
RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Width Minimization
for Existential Positive Queries

Simone Bova

Technische Universität Wien

joint work with Hubie Chen

14th International Workshop on
Logic and Computational Complexity (LCC’13)

Torino, 6 September 2013

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Outline

Research Motivation

Previous Work

Our Result

Other Results and Open Problems

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Outline

Research Motivation

Previous Work

Our Result

Other Results and Open Problems

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Minimization (or Expressibility) Problem

Notation

• FO denotes relational first-order sentences;

• FOk denotes FO-sentences using at most k variable symbols;

• width(φ) is the the maximum number of free variables over subformulas of φ.

Minimizing number of variable symbols in FO-sentences (decision version):

Problem FO-EXPRESS

Instance φ ∈ FO and k ∈ N.

Question Is there ψ ∈ FOk such that φ is logically equivalent to ψ?

Theorem (Folklore)
FO-EXPRESS is undecidable.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Minimization (or Expressibility) Problem

Notation

• FO denotes relational first-order sentences;

• FOk denotes FO-sentences using at most k variable symbols;

• width(φ) is the the maximum number of free variables over subformulas of φ.

Minimizing number of variable symbols in FO-sentences (decision version):

Problem FO-EXPRESS

Instance φ ∈ FO and k ∈ N.

Question Is there ψ ∈ FOk such that φ is logically equivalent to ψ?

Theorem (Folklore)
FO-EXPRESS is undecidable.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Minimization |Model Checking

However, minimization and expressibility are important wrt algorithmic and
complexity aspects of the MODELCHECKING problem:

Given a finite structure A and a FO-sentence φ, decide whether A |= φ.

The MODELCHECKING problem is PSPACE-complete. But, analyzing the
time complexity of the natural recursive evaluation of φ in A . . .

Proposition (Vardi)
Let (A, φ) be an instance of MODELCHECKING.
The question, A |= φ?, is decidable in time O(|A|width(φ)).

If φ ∈ FOk, then width(φ) ≤ k. If width(φ) ≤ k, then there is a polytime
computable φ′ ∈ FOk st φ′ ≡ φ.

Minimization in Model Checking: Minimizing the number of variables in φ
also minimizes the exponent in the runtime of the natural
model checking algorithm.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Minimization |Model Checking

However, minimization and expressibility are important wrt algorithmic and
complexity aspects of the MODELCHECKING problem:

Given a finite structure A and a FO-sentence φ, decide whether A |= φ.

The MODELCHECKING problem is PSPACE-complete. But, analyzing the
time complexity of the natural recursive evaluation of φ in A . . .

Proposition (Vardi)
Let (A, φ) be an instance of MODELCHECKING.
The question, A |= φ?, is decidable in time O(|A|width(φ)).

If φ ∈ FOk, then width(φ) ≤ k. If width(φ) ≤ k, then there is a polytime
computable φ′ ∈ FOk st φ′ ≡ φ.

Minimization in Model Checking: Minimizing the number of variables in φ
also minimizes the exponent in the runtime of the natural
model checking algorithm.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Minimization |Model Checking

However, minimization and expressibility are important wrt algorithmic and
complexity aspects of the MODELCHECKING problem:

Given a finite structure A and a FO-sentence φ, decide whether A |= φ.

The MODELCHECKING problem is PSPACE-complete. But, analyzing the
time complexity of the natural recursive evaluation of φ in A . . .

Proposition (Vardi)
Let (A, φ) be an instance of MODELCHECKING.
The question, A |= φ?, is decidable in time O(|A|width(φ)).

If φ ∈ FOk, then width(φ) ≤ k.

If width(φ) ≤ k, then there is a polytime
computable φ′ ∈ FOk st φ′ ≡ φ.

Minimization in Model Checking: Minimizing the number of variables in φ
also minimizes the exponent in the runtime of the natural
model checking algorithm.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Minimization |Model Checking

However, minimization and expressibility are important wrt algorithmic and
complexity aspects of the MODELCHECKING problem:

Given a finite structure A and a FO-sentence φ, decide whether A |= φ.

The MODELCHECKING problem is PSPACE-complete. But, analyzing the
time complexity of the natural recursive evaluation of φ in A . . .

Proposition (Vardi)
Let (A, φ) be an instance of MODELCHECKING.
The question, A |= φ?, is decidable in time O(|A|width(φ)).

If φ ∈ FOk, then width(φ) ≤ k. If width(φ) ≤ k, then there is a polytime
computable φ′ ∈ FOk st φ′ ≡ φ.

Minimization in Model Checking: Minimizing the number of variables in φ
also minimizes the exponent in the runtime of the natural
model checking algorithm.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Minimization |Model Checking

However, minimization and expressibility are important wrt algorithmic and
complexity aspects of the MODELCHECKING problem:

Given a finite structure A and a FO-sentence φ, decide whether A |= φ.

The MODELCHECKING problem is PSPACE-complete. But, analyzing the
time complexity of the natural recursive evaluation of φ in A . . .

Proposition (Vardi)
Let (A, φ) be an instance of MODELCHECKING.
The question, A |= φ?, is decidable in time O(|A|width(φ)).

If φ ∈ FOk, then width(φ) ≤ k. If width(φ) ≤ k, then there is a polytime
computable φ′ ∈ FOk st φ′ ≡ φ.

Minimization in Model Checking: Minimizing the number of variables in φ
also minimizes the exponent in the runtime of the natural
model checking algorithm.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

A relevant example of the MODELCHECKING problem is query evaluation,
evaluating a query φ over a relational database A.

Typically the query is relatively small and the database is relatively large.

In this setting, one considers computationally tractable a two stage procedure
where a query optimization algorithm of possibly high complexity (eg, a width
minimization algorithm) is followed by an evaluation algorithm that evaluates
the optimized query in polytime.

This approach yields a relaxation of the notion of polynomial-time
tractability, called fixed-parameter tractability, viable in the database setting.

Expressibility as Complexity Criterion: With respect to basic and fundamental
classes of queries in database theory, “expressibility
characterizes tractability” in a precise sense.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

A relevant example of the MODELCHECKING problem is query evaluation,
evaluating a query φ over a relational database A.

Typically the query is relatively small and the database is relatively large.

In this setting, one considers computationally tractable a two stage procedure
where a query optimization algorithm of possibly high complexity (eg, a width
minimization algorithm) is followed by an evaluation algorithm that evaluates
the optimized query in polytime.

This approach yields a relaxation of the notion of polynomial-time
tractability, called fixed-parameter tractability, viable in the database setting.

Expressibility as Complexity Criterion: With respect to basic and fundamental
classes of queries in database theory, “expressibility
characterizes tractability” in a precise sense.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

A relevant example of the MODELCHECKING problem is query evaluation,
evaluating a query φ over a relational database A.

