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Expressibility

Notation:

• FO = {φ | φ relational first-order sentence}, L ⊆ FO, k ∈ N;

• φ uses at most k variables if |{x | x variable occurring in φ}| ≤ k;

• Lk = {φ ∈ L | φ uses at most k variables}.

The expressibility problem is (the decision version of)
the problem of minimizing variable usage in first-order logic:

Problem L-EXPRESS

Instance (φ, k) ∈ L × N
Question Is φ logically equivalent to some ψ ∈ Lk?

Lk-EXPRESS is restriction of L-EXPRESS to instances in L × {k}.
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Expressibility | Example

γ = ∃x1 . . .∃x9(
∧

i=2,4,6,8

E5ix5xi ∧
∧

i=1,3

E2ix2xi ∧
∧

i=1,7

E4ix4xi ∧
∧

i=3,9

E6ix6xi ∧
∧

i=7,9

E8ix8xi)

≡ ∃x1∃x2∃x3∃x4(E41x4x1 ∧ E21x2x1 ∧ E23x2x3

∧ ∃x1(E54x1x4 ∧ E52x1x2 ∧ E23x2x3

∧ ∃x2(E54x1x4 ∧ E56x1x2 ∧ E63x2x3

∧ ∃x3(E47x4x3 ∧ E54x1x4 ∧ E56x1x2

∧ ∃x4(E87x4x3 ∧ E58x1x4 ∧ E56x1x2

∧ ∃x1(E87x4x3 ∧ E89x4x1 ∧ E69x2x1)))))) ∈ FO4

= γ′.

γ ∈ FO4-EXPRESS because γ ≡ γ′ and γ′ ∈ FO4.
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Model Checking

Variable usage is important in the algorithmic and complexity study
of the model checking problem:

Problem MODELCHECKING(L)

Instance A finite structure A and φ ∈ L.

Question A |= φ?

A pertinent example of model checking is (Boolean) query evaluation,
evaluating a (Boolean) query φ over a relational database A.
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Model Checking | Algorithmics

• The width of φ is the max number of free variables over subformulas,

width(φ) = max
ψ subformula of φ

|{x | x free in ψ}|.

• Width and variable usage are “essentially” equivalent
(if width(φ) ≤ k, in polytime find ψ ∈ FOk equivalent to φ).

• A |= φ decidable in time

O(‖A‖width(φ))

by the natural recursive evaluation of φ in A (Vardi).

Minimizing the variables used in φ, also minimizes the exponent in the
runtime of the natural query evaluation algorithm.
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Model Checking | Complexity

In a typical database scenario, queries are small and databases are large.

A two stage procedure where:

• a query optimization algorithm of possibly high complexity
(eg, a width minimization algorithm),

• is followed by an evaluation algorithm that evaluates the optimized
query in polytime,

f (‖φ‖) + ‖A‖O(1)

might be computationally feasible (in contrast to the natural evaluation).

This approach yields a relaxation of polynomial-time tractability, called
fixed-parameter tractability, capable of exploiting this asymmetry of the
database setting.

With respect to basic and fundamental classes of queries in database
theory, such as conjunctive queries and existential positive queries,
“expressibility characterizes fixed-parameter tractability”.
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Model Checking | Complexity

EP = FO(∃,∨,∧) is the class of existential positive sentences
(semantically equivalent to union of conjunctive queries).

Theorem (Chen)
Let L ⊆ EP be a class of sentences. The following are equivalent: ∗

• MODELCHECKING(L) is fixed-parameter tractable.

• There exists k ≥ 1 st L ⊆ EPk-EXPRESS.

∗L has bounded arity. Unless W[1] ⊆ nuFPT.
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Expressibility Classification | Syntactic Fragments

FO(∃,∧,∨) FO(∀, ∃,∧)

FO(∀, ∃,∧,∨)

FO

FO(∃,∧)

S FO(S)-EXPRESS

∀, ∃,∧,∨,¬ undecidable, k ≥ 2 [Folklore]

∀, ∃,∧,∨ undecidable, k ≥ 3 [B, Chen]

∀, ∃,∧ open

∃,∧,∨ Π
p
2-complete, k ≥ 3 [B, Chen]

∃,∧ NP-complete, k ≥ 2 [Dalmau et al.]

FO(S) denotes FO-sentences with logical vocabulary S ⊆ {∀,∃,∨,∧,¬}.
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Primitive Positive Logic

PP = FO(∃,∧) is primitive positive logic (conjunctive queries).

A combinatorial characterization of k-variable expressibility for PP-logic.

