Functional Representation of Basic Logic

Simone Bova

bova@unisi.it
www.mat.unisi.it/~bova

Department of Mathematics and Computer Science University of Siena (Italy)

April 24-26, 2008 Non-Classical Logics: from Foundations to Applications

Centro di Ricerca Matematica E. de Giorgi, Pisa (Italy)

Outline

- Basic Logic
 - Calculus
 - Semantics
- Punctional Representation
 - Problem Statement
 - Łukasiewicz Logic
 - Basic Logic
- Conclusion
 - Universal Algebra
 - References

Outline

- Basic Logic
 - Calculus
 - Semantics
- Eunctional Representation
- 3 Conclusion

Language

$$X$$
 set of *variables* $\emptyset \neq I \subseteq \{1, \ldots, n\}, X_I = \{x_i \mid i \in I\}$
 T (propositional) language over X and $\{\odot, \rightarrow, \bot\}$
 T^+ fragment of T over $\{\odot, \rightarrow\}$
 T_I fragment of T over X_I
 T_I^+ fragment of T over X_I and $\{\odot, \rightarrow\}$

$$T = x_1 \rightarrow x_1$$

$$T = t \rightarrow \bot$$

$$t_1 \land t_2 = t_1 \odot (t_1 \rightarrow t_2)$$

$$t_1 \lor t_2 = ((t_1 \rightarrow t_2) \rightarrow t_2) \land ((t_2 \rightarrow t_1) \rightarrow t_1)$$

$$t_1 \leftrightarrow t_2 = (t_1 \rightarrow t_2) \odot (t_2 \rightarrow t_1)$$

Basic Logic and Łukasiewicz Logic

Basic logic, \vdash_{BL} , is defined by the MP rule and the axiom schemata:

(A1)
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

(A2)
$$(A \odot B) \rightarrow A$$

(A3)
$$(A \odot B) \rightarrow (B \odot A)$$

(A4)
$$(A \odot (A \rightarrow B)) \rightarrow (B \odot (B \rightarrow A))$$

(A5)
$$((A \rightarrow (B \rightarrow C)) \leftrightarrow ((A \odot B) \rightarrow C))$$

(A6)
$$((A \rightarrow B) \rightarrow C) \rightarrow (((B \rightarrow A) \rightarrow C) \rightarrow C)$$

$$(A7) \perp \rightarrow A$$

Łukasiewicz logic, \vdash_L , extends Basic logic by adding:

(A8)
$$\neg \neg A \rightarrow A$$

Semantics

A *semantics* for T is an algebra $\mathbf{A} = (A, \odot, \rightarrow, \bot)$ of type (2, 2, 0).

Fact (Truthfunctionality)

Let **A** be a semantics for T and let $t \in T_n$. Then, t uniquely determines an n-ary function $t^{\mathbf{A}}$ over A, by putting, for every $\mathbf{a} = (a_1, \dots, a_n) \in A^n$:

- (i) if $t = x_i$, then $t^{\mathbf{A}}(\mathbf{a}) = a_i$;
- (ii) if $t = \bot$, then $t^{\mathbf{A}}(\mathbf{a}) = \bot^{\mathbf{A}}$;
- (iii) if $t = r \circ s$, then $(r \circ s)^{\mathbf{A}}(\mathbf{a}) = r^{\mathbf{A}}(\mathbf{a}) \circ^{\mathbf{A}} s^{\mathbf{A}}(\mathbf{a})$,

where $\circ^{\mathbf{A}}$ realizes \circ in \mathbf{A} and $\circ \in \{\bot, \odot, \rightarrow\}$.

We say that t^{A} is the function *computed* by t over A.

Semantics | Łukasiewicz Logic

Definition (Łukasiewicz Semantics)

$$[0,1]=([0,1],\odot,\to,\bot)$$
 given by $\bot^{[0,1]}=0$ and:

$$a_1 \odot^{[0,1]} a_2 = \max(0, a_1 + a_2 - 1)$$

$$a_1 \rightarrow^{[0,1]} a_2 = \min(1, a_2 + 1 - a_1)$$

Figure: $t^{[0,1]}:[0,1]^2 \to [0,1]$ for sample $t \in T_2$.

