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Minimization (or Expressibility) Problem

Notation

• FO denotes relational first-order sentences;

• FOk denotes FO-sentences using at most k variable symbols;

• width(φ) is the the maximum number of free variables over subformulas of φ.

Minimizing number of variable symbols in FO-sentences (decision version):

Problem FO-EXPRESS

Instance φ ∈ FO and k ∈ N.

Question Is there ψ ∈ FOk such that φ is logically equivalent to ψ?

Theorem (Folklore)
FO-EXPRESS is undecidable.
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Minimization |Model Checking

However, minimization and expressibility are important wrt algorithmic and
complexity aspects of the MODELCHECKING problem:

Given a finite structure A and a FO-sentence φ, decide whether A |= φ.

The MODELCHECKING problem is PSPACE-complete. But, analyzing the
time complexity of the natural recursive evaluation of φ in A . . .

Proposition (Vardi)
Let (A, φ) be an instance of MODELCHECKING.
The question, A |= φ?, is decidable in time O(|A|width(φ)).

If φ ∈ FOk, then width(φ) ≤ k. If width(φ) ≤ k, then there is a polytime
computable φ′ ∈ FOk st φ′ ≡ φ.

Minimization in Model Checking: Minimizing the number of variables in φ
also minimizes the exponent in the runtime of the natural
model checking algorithm.
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Expressibility | Complexity Criterion

A relevant example of the MODELCHECKING problem is query evaluation,
evaluating a query φ over a relational database A.

Typically the query is relatively small and the database is relatively large.

In this setting, one considers computationally tractable a two stage procedure
where a query optimization algorithm of possibly high complexity (eg, a width
minimization algorithm) is followed by an evaluation algorithm that evaluates
the optimized query in polytime.

This approach yields a relaxation of the notion of polynomial-time
tractability, called fixed-parameter tractability, viable in the database setting.

Expressibility as Complexity Criterion: With respect to basic and fundamental
classes of queries in database theory, “expressibility
characterizes tractability” in a precise sense.
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Expressibility | Complexity Criterion

Let PP ⊆ FO be the class of primitive positive (∃, ∧) sentences
(aka conjunctive queries in database theory).

Theorem (Dalmau, Kolaitis, and Vardi; Grohe)
Let L ⊆ PP be a class of sentences. The following are equivalent: ∗

• MODELCHECKING restricted to L is fixed-parameter tractable.

• There exists k ≥ 1 st L ⊆ PPk-EXPRESS.

Theorem (Dalmau, Kolaitis, and Vardi)
PPk-EXPRESS is NP-complete (k ≥ 2).

∗L has bounded arity. Unless W[1] ⊆ nuFPT.
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Expressibility | Complexity Criterion

Let EP ⊆ FO be the class of existential positive (∃, ∧, ∨) sentences
(aka union of conjunctive queries in database theory).

Theorem (Chen)
Let L ⊆ EP be a class of sentences. The following are equivalent: †

• MODELCHECKING restricted to L is fixed-parameter tractable.

• There exists k ≥ 1 st L ⊆ EPk-EXPRESS.

Question
What is the complexity of EPk-EXPRESS?

Theorem (B, Chen)
EPk-EXPRESS is Π

p
2-complete (k ≥ 3).

†L has bounded arity. Unless W[1] ⊆ nuFPT.
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Primitive Positive Logic |Minimization

Example (Grid)

γ = ∃x1 . . .∃x9

( )

= ∃x1 . . .∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)

≡ . . . best possible equivalence preserving syntactic rewriting . . .

≡ ∃x1∃x2∃x3∃x4(Ex4x1 ∧ Ex2x1 ∧ Ex2x3

∧ ∃x1(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x2(Ex1x4 ∧ Ex1x2 ∧ Ex2x3

∧ ∃x3(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x4(Ex4x3 ∧ Ex1x4 ∧ Ex1x2

∧ ∃x1(Ex4x3 ∧ Ex1x4 ∧ Ex1x2)))))) ∈ PP4.