Theorem (Dalmau, Kolaitis, and Vardi)
Let φ ∈ PPσ . The following are equivalent:

• φ ∈ PPk-EXPRESS

• tw(core(C[φ])) < k, where:

− C[φ] is the canonical structure of φ;
− core(A) is the core of the structure A;
− tw(A) is the treewidth of the structure A.
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Canonical Structure

Conjunctive queries naturally correspond to relational structures.

Example (Canonical Structure of a Query)

C[∃x1∃x2∃x3∃x4∃x5(Ex3x1 ∧ Ex3x2 ∧ Ex3x4 ∧ Ex3x5)] =

Example (Canonical Query of a Structure)

F

[ ]
= Ex3x1 ∧ Ex3x2 ∧ Ex3x4 ∧ Ex3x5

Q

[ ]
= ∃x1∃x2∃x3∃x4∃x5(Ex3x1 ∧ Ex3x2 ∧ Ex3x4 ∧ Ex3x5)
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Cores

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =



INTRODUCTION RESULTS EXISTENTIAL POSITIVE LOGIC POSITIVE LOGIC SUMMARY

Cores

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =



INTRODUCTION RESULTS EXISTENTIAL POSITIVE LOGIC POSITIVE LOGIC SUMMARY

Cores

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =



INTRODUCTION RESULTS EXISTENTIAL POSITIVE LOGIC POSITIVE LOGIC SUMMARY

Cores

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =



INTRODUCTION RESULTS EXISTENTIAL POSITIVE LOGIC POSITIVE LOGIC SUMMARY

Cores

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =



INTRODUCTION RESULTS EXISTENTIAL POSITIVE LOGIC POSITIVE LOGIC SUMMARY

Cores

B is a core if every homomorphism B→ B is bijective.

B is a core of A if (i) B is a core, (ii) B is a substructure of A, (iii) A↔ B.

Every finite structure A has a unique core up to isomorphism, core(A).

Example

A = ↔ = B = core(A)

A′ = ↔ = B′ = core(A′)



INTRODUCTION RESULTS EXISTENTIAL POSITIVE LOGIC POSITIVE LOGIC SUMMARY

Cores

B is a core if every homomorphism B→ B is bijective.

B is a core of A if (i) B is a core, (ii) B is a substructure of A, (iii) A↔ B.

Every finite structure A has a unique core up to isomorphism, core(A).

Example

A = ↔

= B

= core(A)

A′ = ↔

= B′

= core(A′)



INTRODUCTION RESULTS EXISTENTIAL POSITIVE LOGIC POSITIVE LOGIC SUMMARY

Cores

B is a core if every homomorphism B→ B is bijective.

B is a core of A if (i) B is a core, (ii) B is a substructure of A, (iii) A↔ B.

Every finite structure A has a unique core up to isomorphism, core(A).

Example

A = ↔

= B

= core(A)

A′ = ↔

= B′

= core(A′)



INTRODUCTION RESULTS EXISTENTIAL POSITIVE LOGIC POSITIVE LOGIC SUMMARY

Cores

B is a core if every homomorphism B→ B is bijective.

B is a core of A if (i) B is a core, (ii) B is a substructure of A, (iii) A↔ B.

Every finite structure A has a unique core up to isomorphism, core(A).

Example

A = ↔ = B

= core(A)

A′ = ↔ = B′

= core(A′)



INTRODUCTION RESULTS EXISTENTIAL POSITIVE LOGIC POSITIVE LOGIC SUMMARY

Cores

B is a core if every homomorphism B→ B is bijective.

B is a core of A if (i) B is a core, (ii) B is a substructure of A, (iii) A↔ B.

Every finite structure A has a unique core up to isomorphism, core(A).

Example

A = ↔ = B = core(A)

A′ = ↔ = B′ = core(A′)



INTRODUCTION RESULTS EXISTENTIAL POSITIVE LOGIC POSITIVE LOGIC SUMMARY

Treewidth

The treewidth of a structure A is a number w ≥ 1
“measuring the similarity of A with a tree”.

Low treewidth indicates high similarity with trees.

Example (Treewidth)
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Treewidth

The treewidth of a structure A is a number w ≥ 1
“measuring the similarity of A with a tree”.

Low treewidth indicates high similarity with trees.
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Example
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< 2
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Implicants

Let φ ∈ EP.

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i ≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where φ′i ’s are PP-formulas, {τj | j ∈ J} ⊆ PP, τj 6|= τj′ (j, j′ ∈ J, j 6= j′).
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Characterization

A combinatorial characterization of expressibility in EP.