Semantics | Łukasiewicz Logic

Fact (Abbreviations)

$$au^{[0,1]}=1,\,
au^{[0,1]}a=1-a,\, and:$$
 $a_1\wedge^{[0,1]}a_2=\min(a_1,a_2)$

$$a_1 \vee^{[0,1]} a_2 = \max(a_1, a_2)$$

Figure: $t^{[0,1]}:[0,1]^2 \to [0,1]$ for sample $t \in T_2$.

Completeness | Łukasiewicz Logic

Let $t \in T_n$. Then, t is a Łukasiewicz tautology, $[0, 1] \models t$, iff $t^{[0,1]}(\mathbf{a}) = 1$ for every $\mathbf{a} \in [0,1]^n$.

Theorem (Chang)

Let $t \in T$. Then,

$$[0,1] \models t \text{ iff } \vdash_{L} t.$$

Fuzziness | Łukasiewicz Logic

Fact (Fuzziness)

 $\nvdash_L t \vee \neg t$. Thus, $\nvdash_{BL} t \vee \neg t$.

Proof.

 $t \in T_n$ for some $n \ge 1$. Check (in NP) that $(t \lor \neg t)^{[0,1]} \ne \top^{[0,1]}$. Note that $\nvdash_L t \lor \neg t$ implies $\nvdash_{BL} t \lor \neg t$ for every t.

Figure: $t^{[0,1]}:[0,1]\to [0,1]$ for sample $t\in T_1$.

Semantics | Basic Logic

Definition (Basic Semantics)

$$[0,n+1]=([0,n+1],\odot,\to,\bot)$$
 given by $\bot^{[0,n+1]}=0$ and:

$$a_1 \odot^{[0,n+1]} a_2 = egin{cases} \min(a_1,a_2) & \text{if } \lfloor a_1 \rfloor
eq \lfloor a_2 \rfloor \\ \max(\lfloor a_1 \rfloor,a_1+a_2-\lfloor a_1 \rfloor-1) & \text{otherwise} \end{cases}$$

$$a_1
ightharpoonup^{[0,n+1]} a_2 = egin{cases} a_2 & \text{if } \lfloor a_2 \rfloor < \lfloor a_1 \rfloor \\ a_2 + \lfloor a_1 \rfloor + 1 - a_1 & \text{if } \lfloor a_1 \rfloor = \lfloor a_2 \rfloor \text{ and } a_2 < a_1 \\ n+1 & \text{otherwise} \end{cases}$$

(b)
$$t = x_1 \odot x_2$$
. (c) $t = x_1 \to x_2$. (d) $t = x_1$.

Semantics | Basic Logic

Fact (Abbreviations)

 $T^{[0,n+1]} = n+1$ and:

$$\neg^{[0,n+1]} a = \begin{cases} n+1 & \text{if } a = 0\\ 1-a & \text{if } 0 < a < 1\\ 0 & \text{if } 1 \le a \end{cases}$$

$$a_1 \wedge^{[0,n+1]} a_2 = \min(a_1, a_2)$$

$$a_1 \vee^{[0,n+1]} a_2 = \max(a_1,a_2)$$

Completeness | Basic Logic

Let $t \in T_n$. Then, t is a *Basic tautology*, $[0, n+1] \models t$, iff $t^{[0,n+1]}(\mathbf{a}) = 1$ for every $\mathbf{a} \in [0, n+1]^n$.

Theorem (Aglianó and Montagna)

Let $t \in T_n$. Then,

$$[0, n+1] \models t \text{ iff } \vdash_{BL} t.$$

Outline

- Basic Logic
- Punctional Representation
 - Problem Statement
 - Łukasiewicz Logic
 - Basic Logic
- 3 Conclusion

Functional Representation | Problem Statement

Fix $n \ge 1$ and $\mathbf{A} \in \{[0, 1], [0, n + 1]\}.$

Let $t \in T_n$. We know that $t^{\mathbf{A}}$ is an n-ary operation over A, but not every n-ary operation over A is computable by means of some $t \in T_n$.