γ ∈ PP4-EXPRESS, but γ ∈ PP2-EXPRESS (claim), ie, the result is not optimal.
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Primitive Positive Logic |Minimization

Example (Grid, Cont’d)
Syntactic rewriting is not a complete method for the minimization problem.

The right approach would instead proceed through the following two steps.

Semantic Minimization (Hard): Observe in “modest complexity” that

γ = ∃x1 . . .∃x9

( )
≡ ∃x1∃x2∃x3

( )
.

Syntactic Minimization (Easy): Minimize the variables in ∃x1∃x2∃x3

( )
by “best possible“ syntactic rewriting.
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Example (Grid, Cont’d)
Syntactic rewriting is not a complete method for the minimization problem.

The right approach would instead proceed through the following two steps.

Semantic Minimization (Hard): Observe in “modest complexity” that

γ = ∃x1 . . .∃x9

( )
≡

“NP away”
∃x1∃x2∃x3

( )
.

Syntactic Minimization (Easy): Minimize the variables in ∃x1∃x2∃x3

( )
by optimal polytime syntactic rewriting.
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Primitive Positive Logic | Treewidth

Two pieces of theory from graph combinatorics:

1. cores lead the semantic (hard) step;

2. treewidth leads the syntactic (easy) step.

Let A be a σ-structure. The treewidth tw(A) of A is a number w ≥ 1
“measuring the similarity of A with a tree”.

Low treewidth indicates high similarity with trees.

Example (Treewidth)
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Let A be a σ-structure. The treewidth tw(A) of A is a number w ≥ 1
“measuring the similarity of A with a tree”.
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Primitive Positive Logic | Treewidth

Two pieces of theory from graph combinatorics:

1. cores lead the semantic (hard) step;

2. treewidth leads the syntactic (easy) step.

Let A be a σ-structure. The treewidth tw(A) of A is a number w ≥ 1
“measuring the similarity of A with a tree”.

Low treewidth indicates high similarity with trees.

Example (Treewidth)

tw

(
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������������

������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 1

tw(a tree) = 1

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 2

tw(a cycle) = 2

tw

( )
= 4

tw(a k-grid) = k

tw

(
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

)
= 3

tw(a k-clique) = k− 1



RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Homomorphisms

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =



RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Homomorphisms

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =



RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Homomorphisms

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =



RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Homomorphisms

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =



RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Homomorphisms

Let A and B be σ-structures. A homomorphism from A to B is a mapping
h : A→ B such that for all R ∈ σ and all (a1, . . . , aar(R)) ∈ Aar(R),
if (a1, . . . , aar(R)) ∈ RA, then (h(a1), . . . , h(aar(R))) ∈ RB.

Example

= A→ B =



RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Cores
Let A and B be σ-structures.

B is a core iff every homomorphism B→ B is bijective
(ie, every endomorphism of B is an automorphism).

B is a core of A if (i) B is a core, (ii) B is a substructure of A, (iii) B↔ A.
Every finite structure A has a unique core up to isomorphism, core(A).

Example

A = ↔

= B

= core(A)

A′ = ↔

= B′

= core(A′)
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Primitive Positive Logic | Cores
Let A and B be σ-structures.

B is a core iff every homomorphism B→ B is bijective
(ie, every endomorphism of B is an automorphism).

B is a core of A if (i) B is a core, (ii) B is a substructure of A, (iii) B↔ A.
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Example
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Primitive Positive Logic | Notation

Natural correspondence between PP-sentences and relational structures.