Typically the query is relatively small and the database is relatively large.

In this setting, one considers computationally tractable a two stage procedure
where a query optimization algorithm of possibly high complexity (eg, a width
minimization algorithm) is followed by an evaluation algorithm that evaluates
the optimized query in polytime.

This approach yields a relaxation of the notion of polynomial-time
tractability, called fixed-parameter tractability, viable in the database setting.

Expressibility as Complexity Criterion: With respect to basic and fundamental
classes of queries in database theory, “expressibility
characterizes tractability” in a precise sense.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

A relevant example of the MODELCHECKING problem is query evaluation,
evaluating a query φ over a relational database A.

Typically the query is relatively small and the database is relatively large.

In this setting, one considers computationally tractable a two stage procedure
where a query optimization algorithm of possibly high complexity (eg, a width
minimization algorithm) is followed by an evaluation algorithm that evaluates
the optimized query in polytime.

This approach yields a relaxation of the notion of polynomial-time
tractability, called fixed-parameter tractability, viable in the database setting.

Expressibility as Complexity Criterion: With respect to basic and fundamental
classes of queries in database theory, “expressibility
characterizes tractability” in a precise sense.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

A relevant example of the MODELCHECKING problem is query evaluation,
evaluating a query φ over a relational database A.

Typically the query is relatively small and the database is relatively large.

In this setting, one considers computationally tractable a two stage procedure
where a query optimization algorithm of possibly high complexity (eg, a width
minimization algorithm) is followed by an evaluation algorithm that evaluates
the optimized query in polytime.

This approach yields a relaxation of the notion of polynomial-time
tractability, called fixed-parameter tractability, viable in the database setting.

Expressibility as Complexity Criterion: With respect to basic and fundamental
classes of queries in database theory, “expressibility
characterizes tractability” in a precise sense.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

Let PP ⊆ FO be the class of primitive positive (∃, ∧) sentences
(aka conjunctive queries in database theory).

Theorem (Dalmau, Kolaitis, and Vardi; Grohe)
Let L ⊆ PP be a class of sentences. The following are equivalent: ∗

• MODELCHECKING restricted to L is fixed-parameter tractable.

• There exists k ≥ 1 st L ⊆ PPk-EXPRESS.

Theorem (Dalmau, Kolaitis, and Vardi)
PPk-EXPRESS is NP-complete (k ≥ 2).

∗L has bounded arity. Unless W[1] ⊆ nuFPT.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

Let PP ⊆ FO be the class of primitive positive (∃, ∧) sentences
(aka conjunctive queries in database theory).

Theorem (Dalmau, Kolaitis, and Vardi; Grohe)
Let L ⊆ PP be a class of sentences. The following are equivalent: ∗

• MODELCHECKING restricted to L is fixed-parameter tractable.

• There exists k ≥ 1 st L ⊆ PPk-EXPRESS.

Theorem (Dalmau, Kolaitis, and Vardi)
PPk-EXPRESS is NP-complete (k ≥ 2).

∗L has bounded arity. Unless W[1] ⊆ nuFPT.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

Let PP ⊆ FO be the class of primitive positive (∃, ∧) sentences
(aka conjunctive queries in database theory).

Theorem (Dalmau, Kolaitis, and Vardi; Grohe)
Let L ⊆ PP be a class of sentences. The following are equivalent: ∗

• MODELCHECKING restricted to L is fixed-parameter tractable.

• There exists k ≥ 1 st L ⊆ PPk-EXPRESS.

Theorem (Dalmau, Kolaitis, and Vardi)
PPk-EXPRESS is NP-complete (k ≥ 2).

∗L has bounded arity. Unless W[1] ⊆ nuFPT.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

Let EP ⊆ FO be the class of existential positive (∃, ∧, ∨) sentences
(aka union of conjunctive queries in database theory).

Theorem (Chen)
Let L ⊆ EP be a class of sentences. The following are equivalent: †

• MODELCHECKING restricted to L is fixed-parameter tractable.

• There exists k ≥ 1 st L ⊆ EPk-EXPRESS.

Question
What is the complexity of EPk-EXPRESS?

Theorem (B, Chen)
EPk-EXPRESS is Π

p
2-complete (k ≥ 3).

†L has bounded arity. Unless W[1] ⊆ nuFPT.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

Let EP ⊆ FO be the class of existential positive (∃, ∧, ∨) sentences
(aka union of conjunctive queries in database theory).

Theorem (Chen)
Let L ⊆ EP be a class of sentences. The following are equivalent: †

• MODELCHECKING restricted to L is fixed-parameter tractable.

• There exists k ≥ 1 st L ⊆ EPk-EXPRESS.

Question
What is the complexity of EPk-EXPRESS?

Theorem (B, Chen)
EPk-EXPRESS is Π

p
2-complete (k ≥ 3).

†L has bounded arity. Unless W[1] ⊆ nuFPT.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

Let EP ⊆ FO be the class of existential positive (∃, ∧, ∨) sentences
(aka union of conjunctive queries in database theory).

Theorem (Chen)
Let L ⊆ EP be a class of sentences. The following are equivalent: †

• MODELCHECKING restricted to L is fixed-parameter tractable.

• There exists k ≥ 1 st L ⊆ EPk-EXPRESS.

Question
What is the complexity of EPk-EXPRESS?

Theorem (B, Chen)
EPk-EXPRESS is Π

p
2-complete (k ≥ 3).

†L has bounded arity. Unless W[1] ⊆ nuFPT.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Expressibility | Complexity Criterion

Let EP ⊆ FO be the class of existential positive (∃, ∧, ∨) sentences
(aka union of conjunctive queries in database theory).

Theorem (Chen)
Let L ⊆ EP be a class of sentences. The following are equivalent: †

• MODELCHECKING restricted to L is fixed-parameter tractable.

• There exists k ≥ 1 st L ⊆ EPk-EXPRESS.

Question
What is the complexity of EPk-EXPRESS?

Theorem (B, Chen)
EPk-EXPRESS is Π

p
2-complete (k ≥ 3).

†L has bounded arity. Unless W[1] ⊆ nuFPT.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Outline

Research Motivation

Previous Work

Our Result

Other Results and Open Problems

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid)

γ = ∃x1 . . .∃x9

()

= ∃x1 . . .∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)

≡ . . . best possible equivalence preserving syntactic rewriting . . .

≡ ∃x1∃x2∃x3∃x4(Ex4x1 ∧ Ex2x1 ∧ Ex2x3

∧ ∃x1(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x2(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x3(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x4(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x1(Ex4x3 ∧ Ex1x4 ∧ Ex1x2)))))) ∈ PP4.

