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Basic Logic Calculus

Semantics

Language

X set of variables
DA£IC{1,....n}, X;={x|iel}

T (propositional) language over X and {®, —, L}
T+ fragment of T over {®, —}

T, fragment of T over X

T," fragment of T over X; and {®, —}

T =Xx1 — X

at=t— L

hAnb=to(tl —b)

1'1\/t2:((t1 —>t2)—>f2)/\((t2—>t1)—>t1)
teob=({H—h)o(k—t)
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Basic Logic Calculus

Semantics

Basic Logic and tukasiewicz Logic

Basic logic, Fp;, is defined by the MP rule and the axiom schemata:

(A1) (A— B) — ((B— C) — (A~ C))

(A2) (Ao B)— A

(A3) (A®B) — (Bo A)

(Ad) (A® (A~ B)) — (B (B — A))

(A5) ((A— (B~ C)) « ((A® B) — C))

(A6) (A—B)—C)—((B—A)—C)—C)

(A7) L —A

tukasiewicz logic, I~ , extends Basic logic by adding:
(A8) —A— A
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Basic Logic

Calculus
Semantics

Semantics

A semantics for T is an algebra A = (A, ®, —, 1) of type (2,2,0).

Fact (Truthfunctionality)

Let A be a semantics for T and lett € T,. Then,
t uniquely determines an n-ary function t” over A, by putting,
foreverya = (ay,...,ay) € A":

(i) ift = x;, then tA(a) = a;;
(i) ift= L, thenth(a) = LA;
(iii) ift =ros, then (ros)A(a) = rA(a) o* sA(a),

where o? realizes o in A ando € {1,®,—}.

We say that t* is the function computed by t over A.
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Basic Logic
9 Calculus

Semantics

Semantics | tukasiewicz Logic

Definition (Lukasiewicz Semantics)
[0,1] = ([0, 1],®, —, L) given by 1[0 =0 and:

a; O g, = max(0, a; + a» — 1)
ar - g, =min(1,a + 1 — &)

(a) t= L. (b) t=x1 © Xo.

Figure: %1 :7]0,1]?> — [0, 1] for sample t € T.
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Basic Logic
9 Calculus

Semantics

Semantics | tukasiewicz Logic

Fact (Abbreviations)

TON =1, 015 =1— g, and:

a; N0 g, = min(ay, a)

ay VIO g, = max(ay, az)

(b) t=-x.

Figure: %1 :]0,1]?> — [0, 1] for sample t € T.
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Basic Logic
9 Calculus

Semantics

Completeness | Lukasiewicz Logic

Let t € T,. Then, tis a tukasiewicz tautology, [0, 1] = t, iff
tl011(a) = 1 for every a € [0, 1]".

Theorem (Chang)

Lett e T. Then,
[0,1] = tiff F t.
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Basic Logic
9 Calculus

Semantics

Fuzziness | tukasiewicz Logic

¥ tv —t. Thus, ¥pg tV —t.

t € T, forsome n> 1. Check (in NP) that (t v —)[0:1] £ T[0.1],
Note that ¥, t Vv —t implies ¥ g, t\ —t for every t. O

(a) x1. (b) —x1. (€) X1V —xy.

Figure: t%1:[0,1] — [0, 1] for sample t € Ty.
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Basic Logic

Calculus
Semantics

Semantics | Basic Logic

Definition (Basic Semantics)

[0,n+1] = ([0,n+1],,—, L) given by 1" — 0 and:

2 o0l 5 min(a, az) if [a1] # |&z]
1 2 max(|as|,a +a — |ai] — 1) otherwise
a if |az] < |ar]
a -0 g =L g+ lai| +1—ar if |ai] = |a2] and & < ay
n+1 otherwise
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Basic Logic

Calculus
Semantics

Semantics | Basic Logic

Fact (Abbreviations)
T — n 4 1 and:

n+1 ifa=0
S0ntlg =01 _a ifo<a<1
0 if1<a

ar AP 2, = min(ay, a)

ar VIO 2, = max(ay, az)

(b) t=—x4. (€) t=x1 A Xo. (d) t=x1V xo.
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Basic Logic
9 Calculus

Semantics

Completeness | Basic Logic

Let t € T,,. Then, tis a Basic tautology, [0, n + 1] |= t, iff
tl0n+1l(a) = 1 for every a € [0, n + 1]".