Example (Canonical Structure of a Query)

C[∃x1∃x2∃x3∃x4∃x5(Ex3x1 ∧ Ex3x2 ∧ Ex3x4 ∧ Ex3x5)] =

Example (Canonical Query of a Structure)

F

[ ]
= Ex3x1 ∧ Ex3x2 ∧ Ex3x4 ∧ Ex3x5

Q

[ ]
= ∃x1∃x2∃x3∃x4∃x5(Ex3x1 ∧ Ex3x2 ∧ Ex3x4 ∧ Ex3x5)
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Primitive Positive Logic | Characterization

A combinatorial characterization of k-variable expressibility for PP-logic.

Theorem (Dalmau et al.)
Let φ ∈ PPσ . Then, φ ∈ PPk-EXPRESS if and only if tw(core(C[φ])) < k.



RESEARCH MOTIVATION PREVIOUS WORK OUR RESULT OTHER RESULTS AND OPEN PROBLEMS

Primitive Positive Logic | Grid Revisited

Example (Grid Revisited)

∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi) ∈ PP2-EXPRESS

m

tw(core(C[∃x1 . . . ∃x9(
∧

i=2,4,6,8

Ex5xi ∧
∧

i=1,3

Ex2xi ∧
∧

i=1,7

Ex4xi ∧
∧

i=3,9

Ex6xi ∧
∧

i=7,9

Ex8xi)])) < 2

m

tw

(
core

( ))
< 2

≤ tw

( )
= 3

m

1 = tw

( )
< 2
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Primitive Positive Logic | Grid Revisited
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Primitive Positive Logic | Classification

A complexity classification of k-variable expressibility for PP-logic.

Theorem (Dalmau et al.)
PPk

σ-EXPRESS is NP-complete for all k ≥ 2 and all σ ⊇ {E}.

Proof (Sketch).
The upper bound follows from the characterization. A reduction from the
graph k-colorability problem gives the lower bound for k ≥ 3 (extra work
required for k = 2).
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Existential Positive Logic | Implicants

Let φ ∈ EP (recall EP is the class of existential positive sentences).

A PP-sentence τ is an implicant of φ if τ |= φ.

A disjunctive form of φ is a disjunction of implicants of φ equivalent to φ.

A disjunctive form of φ is irredundant if,
for all two distinct implicants τ and τ ′ in the disjunction,
τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i ≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where the φ′i are PP-formulas,
{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.
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τ 6|= τ ′ and τ ′ 6|= τ .

Example
An irredundant disjunctive form of φ is obtained as follows:

φ ≡ ∃x1 . . . xnφ
′ ≡ ∃x1 . . . xn

∨
i∈I

φ′i

≡
∨
i∈I

∃x1 . . . xnφ
′
i ≡

∨
j∈J

τj,

where the φ′i are PP-formulas,

{τj | j ∈ J} ⊆ PP and τj 6|= τj′ for all j, j′ ∈ J, j 6= j′.
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Existential Positive Logic | Characterization

A combinatorial characterization of EPk-EXPRESS.

Theorem (B, Chen)
Let φ ∈ EPσ . Then, φ ∈ EPk

σ-EXPRESS if and only if tw(core(C[τ ])) < k,
for all implicants τ in an irredundant disjunctive form of φ.

Proof (Sketch).
Combine the combinatorial characterization of k-expressibility in PP-logic
and the following combinatorial characterization of equivalence in EP-logic:
If φ′ =

∨
i∈[m] φ

′
i and φ′′ =

∨
j∈[n] φ

′′
j are irredundant disjunctive forms of

φ ∈ EP, then there exists a bijection π : [m]→ [n] such that, for all i ∈ [m],
C[φ′i ]↔ C[φ′′π(i)].
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Existential Positive Logic | Classification

A complexity classification of EPk-EXPRESS.

Theorem (B, Chen)
EPk

σ-EXPRESS is Π
p
2-complete for all k ≥ 3 and all σ ⊇ {Un | n ∈ N} ∪ {E},

and for all k ≥ 6 and all σ ⊇ {E}.

