexity

Theorem (~ Aglianò and Montagna, 2003)

\odot_{n} is generic for the n-variate fragment of $B L$, that is:
(i) $\vdash_{B L} \chi\left(X_{1}, \ldots, X_{n}\right)$ iff, for every assignment v, $v(\chi)=n+1 w r t \odot_{n}$.
(ii) $\phi_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, \phi_{m}\left(X_{1}, \ldots, X_{n}\right) \vdash_{B L} \chi\left(X_{1}, \ldots, X_{n}\right)$ iff, for every assignment v, if $v\left(\phi_{1}\right)=\cdots=v\left(\phi_{n}\right)=n+1$ wrt \odot_{n}, then $v(\chi)=n+1$ wrt \odot_{n}.

Generic t-Norms | Decidability and Complexity

Theorem (~ Aglianò and Montagna, 2003)

\odot_{n} is generic for the n-variate fragment of $B L$, that is:
(i) $\vdash_{B L} \chi\left(X_{1}, \ldots, X_{n}\right)$ iff, for every assignment v, $v(\chi)=n+1$ wrt \odot_{n}.
(ii) $\phi_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, \phi_{m}\left(X_{1}, \ldots, X_{n}\right) \vdash_{B L} \chi\left(X_{1}, \ldots, X_{n}\right)$ iff, for every assignment v, if $v\left(\phi_{1}\right)=\cdots=v\left(\phi_{n}\right)=n+1$ wrt \odot_{n}, then $v(\chi)=n+1$ wrt \odot_{n}.

Corollary (Baaz et al., 2002; ~ Aguzzoli and Gerla, 2002)
$B L-C O N S_{n} \in \operatorname{coNP}$.
"No" instances of BL-CONS n have small witnesses wrt \odot_{n}.

Generic t-Norms | Decidability and Complexity

Example: $\left(\left(X_{1} \rightarrow X_{2}\right) \rightarrow X_{2}\right) \rightarrow X_{1} \rightleftharpoons \psi \in \mathrm{BL}^{2}-\mathrm{TAUT}_{2}$?

Generic t-Norms | Decidability and Complexity

Example: $\left(\left(X_{1} \rightarrow X_{2}\right) \rightarrow X_{2}\right) \rightarrow X_{1} \rightleftharpoons \psi \in \mathrm{BL}^{2}-\mathrm{TAUT} 2$? No:

$$
=\psi^{B L_{2}} \neq
$$

Sample witnesses of $\psi \notin{\mathrm{BL}-\mathrm{TAUT}_{2}}^{2}$:
(i) $v\left(X_{1}\right)=v\left(X_{2}\right)=4 / 3$;
(ii) any v st $0 \leq v\left(X_{2}\right)<1<v\left(X_{1}\right)<n+1$;
(iii) any v st $2 \leq v\left(X_{1}\right), v\left(X_{2}\right) \leq 3$ and $v\left(X_{1}\right)<v\left(X_{2}\right)$;
(iv) $\perp \leq X_{2}=X_{1} \rightarrow X_{2}<\perp_{1}<X_{1}=\psi<\mathrm{T}=\left(X_{1} \rightarrow X_{2}\right) \rightarrow X_{2}$.

Generic t-Norms | Decidability and Complexity

Definition (Subformulae Order)

Let $\chi\left(X_{1}, \ldots, X_{n}\right)$ be a formula with I connectives. A subformulae order for χ is a partition of the subformulae of $\chi, \perp_{0}, \ldots, \perp_{n+1}$ and T into $\leq n+2$ blocks. For $j=0, \ldots, n+1$, the block B_{j} is linearly ordered with least element \perp_{j}, and holds a linear program of $O(I)$ constraints over x_{1}, \ldots, x_{n}. The order is consistent if and only if there exists an assignment v of the variables in $[0, n+1]$ that satisfies the linear orders and the linear programs.

Fact

$\chi<\top$ holds in a consistent order iff, for some $v, v(\phi)<v(\top)$.

Generic t-Norms | Decidability and Complexity

Question: How many witnesses do we have to check, in the worst case, to conclude that a given instance χ of size $/$ is not in $\mathrm{BL}-\mathrm{TAUT}_{n}$? What about BL-CONS n ?