Theorem (Aglian6 and Montagna)

Lett e T,. Then,

[0,n+1] = tiff Fp t.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Functional Representation | Problem Statement

Fix n>1and A € {[0,1],[0,n+ 1]}.

Let t € T,,. We know that tA is an n-ary operation over A,
but not every n-ary operation over A is computable by means of
some t e T,.

A natural problem is then to characterize explicitly the set

Fan={f:A"— A|f=trforsomete T,} C A*.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Functional Representation | Solution Schema

Letn>1and A € {[0,1],[0,n+ 1]} be given.

Step 1: Guess Fa C AA" and provide an effective encoding
(-) € {0,1}* of functions in Fa p.

Step 2: Check that tA € Fp , for every t € Ty, i.e:
by induction on t, show that t* = f for some f € Fa.n-

Step 3: Check that for every f € Fp pthereis t € Tos.t. tA =1, i.e:
describe a terminating and correct algorithm that receives
(f)y and returns t € T, such that tA = f.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Functional Representation | tukasiewicz Logic

Definition (McNaughton Function)

A continuous function f : [0,1]” — [0, 1] is an n-ary
McNaughton function iff there are linear polynomials with
integer coefficients p1,...,py : R” — R s.t. for every a € [0, 1],
thereis jc {1,...,u} s.t. f(a) = p;(a).

Figure: Unary and binary McNaughton functions samples.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Functional Representation | tukasiewicz Logic

Definition (Unimodular Triangulation)

A unimodular triangulation U of [0,1]" is a finite set of
n-dimensional unimodular simplexes with rational vertices, such
that the union of all simplexes in U coincides with [0, 1]” and
any two simplexes intersect in a common face.

Let f be an n-ary McNaughton function with linear components
p1,--.,Pu, and let U be a unimodular triangulation of [0, 1]".
We say that U linearizes f if for every simplex S € U, there is
je{l,...,u}suchthatf [ S = p;.

Theorem (Mundici)

Let f be an n-ary McNaughton function. Then,
there is a unimodular triangulation of [0, 1]” linearizing f.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Functional Representation | tukasiewicz Logic

Goal: Characterize the set:
Fioapn = {f:[0,1]" — [0,1]| f = {*" for some ¢t € T,,} C [0,1]")".
Step 1: Guess
Fio.1.n = {f | f n-ary McNaughton function} C [0, 111",

Let f € Fjp,11,, with polynomials ps, ..., py, let U= {5;,..., Sm}
be a unimodular triangulation linearizing f, and fori =1,... , m
let gi € {p1,...,pu} be such that f [ S; = qg;. Encode f via:

(Hh={(S,q)|i=1,...,m}
Step 2: Nontrivial, since F 11, C [0, 1101 (by induction on f).

Step 3: For every f € Fig 1,0, there is t € T, such that %' = f (Mundici).
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Functional Representation | tukasiewicz Logic

Corollary

Let g be an n-ary McNaughton function s.t. g(1) = 1.
Then, there exists t € T s.t. {01 = g.

Proof.

Takes € T, s.t. s = g, and derive t € T; s.t. {01 = s py substitutions:

(hrol <« L, leor< 1L, Ll —>r<r—r,andr— L < —r;
(i) (r©o=8) <« =(r—s)and(—-ros) <« =(s—r);
(i) (r—=8) <« =(ro©s)and(—r—s) <« (r— (res))—s;

v)

(iv) —=r < r.

If g(1) = 1 and "1 = g, we always assume w.l.o.g. t € T,
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Goal

Memo: Ty interpreted over [0,2], t € Ty computes t%2] ¢ [0, 2](02],

Goal: Characterize the set of unary basic functions:
Fioz11 = {f:[0,2] — [0,2] | f = 112! for some t € Ty} C [0,2]1%2.
Idea: Provide a blockwise description of f € Fjg 5 1 by means of

McNaughton functions. Exploit the construction of terms
computing unary McNaughton functions.