Proof (Sketch).
The upper bound follows from the characterization. A reduction from a
Π

p
2-complete quantified version of the graph k-colorability problem gives the

lower bound for all k ≥ 3 (extra work required if σ = {E}).
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Existential Positive Logic | Reduction

Let Kk = ([k], [k]2 \ {(i, i) | i ∈ [k]}).

Reduction from the following Π
p
2-complete problem:

Problem Π2-k-COLORABILITY

Instance ψ = ∀y1 . . .∀ym∃x1 . . .∃xnF[G], where G is a graph and
G = {y1, . . . , ym, x1, . . . , xn} ∩ [k] = ∅.

Question Kk |= ψ?

Note,
Kk |= ψ
⇐⇒ Kk, f |= ∃x1 . . .∃xnF[G] for all f : {y1, . . . , ym} → [k]
⇐⇒ each partial k-coloring f : {y1, . . . , ym} → [k] extends to a k-coloring of G.
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Existential Positive Logic | Reduction

ψ = ∀y1 . . .∀ym∃x1 . . .∃xnF[G].

Reduction maps ψ to χ in EP{E,U1,...,Uk,Uy1 ,...,Uym} defined as follows:

• matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k] F[Lyi 7→j ∪Myi 7→j];

• χ = ∃1 . . .∃k∃y1 . . .∃ym∃x1 . . .∃xnmatrix(χ),

where

• Kk
k = C[F[Kk] ∧U11 ∧ · · · ∧Ukk];

• Lyi 7→j = C[Uyi j];

• Myi 7→j = C[
∧

c∈[k],c 6=j(Eyic ∧ Ecyi)].

Claim
Kk |= ψ⇐⇒ χ ∈ EPk-EXPRESS.
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Existential Positive Logic | Reduction

By distributing ∧ over ∨,

matrix(χ) = F[G ∪Kk
k] ∧

∧
i∈[m]

∨
j∈[k]

F[Lyi 7→j ∪Myi 7→j]

≡
∨

f : {y1,...,ym}→[k]

F[G ∪Kk
k ∪

⋃
i∈[m]

(Lyi 7→f(yi) ∪Myi 7→f(yi))]

=
∨

f : {y1,...,ym}→[k]

F[Hf ].

By the caracterization, suffices to show the following:

1. The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf ] of χ is irredundant.

2. Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf )) < k,
for all f : {y1, . . . , ym} → [k].
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Existential Positive Logic | Idea Item 1

The disjunctive form
∨

f : {y1,...,ym}→[k] Q[Hf ] of χ is irredundant.

Example (k = 3, m = 2)
f (y1) = f ′(y1) = f ′(y2) = 2, f (y2) = 1.

U
Hf
1 = U

Hf ′

1 = {•}, U
Hf
2 = U

Hf ′
2 = {•}, U

Hf
3 = U

Hf ′
3 = {•}.

U
Hf
y1 = U

Hf ′
y1 = U

Hf ′
y2 = {•}, U

Hf
y2 = {•}.

Hf 9 Hf ′ and Hf ′ 9 Hf .

Hf ′Hf

Uy1

9
8

Uy2
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9
8
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Existential Positive Logic | Sketch Item 2

Kk, f |= ∃x1 . . . xnF[G]⇐⇒ tw(core(Hf )) < k.

(=⇒) Kk, f |= ∃x1 . . . xnF[G], say Kk, h |= F[G],
implies Hf → Kk

k via homomorphism acting as h on G and identically on [k].
Thus, Hf ↔ Kk

k. Clearly Kk
k is a core.

Hence core(Hf ) = Kk
k.

Thus tw(core(Hf )) = tw(Kk
k) = k− 1 < k.