Generic t-Norms | Decidability and Complexity

Question: How many witnesses do we have to check, in the worst case, to conclude that a given instance χ of size $/$ is not in $\mathrm{BL}-\mathrm{TAUT}_{n}$? What about $\mathrm{BL}^{-\mathrm{CONS}_{n} \text { ? }}$

We know that testing $2^{3 /} \leq I$! witnesses suffices wrt BL-TAUT ${ }_{n}$ [Bova and Montagna, 2007]. Wrt BL-CONS n, the bound I! still resists [Baaz et al., 2002].

Outline

Motivation

- Vague Notions
- Basic Logic

Decision Problems

- Derivability and Validity
- Complexity and Algorithms
(3) Functional Representation
- Free Algebras and Normal Forms
- Open Problems

Algebraic Logic

Definition (BL-Algebras)

A BL-algebra is an algebra $(A, \vee, \wedge, \odot, \rightarrow, \top, \perp)$ of type
$(2,2,2,2,0,0)$ such that:
(i) (A, \odot, T) is a commutative monoid;
(ii) $(A, \vee, \wedge, \top, \perp)$ is a bounded lattice;
(iii) $x \odot y \leq z$ if and only if $y \leq x \rightarrow z$ (residuation);
(iv) $(x \rightarrow y) \vee(y \rightarrow x)$ (prelinearity).
$B L$-algebras form an algebraic variety.

Algebraic Logic

The variety of $B L$-algebras forms the algebraic semantics of $B L$.
Thus, the free n-generated $B L$-algebra, $B L_{n}$, encodes the n-variate fragment of $B L$, in the precise sense that $B L_{n}$ is isomorphic to the Lindenbaum-Tarski algebra of the n-variate fragment of $B L$.

Algebraic Logic

The variety of $B L$-algebras forms the algebraic semantics of $B L$.
Thus, the free n-generated $B L$-algebra, $B L_{n}$, encodes the n-variate fragment of $B L$, in the precise sense that $B L_{n}$ is isomorphic to the Lindenbaum-Tarski algebra of the n-variate fragment of $B L$.

Question: Is there an explicit description of $B L_{n}$?

Functional Definition

Fact (Aglianò and Montagna, 2002)

The free n-generated $B L$-algebra, $B L_{n}$, is the subalgebra of

$$
\left((n+1)[0,1]_{M V}\right)^{\left((n+1)[0,1]_{M V}\right)^{n}},
$$

generated by the projections, with pointwise defined operations.

The explicit description of $B L_{n}$ amounts to the characterization of the class F of functions $f:[0, n+1]^{n} \rightarrow[0, n+1]$ st:
(i) f is either a projection x_{1}, \ldots, x_{n} or the constant 0 ;
(ii) f has the form $g_{1} \circ_{n} g_{2}$, where $g_{1}, g_{2} \in F, \circ_{n} \in\left\{\odot_{n}, \rightarrow n\right\}$, and $\left(g_{1} \circ_{n} g_{2}\right)(\cdot)=g_{1}(\cdot) \circ_{n} g_{2}(\cdot)$.

$B L_{1}$ | Functional Characterization

The explicit description of $B L_{1}$ amounts to the characterization of the functions $f:[0,2] \rightarrow[0,2]$ that are definable as arbitrary compositions of the projection x and the constant 0 via the operations \odot_{1} and \rightarrow_{1} :

$$
\begin{aligned}
& x \odot_{1} y= \begin{cases}\max (x+y-1,0) & \text { if } 0 \leq x, y<1 \\
\max (x+y-2,1) & \text { if } 1 \leq x, y \leq 2 \\
\min (x, y) & \text { if }\lfloor x\rfloor \neq\lfloor y\rfloor\end{cases} \\
& x \rightarrow_{1} y= \begin{cases}2 & \text { if } x \leq y \\
y+1-x & \text { if } 0 \leq x, y<1 \\
y+2-x & \text { if } 1 \leq x, y \leq 2 \\
y & \text { if }\lfloor y\rfloor<\lfloor x\rfloor\end{cases}
\end{aligned}
$$

$B L_{1} \mid$ McNaughton Functions

Definition (McNaughton Function)

A continuous n-variate function over $[0,1]$ is a $M c N a u g h t o n$ function iff there are linear polynomials p_{1}, \ldots, p_{k} with integer coefficients such that, for every $x \in[0,1]^{n}$, there is $j \in[k]$ such that $f(x)=p_{j}(x)$.

