SOFT CONSTRAINTS PROCESSING 000 00000 CONCLUSION

Soft Constraints Processing over Divisible Residuated Lattices

Simone Bova bova@dico.unimi.it

Department of Computer Science University of Milan (Milan, Italy)

ECSQARU 2009 1-3 July 2009, Verona (Italy)

Soft Constraints Processing

CONCLUSION

Outline

Soft Constraints and Logical Structures

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Soft Constraints Processing

Enforcing Algorithms *k*-Hyperarc Consistency

Conclusion

Soft Constraints Processing 000 00000 CONCLUSION

Outline

Soft Constraints and Logical Structures

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Soft Constraints Processing Enforcing Algorithms k-Hyperarc Consistency

Conclusion

Constraint Satisfaction Problems

Problem: CSP

Instance: (X, D, P) where:

- (*i*) *X* is a finite set of *variables*;
- (*ii*) *D* is a finite set of *values* (aka *domain*);
- (*iii*) $P = \{C_1, \ldots, C_q\}$ is a finite set of *constraints*, that is, pairs (\mathbf{x}_i, R_i) having $\mathbf{x}_i \in X^m$ as scope and $R_i \subseteq D^m$ as relation.

Question: Is there an *assignment* $f: X \to D$ *satisfying* all constraints, that is, such that $f(\mathbf{x}_i) \in R_i$ for all $i \in \{1, ..., q\}$?

CSP | *Example*

${R_1(x_1, x_2), R_2(x_1, x_2), R_3(x_1, x_2)}$ with $R_1, R_2, R_3 \subseteq {0, ..., 5}^2$:

(a) *R*₁.

(b) R₂.

(c) R_3 .

CSP | *Example*

${R_1(x_1, x_2), R_2(x_1, x_2), R_3(x_1, x_2)}$ with $R_1, R_2, R_3 \subseteq {0, ..., 5}^2$:

(a) R_1 . (b) R_2 . (c) R_3 .

Is there $f: \{x_1, x_2\} \rightarrow \{0, \dots, 5\}$ satisfying all constraints?

Soft Constraints Processing 000 00000 CONCLUSION

CSP | *Example*

There are several such f's...

(a) $R_1 \cap R_2 \cap R_3$.

CSP | *Example*

There are several such f's... what if they pay $f(x_1) + f(x_2)$ euro?

(a) $R_1 \cap R_2 \cap R_3$.

CSP | Example

There are several such f's... what if they pay $f(x_1) + f(x_2)$ euro?

CSP | Example

There are several such f's... what if they pay $f(x_1) + f(x_2)$ euro?

SOFT CONSTRAINTS PROCESSING

CONCLUSION

Feasibility vs. Optimization

The *crisp* CSP is a *feasibility* problem (any satisfying assignment is equally good).

The *soft* CSP is an *optimization* problem: each constraint *maps* assignments to a *valuation structure*, that is, a bounded poset equipped with a suitable *combination* operator; the goal is to find an assignment such that the combination of its images under all the constraints is *maximal* in the structure.

Valuation Structure | Example (Cont'd)

Step 1: Design valuation structure.

$$\mathbf{A} = (\{0, \dots, 10\}, \bot = 0 < \dots < 10 = \top, min).$$
 min:

- (*i*) associative, commutative (no precedence, no order);
- (*ii*) monotone over \leq (more constraints, worst solutions);
- (*iii*) $min\{x, \bot\} = \bot$ (unsatisfiability marker);
- (*iv*) $min\{x, \top\} = x$ (triviality marker).

Soft Constraints | *Example (Cont'd)*

Step 2: Soften crisp constraints (map assignments to the structure).

(a) Crisp R_1 .

Soft Constraints | *Example (Cont'd)*

Step 2: Soften crisp constraints (map assignments to the structure).

Soft Constraints | Example (Cont'd)

Step 2: Soften crisp constraints (map assignments to the structure).

(a) Crisp R_2 .

CONCLUSION

Soft Constraints | *Example (Cont'd)*

Step 2: Soften crisp constraints (map assignments to the structure).

Soft Constraints | Example (Cont'd)

Step 2: Soften crisp constraints (map assignments to the structure).

(0,5)	(1,5)	(2,5)			
(0,4)	(1,4)	(2,4)	(3,4)		
(0,3)	(1,3)	(2,3)	(3,3)	(4,3)	
(0,2)	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)
(0,1)	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)
(0,0)	(1,0)	(2,0)	(3,0)	(4,0)	(5,0)

(a) Crisp R_3 .