(⇐=) Assume tw(core(Hf )) < k.
Then core(Hf )→ Kk, taking the {E}-reduct on the left (Picture 1).
We have Hf → core(Hf ), taking {E}-reducts.
Hence Hf → Kk, taking the {E}-reduct on the left, say via map h.
Since Kk, h |=

⋃
i∈[m](Lyi 7→f(yi) ∪Myi 7→f(yi)),

we have that h extends f (Picture 2).
Moreover, Kk, h |= F[G].
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Primitive Positive Logic | Picture 1

tw(core(Hf )) < k =⇒ core(Hf )→ Kk, ie, core(Hf ) is k-colorable.

tw
( )

< 3

⇓

⇓

Is 3-colorable?
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Existential Positive Logic | Sketch Item 2
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k via homomorphism acting as h on G and identically on [k].
Thus, Hf ↔ Kk

k. Clearly Kk
k is a core.

Hence core(Hf ) = Kk
k.

Thus tw(core(Hf )) = tw(Kk
k) = k− 1 < k.

(⇐=) Assume tw(core(Hf )) < k.
Then core(Hf )→ Kk, taking the {E}-reduct on the left (Picture 1).

We have Hf → core(Hf ), taking {E}-reducts.
Hence Hf → Kk, taking the {E}-reduct on the left, say via map h.
Since Kk, h |=

⋃
i∈[m](Lyi 7→f(yi) ∪Myi 7→f(yi)),

we have that h extends f (Picture 2).
Moreover, Kk, h |= F[G].
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Existential Positive Logic | Picture 2
Hf → Kk via h =⇒ h extends f .

Example (k = 3, m = 2)
f (y1) = 2 and f (y2) = 1. Thus U

Hf
y1 = {2}, U

Hf
y2 = {1},

EHf ⊇ {(y1, 1), (y1, 3), (1, y1), (3, y1), (y2, 2), (y2, 3), (2, y2), (3, y2)}.
Assume Hf → Kk via h. Wlog, h(i) = i for all i ∈ [3].
Then, h(yj) = f (yj) for all j ∈ [2], ie, h extends f .

2 3

1

Uy1

y2

Uy2

y1

→{E}

h(2) = h(y1) = f(y1) = 2

h(1) = h(y2) = f(y2) = 1

h(3) = 3

2

1

3
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First-Order Logic Fragments | Expressibility

FO(∃,∧,∨,¬)

FO(∃,∧,∨) FO(∀, ∃,∧)

FO(∃,∧)

FO

FO(∃,∧,¬)

FO(∀, ∃,∧,∨)FO(∀, ∃,∧,¬) S FO(S)-EXPRESS

{∀, ∃,∧,∨,¬} undecidable [folklore]
{∀, ∃,∧,∨} undecidable, k ≥ 3 [B, Chen]
{∀, ∃,∧,¬} open
{∃,∧,∨,¬} open
{∃,∧,¬} open
{∀, ∃,∧} open
{∃,∧,∨} Π

p
2-complete, k ≥ 3 [B, Chen]

{∃,∧} NP-complete, k ≥ 2 [Dalmau et al.]

FO(S) denotes equality-free relational FO-sentences in prefix negation form, using logical symbols in S.
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First-Order Logic Fragments | Entailment and Equivalence

Understanding entailment/equivalence
helps in understanding expressibility.

As a byproduct, we obtained a (fairly complete) complexity classification of
entailment/equivalence wrt:

• all existential fragments S of FO;

• all relational vocabularies σ;

thus refining known Π
p
2-completeness of FOσ(∃,∧,¬) and FOσ(∃,∧,∨).

σ FOσ(∃,∧) FOσ(∃,∧,¬) FOσ(∃,∧,∨) FOσ(∃,∧,∨,¬)

unary, |σ| ≤ 1 P P P coDP-hard, in PNP[const]

unary, finite, |σ| > 1 P P coDP-hard, in PNP[const] coDP-hard, in PNP[const]

unary infinite P P Π
p
2-complete Π

p
2-complete

R ∈ σ, ar(R) ≥ 2 NP-complete Π
p
2-complete Π

p
2-complete Π

p
2-complete

The complexity of FOσ(∀,∃,∧) and FOσ(∀, ∃,∧,¬) is open.
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