Simone Bova Functional Representation of Basic Logic



Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Step 1

Step 1: Let (g4, g2) be unary McNaughton functions, g-(1) = 1.

Case 1: If g1(1) = 0, then f is specified by:

ac0,1)= f(a)= {? @ :tﬁ;(rsv)i;1

ac[1,2]=f(a)=0

(@ g1 (o) f.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Step 1

Case 2: If g1(1) =1, then f is specified by:

acl0,1)=f(a)= {21 @ :tﬁ;(rjv)i;1

ac[1,2]=f(a)=g(@a—1)+1

1 t 2
s
3
2 2
3 T
i
1 2
3 3
1
S
ot i1 2 Tt Tiz 1 i35 7t
R 373 373

T

(@) g1
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Step 1 (Finished)

Guess:
Flo21 = {f | f specified by some (g1, g2)} C [0,2]°2,

and let (f) = ((g91), (g=)) be the encoding of f € F[072],1.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Step 2 (Finished)

Step 2: Nontrivial, since Fyg 5 1 C [0,2]12].
We claim that 102 € Fjg 5 4 for every t € T

(by induction on t, provide a pair (g1, g») describing 2] in
terms of Step 1).
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Step 3

Let g be a unary McNaughton function and let t € T be such
that 101 = g. If g(1) = 0, then:

(%) = ((g),(0)).

(@) g =01, (b) 0.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Step 3

Fact (Cont'd)
Otherwise, if g(1) = 1 (w.l.o.g. t € T}"), then:

(3 = ((9), (9)),
(=03 = (g), (1)),
(=t — 0% = ((1),(g)).

2
s \ \/

3

a

3

1

@g=t01 (B 02 () (00 (d)

(~—t — )02,
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Step 3

Assuming t € T," is necessary, e.g. if g = max(xy, 1 — xy),

(v )0 = A0 = g = s = (g — (x4 © %)),

but ((g), (x1)) = (r1%%) # (%)) = ((g). (g)),

(a) o1 = g1, (b) o2, (c) s,
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Step 3

Step 3: Let f € Fpp2;,1 be given by (g1, 92),
andlett;,tp € Ty bes.t. g = t1[0’1] and go = 40»”.

Case 1: If g1(1) = 0, we put:
t=1t,

and we claim that 02 = f. Indeed,

(@ 1 =g. (o)A =r.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Step 3 (Finished)

Case 2: If g1(1) =1, we put:
t: (—\—\t1) /\ (ﬂ_\t2 — t2),

and we claim that t1°2] = f. Indeed,

@& -0 O #T-0 (o) (d) (e) 2 1.

Figure: b,k e Ty (c) (—|—\f1)[0’2] (d) (_\_|t2 — tg)[o’zl.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 1-Variate Fragment | Summary

Goal: Characterize the set of unary basic functions:
Fioz11 = {f:[0,2] — [0,2] | f = 112! for some t € T1}.
Step 1: Guess
Fio211 = {f:[0,2] — [0, 2] | f specified by (g1, g2)}.

Step 2: Every term t € Ty computes a function 2 € Fig o .
Step 3: Every function f € Fpg 7)1 is computed by aterm t € Tj.
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Problem Statement

Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Goal

Memo: Ty interpreted over [0,3], t € T, computes 03] ¢ [0, 3]0:3F°,

Goal: Characterize the set of binary basic functions:

Fiog2 = {f:[0,3]% —[0,3] | f = % for some t € T,} C [0,3]103F.

Idea: Provide a blockwise description of f € Fg 32 by means of binary
McNaughton functions and unary basic functions. Exploit the
construction of terms computing binary McNaughton functions
and unary basic functions.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 1

Definition (Interface)
Let g be a binary McNaughton function linearized by U (over vertices V). Let
lh=hUbk={alai=1}u{a|a =1} C[0,1]%

An interface of g is an arbitrary fixed finite set R, of rational points and open
line segments with rational endpoints s.t. Ry forms a partition of /;, and
(Vnly) C Ry (notation, Ry ;1 = Ry N 1y and Ry 2 = Ry N k).