A natural problem is then to characterize *explicitly* the set

$$F_{\mathbf{A},n} = \{ f : A^n \to A \mid f = t^{\mathbf{A}} \text{ for some } t \in T_n \} \subseteq A^{A^n}.$$

Functional Representation | Solution Schema

Let $n \ge 1$ and $\mathbf{A} \in \{[0, 1], [0, n + 1]\}$ be given.

- Step 1: Guess $F_{\mathbf{A},n} \subseteq A^{A^n}$, and provide an *effective* encoding $\langle \cdot \rangle \in \{0,1\}^*$ of functions in $F_{\mathbf{A},n}$.
- Step 2: Check that $t^{\mathbf{A}} \in F_{\mathbf{A},n}$ for every $t \in T_n$, i.e: by induction on t, show that $t^{\mathbf{A}} = f$ for some $f \in F_{\mathbf{A},n}$.
- Step 3: Check that for every $f \in F_{\mathbf{A},n}$ there is $t \in T_n$ s.t. $t^{\mathbf{A}} = f$, i.e: describe a *terminating* and *correct* algorithm that receives $\langle f \rangle$ and returns $t \in T_n$ such that $t^{\mathbf{A}} = f$.

Definition (McNaughton Function)

A continuous function $f:[0,1]^n \to [0,1]$ is an n-ary McNaughton function iff there are linear polynomials with integer coefficients $p_1, \ldots, p_u : \mathbb{R}^n \to \mathbb{R}$ s.t. for every $\mathbf{a} \in [0,1]^n$, there is $j \in \{1, \ldots, u\}$ s.t. $f(\mathbf{a}) = p_j(\mathbf{a})$.

Figure: Unary and binary McNaughton functions samples.

Definition (Unimodular Triangulation)

A unimodular triangulation U of $[0,1]^n$ is a finite set of n-dimensional unimodular simplexes with rational vertices, such that the union of all simplexes in U coincides with $[0,1]^n$ and any two simplexes intersect in a common face. Let f be an n-ary McNaughton function with linear components p_1, \ldots, p_u , and let U be a unimodular triangulation of $[0,1]^n$. We say that U linearizes f if for every simplex $S \in U$, there is $j \in \{1, \ldots, u\}$ such that $f \upharpoonright S = p_i$.

Theorem (Mundici)

Let f be an n-ary McNaughton function. Then, there is a unimodular triangulation of $[0,1]^n$ linearizing f.

Figure: (a)-(c) U_1 linearizes g_1 and g_2 . (d)-(f) U_2 linearizes g_3 and g_4 .

Goal: Characterize the set:

$$F_{[0,1],n} = \{f : [0,1]^n \to [0,1] \mid f = t^{[0,1]} \text{ for some } t \in T_n\} \subseteq [0,1]^{[0,1]^n}.$$

Step 1: Guess

$$F_{[0,1],n} = \{f \mid f \text{ } n\text{-ary McNaughton function}\} \subseteq [0,1]^{[0,1]^n}.$$

Let $f \in F_{[0,1],n}$ with polynomials p_1, \ldots, p_u , let $U = \{S_1, \ldots, S_m\}$ be a unimodular triangulation linearizing f, and for $i = 1, \ldots, m$ let $q_i \in \{p_1, \ldots, p_u\}$ be such that $f \upharpoonright S_i = q_i$. Encode f via:

$$\langle f \rangle = \{ (S_i, q_i) \mid i = 1, \ldots, m \}.$$

Step 2: Nontrivial, since $F_{[0,1],n} \subset [0,1]^{[0,1]^n}$ (by induction on t).

Step 3: For every $f \in F_{[0,1],n}$, there is $t \in T_n$ such that $t^{[0,1]} = f$ (Mundici).

Corollary

Let g be an n-ary McNaughton function s.t. g(1) = 1. Then, there exists $t \in T_n^+$ s.t. $t^{[0,1]} = g$.

Proof.