Figure: 1-variate McNaughton functions $f, g_{1}, g_{2}:[0,1] \rightarrow[0,1]$.

$B L_{1}$ | Lifting

Figure: $f, g_{1}, g_{2}:[0,1] \rightarrow[0,1]$.

$B L_{1}$ | Lifting

Figure: $f, g_{1}, g_{2}:[0,1] \rightarrow[0,1]$.

Figure: $\operatorname{lift}_{1}(f), \operatorname{lift}_{2}\left(g_{1}\right), \operatorname{lift}_{2}\left(g_{2}\right):[0,2] \rightarrow[0,2]$.

$B L_{1} \mid$ Masking

Figure: $\operatorname{lift}_{2}\left(g_{1}\right), \operatorname{lift}_{2}\left(g_{2}\right):[0,2] \rightarrow[0,2]$.

$B L_{1}$ | Masking

Figure: $\operatorname{lift}_{2}\left(g_{1}\right), \operatorname{lift}_{2}\left(g_{2}\right):[0,2] \rightarrow[0,2]$.

Figure: $\operatorname{mask}_{1}\left(\operatorname{lift}_{2}\left(g_{1}\right)\right), \operatorname{mask}_{2}\left(\operatorname{lift} t_{2}\left(g_{2}\right)\right):[0,2] \rightarrow[0,2]$.

$B L_{1} \mid \wedge$ 'ing

Figure: $\operatorname{mask}_{1}\left(\operatorname{lift}_{2}\left(g_{1}\right)\right), \operatorname{mask}_{2}\left(\operatorname{lift} 2\left(g_{2}\right)\right):[0,2] \rightarrow[0,2]$.

$B L_{1} \mid \wedge$ 'ing

Figure: $\operatorname{mask}_{1}\left(\operatorname{lift}\left(g_{1}\right)\right), \operatorname{mask}_{2}\left(\operatorname{lift} t_{2}\left(g_{2}\right)\right):[0,2] \rightarrow[0,2]$.

Figure: $\operatorname{mask}_{1}\left(\operatorname{lift}_{2}\left(g_{1}\right)\right) \wedge \operatorname{mask}_{2}\left(\operatorname{lift}_{2}\left(g_{2}\right)\right):[0,2] \rightarrow[0,2]$.

$B L_{1}$ | Explicit Description

Theorem (~ Montagna, 2000)

Let f, g_{1}, g_{2} be McNaughton functions, st $f(1)=0$, $g_{1}(1)=g_{2}(1)=1$. The free 1 -generated BL-algebra, $B L_{1}$, is the algebra of 1 -variate functions over $[0,2]$ of the form lift (f) or mask $_{1}\left(\right.$ lift $\left._{2}\left(g_{1}\right)\right) \wedge$ mask $_{2}\left(l i f t_{2}\left(g_{2}\right)\right)$:

with pointwise defined operations \odot_{1} and \rightarrow_{1}.

Open Problems

(i) Give the functional characterization of $B L_{n}$ for $2 \leq n<\omega$.
(ii) Compute deductive interpolants in BL.
(iii) Provide a combinatorial characterization of finite n-generated free BL-algebras.

References

目 P. Aglianò and F. Montagna.
Varieties of BL-Algebras I: General Properties.
Journal of Pure and Applied Algebra, 181:105-129, 2003.
(M. Baaz, P. Hájek, F. Montagna and H. Veith.
Complexity of t-Tautologies.
Annals of Pure and Applied Logic, 113:3-11, 2002.
囯 S. Bova and F. Montagna.
Proof Search in Hájek's Basic Logic.
To appear in ACM Transactions on Computational Logic.