Theorem (B, Chen)
Let φ ∈ EPσ . Then, φ ∈ EPk

σ-EXPRESS if and only if tw(core(C[τ ])) < k,
for all implicants τ in an irredundant disjunctive form of φ.

Proof (Sketch).
Combine the combinatorial characterization of k-expressibility in PP-logic
and the following combinatorial characterization of equivalence in EP-logic:
If φ′ =

∨
i∈[m] φ

′
i and φ′′ =

∨
j∈[n] φ

′′
j are irredundant disjunctive forms of

φ ∈ EP, then there exists a bijection π : [m]→ [n] such that, for all i ∈ [m],
C[φ′i ]↔ C[φ′′π(i)].
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Classification

Π
p
2 = {S | S ≤poly

m Π2-3CNF-SAT}.

Theorem (B, Chen)

• EP-EXPRESS is in Π
p
2.

• EPk
σ-EXPRESS is Π

p
2-hard:

• if k ≥ 3 and σ ⊇ {Ui | i ∈ N} ∪ {E};
• if k ≥ 6 and σ ⊇ {E}.

Proof (Sketch).
The upper bound follows from the characterization of expressibility in EP
(“for every implicant there exists an entailed implicant of small treewidth”).
A reduction from a Π

p
2-complete quantified version of the graph

k-colorability problem gives the lower bound for all k ≥ 3 (extra work
required if σ = {E}).
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Reduction

Kk = ([k],EKk ), where EKk = [k]2 \ {(i, i) | i ∈ [k]}.

Reduction from the following Π
p
2-hard problem (k ≥ 3):

Problem Π2-k-COLORABILITY

Instance ψ = ∀y1 . . .∀ym∃x1 . . .∃xnF[G],
where G = ({y1, . . . , ym, x1, . . . , xn},EG) is a (simple) graph.

Question Kk |= ψ?

The following are equivalent:

• Kk |= ψ

• Each f : {y1, . . . , ym} → [k] extends to a homomorphism G→ Kk

(ie, a k-coloring of G).
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Reduction

ψ = ∀y1 . . .∀ym∃x1 . . .∃xnF[G] instance of Π2-k-COLORABILITY.

Reduction maps ψ to

χ = ∃1 . . .∃k∃y1 . . .∃ym∃x1 . . .∃xnmatrix(χ) ∈ EP{E,U1,...,Uk,Uy1 ,...,Uym}

such that
Kk |= ψ ⇐⇒ χ ∈ EPk-EXPRESS

where

− matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k] F[Lyi 7→j ∪Myi 7→j];

− Kk
k = C[F[Kk] ∧U11 ∧ · · · ∧Ukk];

− Lyi 7→j = C[Uyi j];

− Myi 7→j = C[
∧

c∈[k],c 6=j(Eyic ∧ Ecyi)].
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Distributivity

Using distributivity, χ encodes km maps f : {y1, . . . , ym} → [k] in O(mk) space:

matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k]

F[Lyi 7→j ∪Myi 7→j]

≡
∨

f : {y1,...,ym}→[k]

F[G ∪Kk
k ∪

⋃
i∈[m]

(Lyi 7→f(yi) ∪Myi 7→f(yi))]

Example (k = 3, m = 2)

∧
i∈[2]

∨
j∈[3]

yi 7→ j = (y1 7→ 1 ∨ y1 7→ 2 ∨ y1 7→ 3) ∧ (y2 7→ 1 ∨ y2 7→ 2 ∨ y2 7→ 3)

≡ (y1 7→ 1 ∧ y2 7→ 1) ∨ (y1 7→ 1 ∧ y2 7→ 2) ∨ (y1 7→ 1 ∧ y2 7→ 3) ∨
≡ (y1 7→ 2 ∧ y2 7→ 1) ∨ (y1 7→ 2 ∧ y2 7→ 2) ∨ (y1 7→ 2 ∧ y2 7→ 3) ∨
≡ (y1 7→ 3 ∧ y2 7→ 1) ∨ (y1 7→ 3 ∧ y2 7→ 2) ∨ (y1 7→ 3 ∧ y2 7→ 3)

=
∨

f : {y1,y2}→[3]

(y1 7→ f(y1) ∧ y2 7→ f(y2)).
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Irredundant Form

matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k]

F[Lyi 7→j ∪Myi 7→j]

≡
∨

f : {y1,...,ym}→[k]

F[G ∪Kk
k ∪

⋃
i∈[m]

(Lyi 7→f(yi) ∪Myi 7→f(yi))]

=
∨

f : {y1,...,ym}→[k]

F[Hf ].

By the characterization, suffices to show the following:

Item 1: The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf ] of χ is irredundant.