Take $s \in T_n$ s.t. $s^{[0,1]} = g$, and derive $t \in T_n^+$ s.t. $t^{[0,1]} = s^{[0,1]}$ by substitutions:

- (i) $r \odot \bot \Leftarrow \bot, \bot \odot r \Leftarrow \bot, \bot \to r \Leftarrow r \to r$, and $r \to \bot \Leftarrow \neg r$;
- (ii) $(r \odot \neg s) \Leftarrow \neg (r \rightarrow s)$ and $(\neg r \odot s) \Leftarrow \neg (s \rightarrow r)$;
- (iii) $(r \rightarrow \neg s) \Leftarrow \neg (r \odot s)$ and $(\neg r \rightarrow s) \Leftarrow (r \rightarrow (r \odot s)) \rightarrow s$;
- $(iv) \neg \neg r \Leftarrow r.$

If g(1) = 1 and $t^{[0,1]} = g$, we always assume w.l.o.g. $t \in T_n^+$.

Basic Logic | 1-Variate Fragment | Goal

Memo: T_1 interpreted over [0,2], $t \in T_1$ computes $t^{[0,2]} \in [0,2]^{[0,2]}$.

Goal: Characterize the set of unary basic functions:

$$F_{[0,2],1} = \{ f : [0,2] \to [0,2] \mid f = t^{[0,2]} \text{ for some } t \in T_1 \} \subseteq [0,2]^{[0,2]}.$$

Idea: Provide a *blockwise* description of $f \in F_{[0,2],1}$ by means of McNaughton functions. Exploit the construction of terms computing unary McNaughton functions.

Step 1: Let (g_1, g_2) be unary McNaughton functions, $g_2(\mathbf{1}) = 1$.

Case 1: If $g_1(\mathbf{1}) = 0$, then f is specified by:

$$\mathbf{a} \in [0,1) \Rightarrow f(\mathbf{a}) = \begin{cases} g_1(\mathbf{a}) & \text{if } g_1(\mathbf{a}) < 1 \\ 2 & \text{otherwise} \end{cases}$$

$$\boldsymbol{a} \in [1,2] \Rightarrow \textit{f}(\boldsymbol{a}) = 0$$

Case 2: If $g_1(1) = 1$, then f is specified by:

$$\mathbf{a} \in [0,1) \Rightarrow f(\mathbf{a}) = \begin{cases} g_1(\mathbf{a}) & \text{if } g_1(\mathbf{a}) < 1 \\ 2 & \text{otherwise} \end{cases}$$

$$\boldsymbol{a} \in [1,2] \Rightarrow \textit{f}(\boldsymbol{a}) = \textit{g}_2(\boldsymbol{a}-\boldsymbol{1}) + 1$$

Basic Logic | 1-Variate Fragment | Step 1 (Finished)

Guess:

$$F_{[0,2],1}=\{f\mid f \text{ specified by some } (g_1,g_2)\}\subseteq [0,2]^{[0,2]},$$
 and let $\langle f\rangle=(\langle g_1\rangle,\langle g_2\rangle)$ be the encoding of $f\in F_{[0,2],1}.$

Basic Logic | 1-Variate Fragment | Step 2 (Finished)

Step 2: Nontrivial, since $F_{[0,2],1} \subset [0,2]^{[0,2]}$.

We claim that $t^{[0,2]} \in F_{[0,2],1}$ for every $t \in T_1$ (by induction on t, provide a pair (g_1, g_2) describing $t^{[0,2]}$ in terms of Step 1).

Fact

Let g be a unary McNaughton function and let $t \in T_1$ be such that $t^{[0,1]} = g$. If g(1) = 0, then:

$$\langle t^{[0,2]} \rangle = (\langle g \rangle, \langle 0 \rangle).$$

(b)
$$t^{[0,2]}$$
.

Fact (Cont'd)

Otherwise, if $g(\mathbf{1}) = 1$ (w.l.o.g. $t \in T_1^+$), then:

$$\langle t^{[0,2]} \rangle = (\langle g \rangle, \langle g \rangle),$$

 $\langle (\neg \neg t)^{[0,2]} \rangle = (\langle g \rangle, \langle 1 \rangle),$
 $\langle (\neg \neg t \to t)^{[0,2]} \rangle = (\langle 1 \rangle, \langle g \rangle).$

(b) $t^{[0,2]}$.

(c)
$$(\neg \neg t)^{[0,2]}$$
.