γ ∈ PP4-EXPRESS, but γ ∈ PP2-EXPRESS (claim), ie, the result is not optimal.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid)

γ = ∃x1 . . .∃x9

()
= ∃x1 . . .∃x9(

∧
i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)

≡ . . . best possible equivalence preserving syntactic rewriting . . .

≡ ∃x1∃x2∃x3∃x4(Ex4x1 ∧ Ex2x1 ∧ Ex2x3

∧ ∃x1(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x2(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x3(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x4(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x1(Ex4x3 ∧ Ex1x4 ∧ Ex1x2)))))) ∈ PP4.

γ ∈ PP4-EXPRESS, but γ ∈ PP2-EXPRESS (claim), ie, the result is not optimal.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid)

γ = ∃x1 . . .∃x9

()
= ∃x1 . . .∃x9(

∧
i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)

≡ . . . best possible equivalence preserving syntactic rewriting . . .

≡ ∃x1∃x2∃x3∃x4(Ex4x1 ∧ Ex2x1 ∧ Ex2x3

∧ ∃x1(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x2(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x3(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x4(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x1(Ex4x3 ∧ Ex1x4 ∧ Ex1x2)))))) ∈ PP4.

γ ∈ PP4-EXPRESS, but γ ∈ PP2-EXPRESS (claim), ie, the result is not optimal.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid)

γ = ∃x1 . . .∃x9

()
= ∃x1 . . .∃x9(

∧
i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)

≡ . . . best possible equivalence preserving syntactic rewriting . . .

≡ ∃x1∃x2∃x3∃x4(Ex4x1 ∧ Ex2x1 ∧ Ex2x3

∧ ∃x1(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x2(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x3(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x4(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x1(Ex4x3 ∧ Ex1x4 ∧ Ex1x2)))))) ∈ PP4.

γ ∈ PP4-EXPRESS, but γ ∈ PP2-EXPRESS (claim), ie, the result is not optimal.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid)

γ = ∃x1 . . .∃x9

()
= ∃x1 . . .∃x9(

∧
i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)

≡ . . . best possible equivalence preserving syntactic rewriting . . .

≡ ∃x1∃x2∃x3∃x4(Ex4x1 ∧ Ex2x1 ∧ Ex2x3

∧ ∃x1(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x2(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x3(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x4(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x1(Ex4x3 ∧ Ex1x4 ∧ Ex1x2)))))) ∈ PP4.

γ ∈ PP4-EXPRESS, but γ ∈ PP2-EXPRESS (claim), ie, the result is not optimal.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid, Cont’d)
Syntactic rewriting is not a complete method for the minimization problem.

The right approach would instead proceed through the following two steps.

Semantic Minimization (Hard): Observe in “modest complexity” that

γ = ∃x1 . . .∃x9

()
≡ ∃x1∃x2∃x3

()
.

Syntactic Minimization (Easy): Minimize the variables in ∃x1∃x2∃x3

()
by “best possible“ syntactic rewriting.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid, Cont’d)
Syntactic rewriting is not a complete method for the minimization problem.

The right approach would instead proceed through the following two steps.

Semantic Minimization (Hard): Observe in “modest complexity” that

γ = ∃x1 . . .∃x9

()
≡ ∃x1∃x2∃x3

()
.

Syntactic Minimization (Easy): Minimize the variables in ∃x1∃x2∃x3

()
by “best possible“ syntactic rewriting.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid, Cont’d)
Syntactic rewriting is not a complete method for the minimization problem.

The right approach would instead proceed through the following two steps.

Semantic Minimization (Hard): Observe in “modest complexity” that

γ = ∃x1 . . .∃x9

()
≡ ∃x1∃x2∃x3

()
.

Syntactic Minimization (Easy): Minimize the variables in ∃x1∃x2∃x3

()
by “best possible“ syntactic rewriting.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid, Cont’d)
Syntactic rewriting is not a complete method for the minimization problem.

The right approach would instead proceed through the following two steps.

Semantic Minimization (Hard): Observe in “modest complexity” that

γ = ∃x1 . . .∃x9

()
≡ ∃x1∃x2∃x3

()
.

Syntactic Minimization (Easy): Minimize the variables in ∃x1∃x2∃x3

()
by “best possible“ syntactic rewriting.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid, Cont’d)
Syntactic rewriting is not a complete method for the minimization problem.

The right approach would instead proceed through the following two steps.

Semantic Minimization (Hard): Observe in “modest complexity” that

γ = ∃x1 . . .∃x9

()
≡ ∃x1∃x2∃x3

()
.

Syntactic Minimization (Easy): Minimize the variables in ∃x1∃x2∃x3

()
by “best possible” syntactic rewriting.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic |Minimization

Example (Grid, Cont’d)
Syntactic rewriting is not a complete method for the minimization problem.

The right approach would instead proceed through the following two steps.

Semantic Minimization (Hard): Observe in “modest complexity” that

γ = ∃x1 . . .∃x9

()
≡

“NP away”
∃x1∃x2∃x3

()
.

Syntactic Minimization (Easy): Minimize the variables in ∃x1∃x2∃x3

()
by optimal polytime syntactic rewriting.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Treewidth

Two pieces of theory from graph combinatorics:

1. cores lead the semantic (hard) step;

2. treewidth leads the syntactic (easy) step.

Let A be a σ-structure. The treewidth tw(A) of A is a number w ≥ 1
“measuring the similarity of A with a tree”.

Low treewidth indicates high similarity with trees.

Example (Treewidth)

tw

(
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 1

tw(a tree) = 1

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 2

tw(a cycle) = 2

tw

()
= 4

tw(a k-grid) = k

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 3

tw(a k-clique) = k− 1

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Treewidth

Two pieces of theory from graph combinatorics:

1. cores lead the semantic (hard) step;

2. treewidth leads the syntactic (easy) step.

Let A be a σ-structure. The treewidth tw(A) of A is a number w ≥ 1
“measuring the similarity of A with a tree”.

Low treewidth indicates high similarity with trees.

Example (Treewidth)

tw

(
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 1

tw(a tree) = 1

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 2

tw(a cycle) = 2

tw

()
= 4

tw(a k-grid) = k

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 3

tw(a k-clique) = k− 1

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Treewidth

Two pieces of theory from graph combinatorics:

1. cores lead the semantic (hard) step;

2. treewidth leads the syntactic (easy) step.

Let A be a σ-structure. The treewidth tw(A) of A is a number w ≥ 1
“measuring the similarity of A with a tree”.

Low treewidth indicates high similarity with trees.

Example (Treewidth)

tw

(
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 1

tw(a tree) = 1

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 2

tw(a cycle) = 2

tw

()
= 4

tw(a k-grid) = k

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 3

tw(a k-clique) = k− 1

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Treewidth

Two pieces of theory from graph combinatorics:

1. cores lead the semantic (hard) step;

2. treewidth leads the syntactic (easy) step.