Soft Constraints | *Example (Cont'd)*

Step 2: Soften crisp constraints (map assignments to the structure).

Combination and Maximization | *Example (Cont'd)*

Step 3: Maximize constraints combination. For instance,

$$\begin{array}{l} (2,4) \Rightarrow \min\{R_1(2,4), R_2(2,4), R_3(2,4)\} = \min\{0,6,6\} = 0, \\ (3,2) \Rightarrow \min\{R_1(3,2), R_2(3,2), R_3(3,2)\} = \min\{5,5,5\} = 5, \ldots \end{array}$$

Combination and Maximization | *Example (Cont'd)*

Step 3: Maximize constraints combination. For instance,

$$\begin{array}{l} (2,4) \Rightarrow \min\{R_1(2,4), R_2(2,4), R_3(2,4)\} = \min\{0,6,6\} = 0, \\ (3,2) \Rightarrow \min\{R_1(3,2), R_2(3,2), R_3(3,2)\} = \min\{5,5,5\} = 5, \ldots \end{array}$$

(a) Crisp solutions.

(b) Soft solutions.

(c) Optimal solutions.

Definition

Definition (Soft CSP)

A *soft CSP* is a tuple $\mathbf{P} = (X, D, P, \mathbf{A})$ with:

- (*i*) variables $X = \{1, ..., n\} = [n];$
- (*ii*) finite *domains* $D = (D_i)_{i \in [n]}$ where *i* ranges over D_i ;
- (*iii*) valuation structure $\mathbf{A} = (A, \leq, \odot, \top, \bot)$ st (A, \leq, \top, \bot) is a bounded poset, (A, \odot, \top) is a commutative monoid, \odot is monotone over \leq (that is, $x \leq y$ implies $z \odot x \leq z \odot y$);
- (*iv*) *P* finite multiset of *constraints* of the form

$$C_Y:\prod_{i\in Y}D_i\to A,$$

where $Y \subseteq X$ is the *scope* of C_Y .

Definition

Notation $(Y \subseteq X)$: $l(Y) = \prod_{i \in Y} D_i$; $t|_Y$ projects $t \in l(X)$ onto Y.

Definition (Solution, Inconsistence, Equivalence)

Any $t \in l(X)$ such that $\bigcirc_{C_Y \in P} C_Y(t|_Y)$ is maximal wrt \leq in

$$S(\mathbf{P}) = \{ \bigcup_{C_Y \in P} C_Y(t|_Y) \mid t \in l(X) \} \subseteq A$$

is a solution to **P**, and **P** is *inconsistent* if $S(\mathbf{P}) = \{\bot\}$. $\mathbf{P} = (X, D, P, \mathbf{A})$ is *equivalent* to $\mathbf{P}' = (X, D, P', \mathbf{A})$ iff for every $t \in l(X)$,

$$\bigotimes_{C_Y \in P} C_Y(t|_Y) = \bigotimes_{C_Y \in P'} C_Y(t|_Y).$$

SOFT CONSTRAINTS PROCESSING

CONCLUSION

Logical Structures

Fact *A* CSP is a soft CSP (X, D, P, \mathbf{A}) where: (*i*) $D = (D_i)_{i \in X}$ with $|\{D_i | i \in X\}| = 1;$ (*ii*) $\mathbf{A} = (\{0, 1\}, 0 < 1, min, 1, 0).$

In the crisp CSP, **A** is a reduct of the Boolean algebra **2**, the algebraic counterpart of classical logic.

Soft Constraints Processing 000 00000 CONCLUSION

Logical Structures

Fact *A* CSP is a soft CSP (X, D, P, \mathbf{A}) where: (*i*) $D = (D_i)_{i \in X}$ with $|\{D_i | i \in X\}| = 1;$ (*ii*) $\mathbf{A} = (\{0, 1\}, 0 < 1, min, 1, 0).$

In the crisp CSP, **A** is a reduct of the Boolean algebra **2**, the algebraic counterpart of classical logic.

Proposal: Adopt algebraic counterparts of nonclassical logics as valuation structures for the soft CSP.

Residuated Lattices

In Boolean logic the relation between *conjunction*, \land , and *implication*, \rightarrow , is given by the *residuation* equivalences,

$$x \wedge y \leq z \text{ iff } x \leq y \rightarrow z \text{ iff } y \leq x \rightarrow z$$
,

which imply many of the properties of \land and \rightarrow (commutativity of \land , distributivity of \land over \lor , left-distributivity of \rightarrow over \lor , and right-distributivity of \rightarrow over \land).