Assuming $t \in T_1^+$ is necessary, e.g. if $g = \max(x_1, 1 - x_1)$,

$$(x_1 \vee \neg x_1)^{[0,1]} = r^{[0,1]} = g = s^{[0,1]} = (x_1 \to (x_1 \odot x_1))^{[0,1]},$$

but
$$(\langle g \rangle, \langle x_1 \rangle) = \langle r^{[0,2]} \rangle \neq \langle s^{[0,2]} \rangle = (\langle g \rangle, \langle g \rangle)$$
,

(a) $r^{[0,1]} = s^{[0,1]}$.

(b) $r^{[0,2]}$

(c) $s^{[0,2]}$

Step 3: Let
$$f \in F_{[0,2],1}$$
 be given by (g_1, g_2) , and let $t_1, t_2 \in T_1$ be s.t. $g_1 = t_1^{[0,1]}$ and $g_2 = t_2^{[0,1]}$.

Case 1: If
$$g_1(1) = 0$$
, we put:

$$t=t_1$$
,

and we claim that $t^{[0,2]} = f$. Indeed,

(b)
$$t^{[0,2]} = f$$
.

Basic Logic | 1-Variate Fragment | Step 3 (Finished)

Case 2: If $g_1(1) = 1$, we put:

$$t=(\neg\neg t_1)\wedge(\neg\neg t_2\to t_2),$$

and we claim that $t^{[0,2]} = f$. Indeed,

Figure:
$$t_1, t_2 \in T_1$$
. (c) $(\neg \neg t_1)^{[0,2]}$ (d) $(\neg \neg t_2 \to t_2)^{[0,2]}$.

Basic Logic | 1-Variate Fragment | Summary

Goal: Characterize the set of unary basic functions:

$$F_{[0,2],1} = \{ f : [0,2] \to [0,2] \mid f = t^{[0,2]} \text{ for some } t \in T_1 \}.$$

Step 1: Guess

$$F_{[0,2],1} = \{f : [0,2] \to [0,2] \mid f \text{ specified by } (g_1,g_2)\}.$$

- Step 2: Every term $t \in T_1$ computes a function $t^{[0,2]} \in F_{[0,2],1}$.
- Step 3: Every function $f \in F_{[0,2],1}$ is computed by a term $t \in T_1$.

Basic Logic | 2-Variate Fragment | Goal

Memo: T_2 interpreted over [0,3], $t \in T_2$ computes $t^{[0,3]} \in [0,3]^{[0,3]^2}$.

Goal: Characterize the set of binary basic functions:

$$F_{[0,3],2} = \{ f : [0,3]^2 \to [0,3] \mid f = t^{[0,3]} \text{ for some } t \in T_2 \} \subseteq [0,3]^{[0,3]^2}.$$

Idea: Provide a *blockwise* description of $f \in F_{[0,3],2}$ by means of binary McNaughton functions and unary basic functions. Exploit the construction of terms computing binary McNaughton functions and unary basic functions.

Definition (Interface)

Let g be a binary McNaughton function linearized by U (over vertices V). Let

$$I_q = I_1 \cup I_2 = \{ \mathbf{a} \mid a_1 = 1 \} \cup \{ \mathbf{a} \mid a_2 = 1 \} \subseteq [0, 1]^2.$$

An *interface* of g is an arbitrary fixed *finite* set R_g of rational points and open line segments with rational endpoints s.t. R_g forms a partition of I_g , and $(V \cap I_g) \subseteq R_g$ (notation, $R_{g,1} = R_g \cap I_1$ and $R_{g,2} = R_g \cap I_2$).

Definition (Supplement)

Let g be a binary McNaughton function and let R_g be an interface of g. Then, the *supplement* of g is a set K_g containing a pair (R, t_R) for every $R \in R_g$ s.t. $g \upharpoonright R = 1$, where $t_R \in T_{\{i\}}$ if $R \subseteq I_i$ for i = 1, 2 and $t_R^{[0,2]}(\mathbf{1}) = 1$.