Let A be a σ-structure. The treewidth tw(A) of A is a number w ≥ 1
“measuring the similarity of A with a tree”.

Low treewidth indicates high similarity with trees.

Example (Treewidth)

tw

(
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 1

tw(a tree) = 1

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 2

tw(a cycle) = 2

tw

()
= 4

tw(a k-grid) = k

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 3

tw(a k-clique) = k− 1

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Treewidth

Two pieces of theory from graph combinatorics:

1. cores lead the semantic (hard) step;

2. treewidth leads the syntactic (easy) step.

Let A be a σ-structure. The treewidth tw(A) of A is a number w ≥ 1
“measuring the similarity of A with a tree”.

Low treewidth indicates high similarity with trees.

Example (Treewidth)

tw

(
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 1

tw(a tree) = 1

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 2

tw(a cycle) = 2

tw

()
= 4

tw(a k-grid) = k

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 3

tw(a k-clique) = k− 1

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Homomorphisms

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Homomorphisms

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Homomorphisms

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Homomorphisms

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Homomorphisms

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Cores
Let A and B be σ-structures.

B is a core iff every homomorphism B→ B is bijective
(ie, every endomorphism of B is an automorphism).

B is a core of A if (i) B is a core, (ii) B is a substructure of A, (iii) B↔ A.
Every finite structure A has a unique core up to isomorphism, core(A).

Example

A = ↔

= B

= core(A)

A′ = ↔

= B′

= core(A′)

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Cores
Let A and B be σ-structures.

B is a core iff every homomorphism B→ B is bijective
(ie, every endomorphism of B is an automorphism).

B is a core of A if (i) B is a core, (ii) B is a substructure of A, (iii) B↔ A.
Every finite structure A has a unique core up to isomorphism, core(A).

Example

A = ↔

= B

= core(A)

A′ = ↔

= B′

= core(A′)

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Cores
Let A and B be σ-structures.

B is a core iff every homomorphism B→ B is bijective
(ie, every endomorphism of B is an automorphism).

B is a core of A if (i) B is a core, (ii) B is a substructure of A, (iii) B↔ A.
Every finite structure A has a unique core up to isomorphism, core(A).

Example

A = ↔ = B = core(A)

A′ = ↔ = B′ = core(A′)

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Notation

Natural correspondence between PP-sentences and relational structures.

Example (Canonical Structure of a Query)

C[∃x1∃x2∃x3∃x4∃x5(Ex3x1 ∧ Ex3x2 ∧ Ex3x4 ∧ Ex3x5)] =

Example (Canonical Query of a Structure)

F

[]
= Ex3x1 ∧ Ex3x2 ∧ Ex3x4 ∧ Ex3x5

Q

[]
= ∃x1∃x2∃x3∃x4∃x5(Ex3x1 ∧ Ex3x2 ∧ Ex3x4 ∧ Ex3x5)

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Characterization

A combinatorial characterization of k-variable expressibility for PP-logic.

Theorem (Dalmau et al.)
Let φ ∈ PPσ . Then, φ ∈ PPk-EXPRESS if and only if tw(core(C[φ])) < k.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Grid Revisited

Example (Grid Revisited)

∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi) ∈ PP2-EXPRESS

m

tw(core(C[∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)])) < 2

m

tw

(
core

())
< 2

≤ tw

()
= 3

m

1 = tw

()
< 2

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Grid Revisited

Example (Grid Revisited)

∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi) ∈ PP2-EXPRESS

m

tw(core(C[∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)])) < 2

m

tw

(
core

())
< 2

≤ tw

()
= 3

m

1 = tw

()
< 2

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Grid Revisited

Example (Grid Revisited)

∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi) ∈ PP2-EXPRESS

m

tw(core(C[∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)])) < 2

m

tw

(
core

())
< 2

≤ tw

()
= 3

m

1 = tw

()
< 2

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Grid Revisited

Example (Grid Revisited)

∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi) ∈ PP2-EXPRESS

m

tw(core(C[∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)])) < 2

m

tw

(
core

())
< 2

≤ tw

()
= 3

m

1 = tw

()
< 2

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Grid Revisited

Example (Grid Revisited)

∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi) ∈ PP2-EXPRESS

m

tw(core(C[∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)])) < 2

m

tw

(
core

())
< 2 ≤ tw

()
= 3

m

1 = tw

()
< 2

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Classification

A complexity classification of k-variable expressibility for PP-logic.

Theorem (Dalmau et al.)
PPk

σ-EXPRESS is NP-complete for all k ≥ 2 and all σ ⊇ {E}.

Proof (Sketch).
The upper bound follows from the characterization. A reduction from the
graph k-colorability problem gives the lower bound for k ≥ 3 (extra work
required for k = 2).

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Classification

A complexity classification of k-variable expressibility for PP-logic.

Theorem (Dalmau et al.)
PPk

σ-EXPRESS is NP-complete for all k ≥ 2 and all σ ⊇ {E}.

Proof (Sketch).
The upper bound follows from the characterization. A reduction from the
graph k-colorability problem gives the lower bound for k ≥ 3 (extra work
required for k = 2).

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Outline

Research Motivation

Previous Work

Our Result

Other Results and Open Problems

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Implicants

Let φ ∈ EP (recall EP is the class of existential positive sentences).

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i ≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where the φ′i are PP-formulas,
{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Implicants

Let φ ∈ EP (recall EP is the class of existential positive sentences).

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i ≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where the φ′i are PP-formulas,
{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Implicants

Let φ ∈ EP (recall EP is the class of existential positive sentences).

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i ≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where the φ′i are PP-formulas,
{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Implicants

Let φ ∈ EP (recall EP is the class of existential positive sentences).

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i ≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where the φ′i are PP-formulas,
{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Implicants

Let φ ∈ EP (recall EP is the class of existential positive sentences).

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ

≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i ≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where the φ′i are PP-formulas,
{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Implicants

Let φ ∈ EP (recall EP is the class of existential positive sentences).

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′

≡ ∃x1 . . . xn

∨
i∈I

φ′i ≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where the φ′i are PP-formulas,
{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Implicants

Let φ ∈ EP (recall EP is the class of existential positive sentences).

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i

≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where the φ′i are PP-formulas,

{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Implicants

Let φ ∈ EP (recall EP is the class of existential positive sentences).

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i ≡
∨
i∈I

∃x1 . . . xnφ
′
i

≡
∨
j∈J

τj,

where the φ′i are PP-formulas,

{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Implicants

Let φ ∈ EP (recall EP is the class of existential positive sentences).

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i ≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where the φ′i are PP-formulas,
{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Characterization

A combinatorial characterization of EPk-EXPRESS.

Theorem (B, Chen)
Let φ ∈ EPσ . Then, φ ∈ EPk

σ-EXPRESS if and only if tw(core(C[τ])) < k,
for all implicants τ in an irredundant disjunctive form of φ.