Item 2: The following are equivalent:

− Each f : {y1, . . . , ym} → [k] extends to a hom G→ Kk.
− tw(core(Hf )) < k for all f : {y1, . . . , ym} → [k].
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Undecidability of Positive Logic

PFO = FO(∀, ∃,∧,∨) is positive logic.

Theorem (B, Chen)
PFOk

σ-EXPRESS is undecidable (k ≥ 3, σ ⊇ {Ui | i ∈ N} ∪ {E1,E2,E3}).

Proof (Sketch).
Reduction from the decision problem for Kahr sentences (undecidable).
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Sketch of the Proof

Problem KAHR-SAT

Instance φ ∈ FO{E1,Ui|i∈N} in prefix form with prefix ∀x∃y∀z.

Question Is there a structure A such that A |= φ?

≤
log
m

Problem PFO3
{E1,E2,Ui|i∈N}-ENTAILMENT

Instance (φ, ψ) ∈ PFO3
{E1,E2,Ui|i∈N}.

Question φ |= ψ?
≤

log
m

Problem PFO3
{E1,E2,E3,Ui|i∈N}-EXPRESS

Instance φ ∈ PFO3
{E1,E2,E3,Ui|i∈N}.

Question Is φ logically equivalent to some ψ ∈ PFO3
{E1,E2,E3,Ui|i∈N}?
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Results

FO(∃,∧)

FO

FO(∀, ∃,∧,∨)

FO(∀, ∃,∧)FO(∃,∧,∨)

S FO(S)-EXPRESS

∀, ∃,∧,∨,¬ undecidable, k ≥ 2 [Folklore]

∀, ∃,∧,∨ undecidable, k ≥ 3 [B, Chen]

∀, ∃,∧ open

∃,∧,∨ Π
p
2-complete, k ≥ 3 [B, Chen]

∃,∧ NP-complete, k ≥ 2 [Dalmau et al.]

Thank you for your attention!
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Main Reduction | Idea Item 1

The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf ] of χ is irredundant.

Example (k = 3, m = 2)
f (y1) = f ′(y1) = f ′(y2) = 2, f (y2) = 1.

U
Hf
1 = U

Hf ′

1 = {•}, U
Hf
2 = U

Hf ′
2 = {•}, U

Hf
3 = U

Hf ′
3 = {•}.

U
Hf
y1 = U

Hf ′
y1 = U

Hf ′
y2 = {•}, U

Hf
y2 = {•}.

Hf 9 Hf ′ and Hf ′ 9 Hf .

Hf ′Hf

Uy1

9
8

Uy2
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U
Hf
1 = U
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2 = U

Hf ′
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Hf
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U
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Hf ′
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9
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f extends to k-coloring of G⇐⇒ tw(core(Hf )) < k.

(=⇒) f extends to k-coloring h of G, ie, Kk, h |= F[G],
implies Hf → Kk

k via homomorphism acting as h on G and identically on [k].
Thus, Hf ↔ Kk

k. Clearly Kk
k is a core.

Hence core(Hf ) = Kk
k.

Thus tw(core(Hf )) = tw(Kk
k) = k− 1 < k.

(⇐=) Assume tw(core(Hf )) < k.
Then core(Hf )→ Kk, taking the {E}-reduct on the left (Picture 1).
We have Hf → core(Hf ), taking {E}-reducts.
Hence Hf → Kk, taking the {E}-reduct on the left, say via map h.
Since Kk, h |=

⋃
i∈[m](Lyi 7→f(yi) ∪Myi 7→f(yi)),

we have that h extends f (Picture 2).
Moreover, Kk, h |= F[G].
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tw(core(Hf )) < k =⇒ core(Hf )→ Kk, ie, core(Hf ) is k-colorable.

tw
( )

< 3

⇓

⇓

Is 3-colorable?
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Main Reduction | Picture 2
Hf → Kk via h =⇒ h extends f .

Example (k = 3, m = 2)
f (y1) = 2 and f (y2) = 1. Thus U

Hf
y1 = {2}, U

Hf
y2 = {1},

EHf ⊇ {(y1, 1), (y1, 3), (1, y1), (3, y1), (y2, 2), (y2, 3), (2, y2), (3, y2)}.
Assume Hf → Kk via h. Wlog, h(i) = i for all i ∈ [3].
Then, h(yj) = f (yj) for all j ∈ [2], ie, h extends f .

2 3

1

Uy1

y2

Uy2

y1

→{E}

h(2) = h(y1) = f(y1) = 2

h(1) = h(y2) = f(y2) = 1

h(3) = 3

2

1

3
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