Fact

Let $t \in T_1$ be s.t. $t^{[0,2]}(1) = 1$. Then,

(D)
$$t^{[0,3]} \upharpoonright \{ \mathbf{a} \mid a_2 = 0 \}.$$

Notation

Let h be a function in $F_{[0,1],2}$ or in $F_{[0,3],2}$. Then $\mathbf{a} \in dom(h)$ has color:

- if $h(\mathbf{a}) = p_{\mathbf{a}}(\mathbf{a})$
- \blacksquare if $h(\mathbf{a}) = p_{\mathbf{a}}((a_1, \cdot))$
- if $h(\mathbf{a}) = p_{\mathbf{a}}((\cdot, a_2))$
- | if h(a) = 0
- if h(a) = 1

where pa is a linear polynomial with integer coefficients.

(b) h_1 colors.

(d) h_2 colors.

Step 1: Let (g_1, g_2) be binary McNaughton functions s.t. $g_2(1) = 1$, and let (K_1, K_2) their supplements.

Figure: (a) g_1 candidate. (b) g_1 or g_2 candidate.

We describe *f* blockwise. We use the information encoded by g_1 and g_2 , and their supplements K_1 and K_2 , to cover the whole of $[0,3]^2$.

Block 1: $g_1 \upharpoonright [0,1)^2$ covers the region $[0,1)^2$, in the following sense.

$$\mathbf{a} \in [0,1)^2 \Rightarrow f(\mathbf{a}) = \begin{cases} g_1(\mathbf{a}) & \text{if } g_1(\mathbf{a}) < 1 \\ 3 & \text{if } g_1(\mathbf{a}) = 1 \end{cases}$$

(b)
$$f \upharpoonright [0, 1)^2$$
.

Block 2:
$$g_1 \upharpoonright I_{g_1,2} = \{(a_1,1) \mid 0 \le a_1 < 1\} \text{ covers } [0,1) \times [1,3],$$

$$\mathbf{a} \in [0,1) \times [1,3] \Rightarrow f(\mathbf{a}) = \begin{cases} p_R((a_1)) & \text{if } g_1((a_1,1)) = p_R((a_1)) < 1 \\ t_R^{[0,3]}(\mathbf{a}) & \text{if } (a_1,1) \subseteq R \in R_{g_1,2} \end{cases}$$

and
$$g_1 \upharpoonright I_{g_1,1} = \{(1,a_2) \mid 0 \le a_2 < 1\}$$
 covers $[1,3] \times [0,1)$,

$$\mathbf{a} \in [1,3] \times [0,1) \Rightarrow f(\mathbf{a}) = \begin{cases} p_R((a_2)) & \text{if } g_1((1,a_2)) = p_R((a_2)) < 1 \\ t_R^{[0,3]}(\mathbf{a}) & \text{if } (1,a_2) \subseteq R \in R_{g_1,1} \end{cases}$$

Figure: (b)-(d) $f \upharpoonright ([0,1) \times [1,3] \cup [1,3] \times [0,1))$, for $g_1 \upharpoonright I_{g_1,1} \cup I_{g_1,2}$ as in (a)-(c).

Block 3: $g_1 \upharpoonright \{1\}$ covers the region $[1,3]^2$, in the following sense.

Case 1: If
$$g_1(1) = 0$$
, then

$$\mathbf{a} \in [1,3]^2 \Rightarrow f(\mathbf{a}) = 0. \tag{1}$$

(b) $f \upharpoonright [1, 3]^2$.

Case 2: If $g_1(1) = 1$, then g_1 delegates to g_2 the coverage of $[1,3]^2$:

$$\mathbf{a} \in [1,2)^2 \cup [2,3]^2 \Rightarrow f(\mathbf{a}) = \begin{cases} g_2(\mathbf{a}-\mathbf{1}) + 1 & \text{if } \mathbf{a} \in [1,2)^2 \text{ and } g_2(\mathbf{a}-\mathbf{1}) < 1\\ g_2(\mathbf{a}-\mathbf{2}) + 2 & \text{if } \mathbf{a} \in [2,3]^2 \text{ and } g_2(\mathbf{a}-\mathbf{2}) < 1\\ 3 & \text{otherwise} \end{cases}$$
 (2)

$$\mathbf{a} \in [1,2) \times [2,3] \Rightarrow f(\mathbf{a}) = \begin{cases} p_R((a_1-1)) + 1 & \text{if } g_2((a_1-1,1)) = p_R((a_1-1)) < 1 \\ t_R^{[0,3]}(\mathbf{a}) & \text{if } (a_1-1,1) \subseteq R \in R_{g_2,2} \end{cases}$$
(3)

$$\mathbf{a} \in [2,3] \times [1,2) \Rightarrow f(\mathbf{a}) = \begin{cases} p_R((a_2-1)) + 1 & \text{if } g_2((1,a_2-1)) = p_R((a_2-1)) < 1 \\ f_R^{[0,3]}(\mathbf{a}) & \text{if } (1,a_2-1) \subseteq R \in R_{g_2,1} \end{cases} \tag{4}$$