Proof (Sketch).
Combine the combinatorial characterization of k-expressibility in PP-logic
and the following combinatorial characterization of equivalence in EP-logic:
If φ′ =

∨
i∈[m] φ

′
i and φ′′ =

∨
j∈[n] φ

′′
j are irredundant disjunctive forms of

φ ∈ EP, then there exists a bijection π : [m]→ [n] such that, for all i ∈ [m],
C[φ′i]↔ C[φ′′π(i)].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Characterization

A combinatorial characterization of EPk-EXPRESS.

Theorem (B, Chen)
Let φ ∈ EPσ . Then, φ ∈ EPk

σ-EXPRESS if and only if tw(core(C[τ])) < k,
for all implicants τ in an irredundant disjunctive form of φ.

Proof (Sketch).
Combine the combinatorial characterization of k-expressibility in PP-logic
and the following combinatorial characterization of equivalence in EP-logic:
If φ′ =

∨
i∈[m] φ

′
i and φ′′ =

∨
j∈[n] φ

′′
j are irredundant disjunctive forms of

φ ∈ EP, then there exists a bijection π : [m]→ [n] such that, for all i ∈ [m],
C[φ′i]↔ C[φ′′π(i)].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Classification

A complexity classification of EPk-EXPRESS.

Theorem (B, Chen)
EPk

σ-EXPRESS is Π
p
2-complete for all k ≥ 3 and all σ ⊇ {Un | n ∈ N} ∪ {E},

and for all k ≥ 6 and all σ ⊇ {E}.

Proof (Sketch).
The upper bound follows from the characterization. A reduction from a
Π

p
2-complete quantified version of the graph k-colorability problem gives the

lower bound for all k ≥ 3 (extra work required if σ = {E}).

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Classification

A complexity classification of EPk-EXPRESS.

Theorem (B, Chen)
EPk

σ-EXPRESS is Π
p
2-complete for all k ≥ 3 and all σ ⊇ {Un | n ∈ N} ∪ {E},

and for all k ≥ 6 and all σ ⊇ {E}.

Proof (Sketch).
The upper bound follows from the characterization. A reduction from a
Π

p
2-complete quantified version of the graph k-colorability problem gives the

lower bound for all k ≥ 3 (extra work required if σ = {E}).

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

Let Kk = ([k], [k]2 \ {(i, i) | i ∈ [k]}).

Reduction from the following Π
p
2-complete problem:

Problem Π2-k-COLORABILITY

Instance ψ = ∀y1 . . .∀ym∃x1 . . .∃xnF[G], where G is a graph and
G = {y1, . . . , ym, x1, . . . , xn} ∩ [k] = ∅.

Question Kk |= ψ?

Note,
Kk |= ψ
⇐⇒ Kk, f |= ∃x1 . . .∃xnF[G] for all f : {y1, . . . , ym} → [k]
⇐⇒ each partial k-coloring f : {y1, . . . , ym} → [k] extends to a k-coloring of G.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

Let Kk = ([k], [k]2 \ {(i, i) | i ∈ [k]}).

Reduction from the following Π
p
2-complete problem:

Problem Π2-k-COLORABILITY

Instance ψ = ∀y1 . . .∀ym∃x1 . . .∃xnF[G], where G is a graph and
G = {y1, . . . , ym, x1, . . . , xn} ∩ [k] = ∅.

Question Kk |= ψ?

Note,
Kk |= ψ
⇐⇒ Kk, f |= ∃x1 . . .∃xnF[G] for all f : {y1, . . . , ym} → [k]
⇐⇒ each partial k-coloring f : {y1, . . . , ym} → [k] extends to a k-coloring of G.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

ψ = ∀y1 . . .∀ym∃x1 . . .∃xnF[G].

Reduction maps ψ to χ in EP{E,U1,...,Uk,Uy1 ,...,Uym} defined as follows:

• matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k] F[Lyi 7→j ∪Myi 7→j];

• χ = ∃1 . . .∃k∃y1 . . .∃ym∃x1 . . .∃xnmatrix(χ),

where

• Kk
k = C[F[Kk] ∧U11 ∧ · · · ∧Ukk];

• Lyi 7→j = C[Uyi j];

• Myi 7→j = C[
∧

c∈[k],c 6=j(Eyic ∧ Ecyi)].

Claim
Kk |= ψ⇐⇒ χ ∈ EPk-EXPRESS.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

ψ = ∀y1 . . .∀ym∃x1 . . .∃xnF[G].

Reduction maps ψ to χ in EP{E,U1,...,Uk,Uy1 ,...,Uym} defined as follows:

• matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k] F[Lyi 7→j ∪Myi 7→j];

• χ = ∃1 . . .∃k∃y1 . . .∃ym∃x1 . . .∃xnmatrix(χ),

where

• Kk
k = C[F[Kk] ∧U11 ∧ · · · ∧Ukk];

• Lyi 7→j = C[Uyi j];

• Myi 7→j = C[
∧

c∈[k],c 6=j(Eyic ∧ Ecyi)].

Claim
Kk |= ψ⇐⇒ χ ∈ EPk-EXPRESS.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

ψ = ∀y1 . . .∀ym∃x1 . . .∃xnF[G].

Reduction maps ψ to χ in EP{E,U1,...,Uk,Uy1 ,...,Uym} defined as follows:

• matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k] F[Lyi 7→j ∪Myi 7→j];

• χ = ∃1 . . .∃k∃y1 . . .∃ym∃x1 . . .∃xnmatrix(χ),

where

• Kk
k = C[F[Kk] ∧U11 ∧ · · · ∧Ukk];

• Lyi 7→j = C[Uyi j];

• Myi 7→j = C[
∧

c∈[k],c 6=j(Eyic ∧ Ecyi)].

Claim
Kk |= ψ⇐⇒ χ ∈ EPk-EXPRESS.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

ψ = ∀y1 . . .∀ym∃x1 . . .∃xnF[G].

Reduction maps ψ to χ in EP{E,U1,...,Uk,Uy1 ,...,Uym} defined as follows:

• matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k] F[Lyi 7→j ∪Myi 7→j];

• χ = ∃1 . . .∃k∃y1 . . .∃ym∃x1 . . .∃xnmatrix(χ),

where

• Kk
k = C[F[Kk] ∧U11 ∧ · · · ∧Ukk];

• Lyi 7→j = C[Uyi j];

• Myi 7→j = C[
∧

c∈[k],c 6=j(Eyic ∧ Ecyi)].