Problem Statement

Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 1

Definition (Supplement)

Let g be a binary McNaughton function and let Ry be an interface of g. Then,
the supplement of g is a set Ky containing a pair (R, tg) for every R € Ry s.t.

gl R=1,wheretg € Ty if RC fifori=1,2and A (1) = 1.

Fact
Lett € Ty be s.t. 92 (1) = 1. Then,

103 | fa|a, = 0}.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 1

Let h be a function in F[0,1],2 orin F[073]72. Then a € dom(h) has color:
if h(a) = pa(a)
if h(a) = pa((as,-))
if h(a) = pa((-, a2))
ifh(a) =0
if h(a) =
where pa is a linear polynomial with integer coefficients.

u,
a1

(d) ho colors.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 1

Step 1: Let (g1, g2) be binary McNaughton functions s.t. g>(1) =1,
and let (Ki, K2) their supplements.

(@) (o)

Figure: (a) g1 candidate. (b) gy or g candidate.

We describe f blockwise. We use the information encoded by g and
g2, and their supplements K; and Kz, to cover the whole of [0, 3]°.
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Problem S
Functional Representation Euk:
Basic Logic

Basic Logic | 2-Variate Fragment | Step 1

Block 1: gy 1 [0,1)? covers the region [0, 1)2, in the following sense.

RS AR P

(@) g1 1[0,1)2
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Functional Representation z
Basic Logic

Basic Logic | 2-Variate Fragment | Step 1

Block 2: gy [ lg,2 = {(a1,1) |0 < a; <1} covers[0,1) x [1,3],

pr((a1)) ifgi((ar,1)) =pr((ar)) <1

0,1) x [1,8] = f(a) =
ae0,1) x[1,3] = f(a) {tg)*3](a) if (a1,1) C R € Ry 2

and gy | lg, 1 ={(1,a2) | 0 < a < 1} covers[1,3] x [0, 1),

pr((a2)) ifgi((1,a2)) = pr((az)) <1

ac 3 x(o.1) = fa) = {t,[_-(,)’a](a) if (1,82) C R € Ry, 1

Figure: (b)-(d) f 1 ([0,1) x [1,8] U [1,3] x [0, 1)), for g1 [ I, .1 U Iy, 2 as in (a)-(c).
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Functional Representation

Basic Logic

Basic Logic | 2-Variate Fragment | Step 1

Block 3: gy | {1} covers the region [1, 3], in the following sense.

Case 1: If g1(1) =0, then
ac[1,3%2=f(a)=0. (1

a1 Sal

(@ g [ {1} (b) £ 11,37
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Functional Representation
Basic Logic

Basic Logic | 2-Variate Fragment | Step 1

Case 2: If g;(1) = 1, then gy delegates to g, the coverage of [1, 3]:

g@a—1)+1 ifaec[1,2)%andgy(a—1) <1
ac[1,22U[2,3° = fa) = go(a—2)+2 ifac[2,3°2andg(a—2) <1 @
3 otherwise
pr((ar — 1)) +1 ifga((ar —1,1)) =pg((ay — 1)) <1
ac[1.2)x 2.9 = f(a) = {[osl(a) o —1.1)C A e Ay @)
pPr((az — 1)) +1 ifga((1,a2 — 1)) =prl(az — 1)) < 1
ac3x(1,2) = fa) = {,g),a](a) (8 1) C Ay @

a2
B
. 2 . .

. . T 2 Lo

) o 1 {1} o, 112. ) Ea. 2. (d) Eq. 3. (e) Eq. ).
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 1

Summarizing the previous blockwise description:

Case 1: If g1(1) = 0, then f is colored as follows:

| [ | ..
B

(@ . (0) 1.