Summarizing the previous blockwise description:

Case 1: If $g_1(1) = 0$, then f is colored as follows:

Case 2: If $g_1(1) = 1$, then f is colored as follows:

Basic Logic | 2-Variate Fragment | Step 1 (Finished)

Step 1: Guess:

$$F_{[0,3],2}=\{f\mid f \text{ given by some } (g_1,g_2),\, (K_1,K_2)\}\subseteq [0,3]^{[0,3]^2},$$
 and let $\langle f\rangle=(\langle g_1\rangle,\langle g_2\rangle,\langle K_1\rangle,\langle K_2\rangle)$ be the encoding of $f\in F_{[0,3],2}.$

Basic Logic | 2-Variate Fragment | Step 2 (Finished)

Step 2: Nontrivial, since $F_{[0,3],2} \subset [0,3]^{[0,3]^2}$.

By induction on $t \in T_2$, it is possible to check that $t^{[0,3]} \in F_{[0,3],2}$ by providing pairs (g_1,g_2) and (K_1,K_2) that describe $t^{[0,3]}$ in terms of Step 1.

Fact

Let $f \in F_{[0,3],2}$ be given by pairs (g_1, g_2) and (K_1, K_2) with $g_1(1) = 0$. Let $t_1 \in T_2$ be s.t. $t_1^{[0,1]} = g_1$. Then,

$$t=t_1 \tag{5}$$

satisfies $t^{[0,3]} = f$, excluding points covered by R's in R_{g_1} s.t. $g_1 \upharpoonright R = 1$.

(a)
$$g_1 = t_1^{[0,1]}$$
.

(b)
$$f \neq t^{[0,3]}$$
.

Fact (Cont'd)

Let $f \in F_{[0,3],2}$ be given by pairs (g_1, g_2) and (K_1, K_2) with $g_1(\mathbf{1}) = 1$. Let $t_1, t_2 \in T_2^+$ be s.t. $t_1^{[0,1]} = g_1$ and $t_2^{[0,1]} = g_2$. Then,

$$t = ((\neg \neg t_1) \land (\neg \neg t_2 \rightarrow t_2)) \tag{6}$$

satisfies $t^{[0,3]} = f$, excluding points covered by R's in R_{g_i} s.t. $g_i \upharpoonright R = 1$, $i \in \{1,2\}$.

(b)
$$g_2 = t_2^{[0,1]}$$
.

(c)
$$f \neq t^{[0,3]}$$
.

Theorem (Masking)

Let $f \in F_{[0,3],2}$ be given by pairs (g_1, g_2) and (K_1, K_2) , and let t be as in (5)-(6). Then, there exist $r, s \in T_2$ s.t. for every $\mathbf{a} \in [0,3]^2$:

$$r^{[0,3]}(\mathbf{a}) = \begin{cases} t^{[0,3]}(\mathbf{a}) & \text{if } t^{[0,3]}(\mathbf{a}) = f(\mathbf{a}) \\ \top^{[0,3]} & \text{otherwise} \end{cases}$$
(7)

$$s^{[0,3]}(\mathbf{a}) = \begin{cases} f(\mathbf{a}) & \text{if } t^{[0,3]}(\mathbf{a}) \neq f(\mathbf{a}) \\ \top^{[0,3]} & \text{otherwise} \end{cases}$$
(8)

Then, $r \wedge s$ is s.t.

$$(r \wedge s)^{[0,3]} = f.$$

Figure: The masking theorem. (d) and (h) show $(r \wedge s)^{[0,3]} = f$.

The key skill to implement the masking theorem is the following.