Claim
Kk |= ψ⇐⇒ χ ∈ EPk-EXPRESS.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

By distributing ∧ over ∨,

matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k]

F[Lyi 7→j ∪Myi 7→j]

≡
∨

f : {y1,...,ym}→[k]

F[G ∪Kk
k ∪

⋃
i∈[m]

(Lyi 7→f(yi) ∪Myi 7→f(yi))]

=
∨

f : {y1,...,ym}→[k]

F[Hf].

By the caracterization, suffices to show the following:

1. The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf] of χ is irredundant.

2. Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k,
for all f : {y1, . . . , ym} → [k].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

By distributing ∧ over ∨,

matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k]

F[Lyi 7→j ∪Myi 7→j]

≡
∨

f : {y1,...,ym}→[k]

F[G ∪Kk
k ∪

⋃
i∈[m]

(Lyi 7→f(yi) ∪Myi 7→f(yi))]

=
∨

f : {y1,...,ym}→[k]

F[Hf].

By the caracterization, suffices to show the following:

1. The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf] of χ is irredundant.

2. Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k,
for all f : {y1, . . . , ym} → [k].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

By distributing ∧ over ∨,

matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k]

F[Lyi 7→j ∪Myi 7→j]

≡
∨

f : {y1,...,ym}→[k]

F[G ∪Kk
k ∪

⋃
i∈[m]

(Lyi 7→f(yi) ∪Myi 7→f(yi))]

=
∨

f : {y1,...,ym}→[k]

F[Hf].

By the caracterization, suffices to show the following:

1. The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf] of χ is irredundant.

2. Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k,
for all f : {y1, . . . , ym} → [k].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

By distributing ∧ over ∨,

matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k]

F[Lyi 7→j ∪Myi 7→j]

≡
∨

f : {y1,...,ym}→[k]

F[G ∪Kk
k ∪

⋃
i∈[m]

(Lyi 7→f(yi) ∪Myi 7→f(yi))]

=
∨

f : {y1,...,ym}→[k]

F[Hf].

By the caracterization, suffices to show the following:

1. The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf] of χ is irredundant.

2. Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k,
for all f : {y1, . . . , ym} → [k].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Reduction

By distributing ∧ over ∨,

matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k]

F[Lyi 7→j ∪Myi 7→j]

≡
∨

f : {y1,...,ym}→[k]

F[G ∪Kk
k ∪

⋃
i∈[m]

(Lyi 7→f(yi) ∪Myi 7→f(yi))]

=
∨

f : {y1,...,ym}→[k]

F[Hf].

By the caracterization, suffices to show the following:

1. The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf] of χ is irredundant.

2. Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k,
for all f : {y1, . . . , ym} → [k].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Idea Item 1

The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf] of χ is irredundant.

Example (k = 3, m = 2)
f (y1) = f ′(y1) = f ′(y2) = 2, f (y2) = 1.

U
Hf
1 = U

Hf ′

1 = {•}, U
Hf
2 = U

Hf ′
2 = {•}, U

Hf
3 = U

Hf ′
3 = {•}.

U
Hf
y1 = U

Hf ′
y1 = U

Hf ′
y2 = {•}, U

Hf
y2 = {•}.

Hf 9 Hf ′ and Hf ′ 9 Hf .

Hf ′Hf

Uy1

9
8

Uy2

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Idea Item 1

The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf] of χ is irredundant.

Example (k = 3, m = 2)
f (y1) = f ′(y1) = f ′(y2) = 2, f (y2) = 1.

U
Hf
1 = U

Hf ′

1 = {•}, U
Hf
2 = U

Hf ′
2 = {•}, U

Hf
3 = U

Hf ′
3 = {•}.

U
Hf
y1 = U

Hf ′
y1 = U

Hf ′
y2 = {•}, U

Hf
y2 = {•}.

Hf 9 Hf ′ and Hf ′ 9 Hf .

9
8

Hf ′Hf

Uy2

Uy1

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Idea Item 1

The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf] of χ is irredundant.

Example (k = 3, m = 2)
f (y1) = f ′(y1) = f ′(y2) = 2, f (y2) = 1.

U
Hf
1 = U

Hf ′

1 = {•}, U
Hf
2 = U

Hf ′
2 = {•}, U

Hf
3 = U

Hf ′
3 = {•}.

U
Hf
y1 = U

Hf ′
y1 = U

Hf ′
y2 = {•}, U

Hf
y2 = {•}.

Hf 9 Hf ′ and Hf ′ 9 Hf .

Uy2

Uy1

9
8

Hf ′Hf

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Idea Item 1

The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf] of χ is irredundant.

Example (k = 3, m = 2)
f (y1) = f ′(y1) = f ′(y2) = 2, f (y2) = 1.

U
Hf
1 = U

Hf ′

1 = {•}, U
Hf
2 = U

Hf ′
2 = {•}, U

Hf
3 = U

Hf ′
3 = {•}.

U
Hf
y1 = U

Hf ′
y1 = U

Hf ′
y2 = {•}, U

Hf
y2 = {•}.

Hf 9 Hf ′ and Hf ′ 9 Hf , ie, Q[Hf] 6|= Q[Hf ′] and Q[Hf ′] 6|= Q[Hf].

Uy2

Uy1

Hf ′Hf

9
8

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Sketch Item 2

Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k.

(=⇒) Kk, f |= ∃x1 . . . xnF[G], say Kk, h |= F[G],
implies Hf → Kk

k via homomorphism acting as h on G and identically on [k].
Thus, Hf ↔ Kk

k. Clearly Kk
k is a core.

Hence core(Hf) = Kk
k.

Thus tw(core(Hf)) = tw(Kk
k) = k− 1 < k.

(⇐=) Assume tw(core(Hf)) < k.
Then core(Hf)→ Kk, taking the {E}-reduct on the left (Picture 1).
We have Hf → core(Hf), taking {E}-reducts.
Hence Hf → Kk, taking the {E}-reduct on the left, say via map h.
Since Kk, h |=

⋃
i∈[m](Lyi 7→f(yi) ∪Myi 7→f(yi)),

we have that h extends f (Picture 2).
Moreover, Kk, h |= F[G].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Sketch Item 2

Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k.

(=⇒) Kk, f |= ∃x1 . . . xnF[G], say Kk, h |= F[G],
implies Hf → Kk

k via homomorphism acting as h on G and identically on [k].
Thus, Hf ↔ Kk

k. Clearly Kk
k is a core.

Hence core(Hf) = Kk
k.

Thus tw(core(Hf)) = tw(Kk
k) = k− 1 < k.

(⇐=) Assume tw(core(Hf)) < k.
Then core(Hf)→ Kk, taking the {E}-reduct on the left (Picture 1).
We have Hf → core(Hf), taking {E}-reducts.
Hence Hf → Kk, taking the {E}-reduct on the left, say via map h.
Since Kk, h |=

⋃
i∈[m](Lyi 7→f(yi) ∪Myi 7→f(yi)),

we have that h extends f (Picture 2).
Moreover, Kk, h |= F[G].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Sketch Item 2

Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k.