The prominent approach in generalizing Boolean logic relies upon generalizing Boolean conjunction, by means of a binary operation, \odot , called *fusion*, and imposing the residuation equivalences with \land replaced by \odot .

Soft Constraints Processing 000 00000 CONCLUSION

Residuated Lattices

Definition (Commutative Bounded Residuated Lattice, CBRL) A (commutative bounded) residuated lattice is an algebra $(A, \lor, \land, \odot, \rightarrow, \top, \bot)$ of type (2, 2, 2, 2, 0, 0) st: (*i*) (A, \odot, \top) is a commutative monoid; (*ii*) $(A, \lor, \land, \top, \bot)$ is a bounded lattice; (*iii*) residuation holds, that is $x \odot y \le z$ if and only if $y \le x \rightarrow z$.

The monotonicity of fusion over the order follows.

Lattice Orders and Nonidempotent Combinations

- $Y \subseteq X, t, t' \in l(Y), \mathbf{A} CBRL.$
 - $C_Y(t) \le C_Y(t')$ says that t' is preferred to t (the distance between $C_Y(t)$ and $C_Y(t')$ gives the degree of such preference, ranging over **A**'s *depth*).
 - C_Y(t) || C_Y(t') says that t' and t are incomparable (A's width gives the number of simultaneous rankings supported by A).
 - \wedge 's and \vee 's required by algorithmics (tentative).
 - $C_Y(t) \odot C_Y(t) < C_Y(t)$ says that repetitions matter.

SOFT CONSTRAINTS PROCESSING

CONCLUSION

Outline

Soft Constraints and Logical Structures Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Soft Constraints Processing Enforcing Algorithms *k*-Hyperarc Consistency

Conclusion

SOFT CONSTRAINTS PROCESSING OO OOOOO CONCLUSION

Problem: SOFT-CSP **Instance:** (X, D, P, \mathbf{A}) **Goal:** Find $t \in l(X)$ maximizing $\bigcirc_{C_Y \in P} C_Y(t|_Y)$ in \mathbf{A} .

The SOFT-CSP is NP-hard:

- (*i*) characterize tractable cases (theoretical side);
- *(ii)* leverage exhaustive search (*enforcing* algorithms, applicative side).

SOFT CONSTRAINTS PROCESSING

CONCLUSION

Enforcing Algorithms

Given a soft CSP, an *enforcing* algorithm enforces over it a *local consistency* property, in polynomial time.

Either the input problem is found locally (hence, globally) inconsistent, or it is transformed into an *equivalent* problem, possibly inconsistent but *easier* (with a smaller solution space).

Despite their incompleteness as inconsistency test, enforcing algorithms are useful as subprocedures in exhaustive search methods (*branch and bound*).

SOFT CONSTRAINTS PROCESSING 00● 00000 CONCLUSION

Divisible Residuated Lattices

What is the additional structure required to implement enforcing algorithms over *CBRL*?

Divisible Residuated Lattices

What is the additional structure required to implement enforcing algorithms over *CBRL*? *Divisibility* is necessary...

Definition (GBL-algebra)

A *GBL-algebra* is a *CBRL* where *divisibility* holds, that is, $x \wedge y = x \odot (x \rightarrow y)$.

Divisible Residuated Lattices

What is the additional structure required to implement enforcing algorithms over *CBRL*? *Divisibility* is necessary...

Definition (GBL-algebra)

A *GBL-algebra* is a *CBRL* where *divisibility* holds, that is, $x \wedge y = x \odot (x \rightarrow y)$.

GBL-algebras have a natural logical interpretation, the intersection of Basic (fuzzy) logic and intuitionistic logic.

Adopting valuation structures with a logical interpretation, enforcing algorithms reduce to logical deductions (refutations).

k-*Hyperarc Consistency*

A soft CSP is *k*-hyperarc consistent if it is possible to extend any *consistent* assignment of a variable *i* to an assignment of any other $\leq k - 1$ variables, constrained by *i*, avoiding additional costs [BG06, CS04, LS04].

Notation $(Y \subseteq X, i \in Y, a \in D_i, t \in l(Y \setminus \{i\}))$: $(t \cdot a) = t' \in l(Y)$ st $t'|_{\{i\}} = a$ and $t'|_{Y \setminus \{i\}} = t$.