Lemma (Gadget)

Let $f \in F_{[0,3],2}$ be given by pairs (g_1,g_2) and (K_1,K_2) . Let $R \in R_{g_1}$ s.t. $g_1 \upharpoonright R = 1$ and suppose w.l.o.g. that $R \subseteq I_2$. Then, there exists $r \in T_2$ s.t. for every $\mathbf{a} \in [0,3]^2$:

$$r^{[0,3]}(\mathbf{a}) = \begin{cases} x_2^{[0,3]}(\mathbf{a}) & \text{if } (a_1,1) \subseteq R \\ T^{[0,3]} & \text{otherwise} \end{cases}$$
(9)

Let $R \in R_{g_2}$ s.t. $g_2 \upharpoonright R = 1$ and suppose w.l.o.g. that $R \subseteq I_2$. Then, there exists $s \in T_2$ s.t. for every $\mathbf{a} \in [0,3]^2$:

$$s^{[0,3]}(\mathbf{a}) = \begin{cases} x_2^{[0,3]}(\mathbf{a}) & \text{if } (a_1 - 1, 1) \subseteq R \\ \top^{[0,3]} & \text{otherwise} \end{cases}$$
 (10)

Basic Logic | 2-Variate Fragment | Step 3 (Finished)

Figure: The gadget lemma.

Basic Logic | 2-Variate Fragment | Summary

Goal: Characterize the set of binary basic functions:

$$F_{[0,3],2} = \{ f : [0,3]^2 \to [0,3] \mid f = t^{[0,3]} \text{ for some } t \in T_2 \}.$$

Step 1: Guess

$$F_{[0,3],2} = \{f : [0,3]^2 \to [0,3] \mid f \text{ specified by } (g_1, g_2), (K_1, K_2)\}.$$

- Step 2: Every term $t \in T_2$ computes a function $t^{[0,3]} \in F_{[0,3],2}$.
- Step 3: Every function $f \in F_{[0,3],2}$ is computed by a term $t \in T_2$.

Outline

- Basic Logic
- 2 Functional Representation
- Conclusion
 - Universal Algebra
 - References

Universal Algebra | BL-Algebras

Definition (*BL*-Algebras)

A *(commutative bounded) GBL-algebra* is an algebra $(A, \lor, \land, \odot, \rightarrow, \top, \bot)$ of type (2, 2, 2, 2, 0, 0) s.t.:

- (i) (A, \odot, \top) is a commutative monoid;
- (ii) $(A, \vee, \wedge, \top, \bot)$ is a bounded lattice;
- (iii) residuation holds, i.e. $x \odot y \le z$ iff $y \le x \to z$;
- (iv) divisibility holds, i.e. $x \wedge y = x \odot (x \rightarrow y)$.

A *BL-algebra* is a *prelinear GBL*-algebra i.e., $(x \to y) \lor (y \to x) = \top$ holds. An *MV-algebra* is an *involutive BL*-algebra i.e., $\neg \neg x = x$ holds $(\neg x = x \to \bot)$.

Universal Algebra | Free *BL*-Algebra

Theorem (Generic BL-Algebra)

[0, n+1] generates the variety of n-generated BL-algebras.

Corollary (Free BL-Algebra)

The free n-generated BLalgebra is isomorphic to the algebra having domain $F_{[0,n+1],n}$ and pointwise defined operations $\odot^{[n+1]}$ and $\rightarrow^{[n+1]}$.

References

P. Aglianò and F. Montagna.

Varieties of BL-Algebras I: General Properties.

Journal of Pure and Applied Algebra, 181:105–129, 2003.

S. Aguzzoli and B. Gerla.

Normal Forms for the One-Variable Fragment of Hájek's Basic Logic.

Proceedings of ISMVL'05, 284–289, 2005.

S. Aguzzoli and S. Bova.

The Free *n*-Generated *BL*-Algebra.

Submitted.

F. Montagna

The Free BL-Algebra on One Generator.

Neural Network World, 5:837-844, 2000.

D. Mundici.

A Constructive Proof of McNaughton's Theorem in Infinite-Valued Logics.

The Journal of Symbolic Logic, 59:596–602, 1994.