(=⇒) Kk, f |= ∃x1 . . . xnF[G], say Kk, h |= F[G],
implies Hf → Kk

k via homomorphism acting as h on G and identically on [k].
Thus, Hf ↔ Kk

k. Clearly Kk
k is a core.

Hence core(Hf) = Kk
k.

Thus tw(core(Hf)) = tw(Kk
k) = k− 1 < k.

(⇐=) Assume tw(core(Hf)) < k.
Then core(Hf)→ Kk, taking the {E}-reduct on the left (Picture 1).
We have Hf → core(Hf), taking {E}-reducts.
Hence Hf → Kk, taking the {E}-reduct on the left, say via map h.
Since Kk, h |=

⋃
i∈[m](Lyi 7→f(yi) ∪Myi 7→f(yi)),

we have that h extends f (Picture 2).
Moreover, Kk, h |= F[G].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Picture 1

tw(core(Hf)) < k =⇒ core(Hf)→ Kk, ie, core(Hf) is k-colorable.

tw
()

< 3

⇓

⇓

Is 3-colorable?

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Picture 1

tw(core(Hf)) < k =⇒ core(Hf)→ Kk, ie, core(Hf) is k-colorable.

tw
()

< 3

⇓

⇓

Is 3-colorable?

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Picture 1

tw(core(Hf)) < k =⇒ core(Hf)→ Kk, ie, core(Hf) is k-colorable.

tw
()

< 3

⇓

⇓

Is 3-colorable?

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Picture 1

tw(core(Hf)) < k =⇒ core(Hf)→ Kk, ie, core(Hf) is k-colorable.

tw
()

< 3

⇓

⇓

Is 3-colorable?

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Picture 1

tw(core(Hf)) < k =⇒ core(Hf)→ Kk, ie, core(Hf) is k-colorable.

tw
()

< 3

⇓

⇓

Is 3-colorable?

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Picture 1

tw(core(Hf)) < k =⇒ core(Hf)→ Kk, ie, core(Hf) is k-colorable.

tw
()

< 3

⇓

⇓

Is 3-colorable?

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Picture 1

tw(core(Hf)) < k =⇒ core(Hf)→ Kk, ie, core(Hf) is k-colorable.

tw
()

< 3

⇓

⇓

Is 3-colorable?

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Picture 1

tw(core(Hf)) < k =⇒ core(Hf)→ Kk, ie, core(Hf) is k-colorable.

tw
()

< 3

⇓

⇓

Is 3-colorable?

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Picture 1

tw(core(Hf)) < k =⇒ core(Hf)→ Kk, ie, core(Hf) is k-colorable.

tw
()

< 3

⇓

⇓

is 3-colorable

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Sketch Item 2

Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k.

(=⇒) Kk, f |= ∃x1 . . . xnF[G], say Kk, h |= F[G],
implies Hf → Kk

k via homomorphism acting as h on G and identically on [k].
Thus, Hf ↔ Kk

k. Clearly Kk
k is a core.

Hence core(Hf) = Kk
k.

Thus tw(core(Hf)) = tw(Kk
k) = k− 1 < k.

(⇐=) Assume tw(core(Hf)) < k.
Then core(Hf)→ Kk, taking the {E}-reduct on the left (Picture 1).

We have Hf → core(Hf), taking {E}-reducts.
Hence Hf → Kk, taking the {E}-reduct on the left, say via map h.
Since Kk, h |=

⋃
i∈[m](Lyi 7→f(yi) ∪Myi 7→f(yi)),

we have that h extends f (Picture 2).
Moreover, Kk, h |= F[G].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Sketch Item 2

Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k.

(=⇒) Kk, f |= ∃x1 . . . xnF[G], say Kk, h |= F[G],
implies Hf → Kk

k via homomorphism acting as h on G and identically on [k].
Thus, Hf ↔ Kk

k. Clearly Kk
k is a core.

Hence core(Hf) = Kk
k.

Thus tw(core(Hf)) = tw(Kk
k) = k− 1 < k.

(⇐=) Assume tw(core(Hf)) < k.
Then core(Hf)→ Kk, taking the {E}-reduct on the left (Picture 1).
We have Hf → core(Hf), taking {E}-reducts.
Hence Hf → Kk, taking the {E}-reduct on the left, say via map h.
Since Kk, h |=

⋃
i∈[m](Lyi 7→f(yi) ∪Myi 7→f(yi)),

we have that h extends f (Picture 2).
Moreover, Kk, h |= F[G].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Picture 2
Hf → Kk via h =⇒ h extends f .

Example (k = 3, m = 2)
f (y1) = 2 and f (y2) = 1. Thus U

Hf
y1 = {2}, U

Hf
y2 = {1},

EHf ⊇ {(y1, 1), (y1, 3), (1, y1), (3, y1), (y2, 2), (y2, 3), (2, y2), (3, y2)}.
Assume Hf → Kk via h. Wlog, h(i) = i for all i ∈ [3].
Then, h(yj) = f (yj) for all j ∈ [2], ie, h extends f .

2 3

1

Uy1

y2

Uy2

y1

→{E}

h(2) = h(y1) = f(y1) = 2

h(1) = h(y2) = f(y2) = 1

h(3) = 3

2

1

3

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Picture 2
Hf → Kk via h =⇒ h extends f .

Example (k = 3, m = 2)
f (y1) = 2 and f (y2) = 1. Thus U

Hf
y1 = {2}, U

Hf
y2 = {1},

EHf ⊇ {(y1, 1), (y1, 3), (1, y1), (3, y1), (y2, 2), (y2, 3), (2, y2), (3, y2)}.
Assume Hf → Kk via h. Wlog, h(i) = i for all i ∈ [3].
Then, h(yj) = f (yj) for all j ∈ [2], ie, h extends f .

2 3

1

Uy1

y2

Uy2

y1

2 3

1

h(2) = h(y1) = f(y1) = 2

h(1) = h(y2) = f(y2) = 1

h(3) = 3

→{E}

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Picture 2
Hf → Kk via h =⇒ h extends f .

Example (k = 3, m = 2)
f (y1) = 2 and f (y2) = 1. Thus U

Hf
y1 = {2}, U

Hf
y2 = {1},

EHf ⊇ {(y1, 1), (y1, 3), (1, y1), (3, y1), (y2, 2), (y2, 3), (2, y2), (3, y2)}.
Assume Hf → Kk via h. Wlog, h(i) = i for all i ∈ [3].
Then, h(yj) = f (yj) for all j ∈ [2], ie, h extends f .

2 3

1

Uy1

y2

Uy2

y1

2 3

1

→{E}

h(2) = 2 h(3) = 3

h(1) = 1

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Picture 2
Hf → Kk via h =⇒ h extends f .