Definition (k-Hyperarc Consistency)

P = (*X*, *D*, *P*, **A**) soft CSP, *Y* ⊆ *X* st 2 ≤ |*Y*| ≤ *k* and *C*_{*Y*} ∈ *P*. *Y* is *k*-hyperarc consistent if for each *i* ∈ *Y* and each *a* ∈ *D*_{*i*} such that $C_{\{i\}}(a) > \bot$, there exists $t \in l(Y \setminus \{i\})$ such that,

$$C_{Y}(t \cdot a) = \top.$$

P is *k*-hyperarc consistent if every $Y \subseteq X$ st $2 \leq |Y| \leq k$ and $C_Y \in P$ is *k*-hyperarc consistent.

SOFT CONSTRAINTS PROCESSING

CONCLUSION

Specification

Algorithm: k-HYPERARCCONSISTENCY

Input: A soft CSP $\mathbf{P} = (X, D, P, \mathbf{A})$, where **A** is *GBL*-algebra.

Output: \perp , or a *k*-hyperarc consistent soft CSP, equivalent to **P**.

SOFT CONSTRAINTS PROCESSING

Pseudocode | 1

```
k-HyperarcConsistency((X, D, P, \mathbf{A}))
    Q \leftarrow \{1,\ldots,n\}
1
2
    while O \neq \emptyset do
3
       i \leftarrow \text{POP}(O)
4
       foreach Y \subseteq X such that 2 \leq |Y| \leq k, i \in Y and C_Y \in P do
5
          domainShrink \leftarrow PROJECT(Y, i)
          if C_{\{i\}}(a) = \bot for each a \in D_i then
6
7
             return 🗌
8
          else if domainShrink then
9
             PUSH(Q, i)
10
          endif
11
       endforeach
12 endwhile
13 return (X, D, P', \mathbf{A})
```

Pseudocode | 2

PROJECT(Y, i)14 domainShrink \leftarrow false 15 **foreach** $a \in D_i$ such that $C_{\{i\}}(a) > \bot$ **do** 16 $x \leftarrow a$ maximal element in $\{C_Y(t \cdot a) \mid t \in l(Y \setminus \{i\})\}$ 17 $C_{\{i\}}(a) \leftarrow C_{\{i\}}(a) \odot x$ 18 if $C_{\{i\}}(a) = \bot$ then domainShrink ← true 19 20 endif 21 foreach $t \in l(Y \setminus \{i\})$ do $C_{\gamma}(t \cdot a) \leftarrow (x \rightarrow C_{\gamma}(t \cdot a))$ 22 23 \triangleright by divisibility, $z \leq x$ implies $(y \odot x) \odot (x \rightarrow z) = y \odot z$ 24 endforeach 25 endforeach 26 return domainShrink

Correctness and Complexity

Lemma (Complexity)

Let $\mathbf{P} = (X, D, P, \mathbf{A})$ be soft CSP with X = [n], $d = \max_{i \in [n]} |D_i|$ and e = |P|. Then, k-HYPERARCCONSISTENCY(\mathbf{P}) runs in $O(e^2 \cdot d^{k+1})$ time.

Lemma (Soundness)

Let $\mathbf{P} = (X, D, P, \mathbf{A})$ be a soft CSP. Consider the output of *k*-HYPERARCCONSISTENCY(\mathbf{P}):

- (*i*) *if it is* \perp *, then* **P** *is inconsistent;*
- (*ii*) ow it is a k-hyperarc consistent soft CSP equivalent to **P**.

SOFT CONSTRAINTS PROCESSING

CONCLUSION

Outline

Soft Constraints and Logical Structures Soft Constraint Satisfaction Problems Commutative Bounded Residuated Latti

Soft Constraints Processing Enforcing Algorithms k-Hyperarc Consistency

Conclusion

SOFT CONSTRAINTS PROCESSING

CONCLUSION

Summary

We presented certain subvarieties of commutative bounded residuated lattices as *natural* valuation structures for soft CSP's.

These structures constitute the algebraic counterparts of a large family of nonclassical logics, and provide a uniform *logical* interpretation of enforcing procedures.

Divisibility supports a sound implementation of standard enforcing procedures.

CONCLUSION

References

S. Bistarelli and F. Gadducci.

Enhancing Constraints Manipulation in Semiring-Based Formalisms. ECAI 2006, 63-67, 2006.

M. C. Cooper and T. Schiex. Arc Consistency for Soft Constraints. Artificial Intellingence, 154(1-2):199–227, 2004.

N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, 2007.

J. Larrosa and T. Schiex. Solving Weighted CSP by Maintaining Arc Consistency. Artificial Intellingence, 159(1-2):1–26, 2004.

SOFT CONSTRAINTS PROCESSING

CONCLUSION

Thanks!