Case 2: If g1(1) = 1, then f is colored as follows:
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 1 (Finished)

Step 1: Guess:
Fo.g.2 = {f | f given by some (g1, g2), (K, Kz)} C [0,3]00%F,

and let (f) = ((g1), (92), (K1), (K2)) be the encoding of f € Fg 3) .
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 2 (Finished)

Step 2: Nontrivial, since Fjg )2 C [0, 3]10:3F%,
By induction on t € T, it is possible to check that

1031 € Fio 1.2 by providing pairs (g1, g2) and (Ki, Kz) that
describe t[%3] in terms of Step 1.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 3

Let f € Fo 3,2 be given by pairs (91, 92) and (K1, Kz) with g1(1) = 0.
Lett; € T, be s.t. " = g;. Then,

t="t (5)

satisfies 13 = f, excluding points covered by R’s in Ry, s.t. g1 | R=1.

a2

a2
| = . | ..
2|
I 1 ..
I
_ a1

(@ gr =", (b) f# to2,
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 3

Fact (Cont'd)

Let f € Fp 3,2 be given by pairs (g1, g=) and (K, Kz) with g1(1) = 1.
Letti, t: € T, best %" = gy and " = go. Then,

t=((—th)A (b — b)) (6)

satisfies 1 = f, excluding points covered by R’s in Ry, s.t. gi | R =1,

ie{1,2}.

@ag =t )= (o) fz0
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 3

Theorem (Masking)

Letf € Fp 5,2 be given by pairs (g1, g2) and (K1, Kz), and let t be as in (5)-(6).
Then, there existr,s € T, s.t. for everya € [0, 3]?:

r[073](a) _ t[O,S](a) if t[o,s](a) = f(a) @
TO3 otherwise

s°9(a) = f(a) ift®%(a) # f(a) ®)
TO3 otherwise

Then, r A s is s.t.
(rans)0® =t
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 3

a2 az a2
3 .. } .. 3
2| z| ‘ B
1 .. o .. o
— —
a1

(a) f# O3, (b) rl3, (d)
(e) f# 09, (f) rio3, (h)

Figure: The masking theorem. (d) and (h) show (r A )% = f.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 3

The key skill to implement the masking theorem is the following.

Lemma (Gadget)

Let f € Fp 31,2 be given by pairs (g1, g2) and (Ki, Kz).
LetR € Ry, s.t. g1 | R =1 and suppose w.l.o.g. that R C . Then, there
exists r € T, s.t. for everya € [0, 3]%:

03 = {2 (@) i@ ) SR -
T3 otherwise
LetR € Ry, s.t. g» | R =1 and suppose w.l.o.g. that R C b. Then, there
exists s € T s.t. for every a € [0, 3]2:
[0,3] :
03,y _ )X (@) if(aa—1,1)CR
s a) = 10
(@) {TIO’S] otherwise (19)
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Step 3 (Finished)
TiFr  EE |EE
darrE  HE 1IEe

o

et L., L.,

(a) r1[0’3]A (b) rz[o’S]A (C) (h — rz)[o*a].

a a2
3

a2
| .
| I I 2I..
| I I I ].-

(@) 5. (e) & (f) (51 — 2o

Figure: The gadget lemma.
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Problem Statement
Functional Representation tukasiewicz Logic
Basic Logic

Basic Logic | 2-Variate Fragment | Summary

Goal: Characterize the set of binary basic functions:
Fioa2 = {f:[0,37 —[0,3] | f = t{*% for some t € T,}.
Step 1: Guess
Fio32 = {f :[0,3]% — [0,3] | f specified by (g1, g2), (K, K2)}.

Step 2: Every term t € T, computes a function 031 € Fig 4.
Step 3: Every function f € Fpg 3) 2 is computed by a term t € Ta.
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Conclusion

Universal Algebra | BL-Algebras

Definition (BL-Algebras)

A (commutative bounded) GBL-algebra is an algebra
(A, V,A,©,—, T, L) of type (2,2,2,2,0,0) s.t.:

(i) (A,®,T) is a commutative monoid;
(if) (A,V,A,T,L)is abounded lattice;
(iii) residuationholds,i.e. x Oy < ziff y < x — z;
(iv) divisibility holds, i.e. X Ay =x ® (X — y).

A Bl-algebrais a prelinear GBL-algebrai.e., (x - y)V(y = x) =T
holds. An MV -algebra is an involutive BL-algebra i.e., =——x = x holds
(=x=x—1).
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Theorem (Generic BL-Algebra)

[0, n+ 1] generates the variety of n-generated BL-algebras.

Corollary (Free BL-Algebra)

The free n-generated BLalgebra is isomorphic to the algebra having
domain Fyp 1),» and pointwise defined operations ©["+' and —[+11,
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