Example (k = 3, m = 2)
f (y1) = 2 and f (y2) = 1. Thus U

Hf
y1 = {2}, U

Hf
y2 = {1},

EHf ⊇ {(y1, 1), (y1, 3), (1, y1), (3, y1), (y2, 2), (y2, 3), (2, y2), (3, y2)}.
Assume Hf → Kk via h. Wlog, h(i) = i for all i ∈ [3].
Then, h(yj) = f (yj) for all j ∈ [2], ie, h extends f .

2 3

1

Uy1

y2

Uy2

y1

2 3

1

→{E}

h(2) = h(y1) = f(y1) = 2

h(1) = h(y2) = f(y2) = 1

h(3) = 3

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Sketch Item 2

Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k.

(=⇒) Kk, f |= ∃x1 . . . xnF[G], say Kk, h |= F[G],
implies Hf → Kk

k via homomorphism acting as h on G and identically on [k].
Thus, Hf ↔ Kk

k. Clearly Kk
k is a core.

Hence core(Hf) = Kk
k.

Thus tw(core(Hf)) = tw(Kk
k) = k− 1 < k.

(⇐=) Assume tw(core(Hf)) < k.
Then core(Hf)→ Kk, taking the {E}-reduct on the left (Picture 1).
We have Hf → core(Hf), taking {E}-reducts.
Hence Hf → Kk, taking the {E}-reduct on the left, say via map h.
Since Kk, h |=

⋃
i∈[m](Lyi 7→f(yi) ∪Myi 7→f(yi)),

we have that h extends f (Picture 2).

Moreover, Kk, h |= F[G].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Existential Positive Logic | Sketch Item 2

Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf)) < k.

(=⇒) Kk, f |= ∃x1 . . . xnF[G], say Kk, h |= F[G],
implies Hf → Kk

k via homomorphism acting as h on G and identically on [k].
Thus, Hf ↔ Kk

k. Clearly Kk
k is a core.

Hence core(Hf) = Kk
k.

Thus tw(core(Hf)) = tw(Kk
k) = k− 1 < k.

(⇐=) Assume tw(core(Hf)) < k.
Then core(Hf)→ Kk, taking the {E}-reduct on the left (Picture 1).
We have Hf → core(Hf), taking {E}-reducts.
Hence Hf → Kk, taking the {E}-reduct on the left, say via map h.
Since Kk, h |=

⋃
i∈[m](Lyi 7→f(yi) ∪Myi 7→f(yi)),

we have that h extends f (Picture 2).
Moreover, Kk, h |= F[G].

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Outline

Research Motivation

Previous Work

Our Result

Other Results and Open Problems

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

First-Order Logic Fragments | Expressibility

FO(∃,∧,∨,¬)

FO(∃,∧,∨) FO(∀, ∃,∧)

FO(∃,∧)

FO

FO(∃,∧,¬)

FO(∀, ∃,∧,∨)FO(∀, ∃,∧,¬) S FO(S)-EXPRESS

{∀, ∃,∧,∨,¬} undecidable [folklore]
{∀, ∃,∧,∨} undecidable, k ≥ 3 [B, Chen]
{∀, ∃,∧,¬} open
{∃,∧,∨,¬} open
{∃,∧,¬} open
{∀, ∃,∧} open
{∃,∧,∨} Π

p
2-complete, k ≥ 3 [B, Chen]

{∃,∧} NP-complete, k ≥ 2 [Dalmau et al.]

FO(S) denotes equality-free relational FO-sentences in prefix negation form, using logical symbols in S.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

First-Order Logic Fragments | Entailment and Equivalence

Understanding entailment/equivalence
helps in understanding expressibility.

As a byproduct, we obtained a (fairly complete) complexity classification of
entailment/equivalence wrt:

• all existential fragments S of FO;

• all relational vocabularies σ;

thus refining known Π
p
2-completeness of FOσ(∃,∧,¬) and FOσ(∃,∧,∨).

σ FOσ(∃,∧) FOσ(∃,∧,¬) FOσ(∃,∧,∨) FOσ(∃,∧,∨,¬)

unary, |σ| ≤ 1 P P P coDP-hard, in PNP[const]

unary, finite, |σ| > 1 P P coDP-hard, in PNP[const] coDP-hard, in PNP[const]

unary infinite P P Π
p
2-complete Π

p
2-complete

R ∈ σ, ar(R) ≥ 2 NP-complete Π
p
2-complete Π

p
2-complete Π

p
2-complete

The complexity of FOσ(∀,∃,∧) and FOσ(∀, ∃,∧,¬) is open.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

First-Order Logic Fragments | Entailment and Equivalence

Understanding entailment/equivalence
helps in understanding expressibility.

As a byproduct, we obtained a (fairly complete) complexity classification of
entailment/equivalence wrt:

• all existential fragments S of FO;

• all relational vocabularies σ;

thus refining known Π
p
2-completeness of FOσ(∃,∧,¬) and FOσ(∃,∧,∨).

σ FOσ(∃,∧) FOσ(∃,∧,¬) FOσ(∃,∧,∨) FOσ(∃,∧,∨,¬)

unary, |σ| ≤ 1 P P P coDP-hard, in PNP[const]

unary, finite, |σ| > 1 P P coDP-hard, in PNP[const] coDP-hard, in PNP[const]

unary infinite P P Π
p
2-complete Π

p
2-complete

R ∈ σ, ar(R) ≥ 2 NP-complete Π
p
2-complete Π

p
2-complete Π

p
2-complete

The complexity of FOσ(∀,∃,∧) and FOσ(∀, ∃,∧,¬) is open.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Literature

S. Bova and H. Chen.
The Complexity of Width Minimization for Existential Positive Logic.
Manuscript, 2013.

A. K. Chandra and P. M. Merlin.
Optimal Implementation of Conjunctive Queries in Relational Data Bases.
In Proceedings of STOC’77, pages 77–90, 1977.

H. Chen.
On the Complexity of Existential Positive Queries.
CoRR, abs/1206.3902, 2012.

V. Dalmau, P. G. Kolaitis, and M. Y. Vardi.
Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics.
In Proceedings of CP’02, 2002.

M. Grohe.
The Complexity of Homomorphism and Constraint Satisfaction Problems Seen from the Other Side.
Journal of the ACM, 54(1):1, 2007.

P. Hell and J. Nesetril.
The Core of a Graph.
Discrete Math., 109:117–126, 1992.

Y. Sagiv and M. Yannakakis.
Equivalences among Relational Expressions with the Union and Difference Operators.
Journal of the ACM, 27(4):633–655, 1980.

RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Thank you for your attention!

	Research Motivation
	Previous Work
	Our Result
	Other Results and Open Problems
	
	

