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Constraint Satisfaction Problems

Problem: CSP
Instance: (X , D, P) where:

(i) X is a finite set of variables;
(ii) D is a finite set of values (aka domain);
(iii) P = {C1, . . . , Cq} is a finite set of constraints,

that is, pairs (xi , Ri) having xi ∈ X m as scope
and Ri ⊆ Dm as relation.

Question: Is there an assignment f : X → D satisfying all
constraints, that is, such that f (xi) ∈ Ri for all
i ∈ {1, . . . , m}?
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CSP | Example

({x1, x2}, {0, . . . , 5}, {((x1, x2), R1), ((x1, x2), R2), ((x1, x2), R3)}),
R1, R2, R3 ⊆ {0, . . . , 5}2 as follows:
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(a) R1.

H0,5L H1,5L H2,5L H3,5L H4,5L H5,5L

H0,4L H1,4L H2,4L H3,4L H4,4L H5,4L

H0,3L H1,3L H2,3L H3,3L H4,3L H5,3L
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(b) R2.
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H5,0L

H5,1L

H5,2L

(c) R3.

Is there f : {x1, x2} → {0, . . . , 5} satisfying all constraints?

Simone Bova Local Consistency and MV -Algebras



Motivation
Local Consistency

MV -Algebras
Conclusion

Soft Constraint Satisfaction Problems
Commutative Bounded Residuated Lattices

CSP | Example

({x1, x2}, {0, . . . , 5}, {((x1, x2), R1), ((x1, x2), R2), ((x1, x2), R3)}),
R1, R2, R3 ⊆ {0, . . . , 5}2 as follows:
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(a) R1.

H0,5L H1,5L H2,5L H3,5L H4,5L H5,5L
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(b) R2.
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(c) R3.

H2,2L

H3,3L

H1,1L

H3,2L H4,2L

H4,3L

H3,4L

(d) f ’s.

Is there f : {x1, x2} → {0, . . . , 5} satisfying all constraints? Yes.
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Feasibility vs. Optimization

The crisp CSP is a feasibility question (any satisfying
assignment is equally likely).

The soft CSP is an optimization question: each constraint maps
assignments to a valuation structure, that is, a bounded poset
equipped with a suitable combination operator; the task is to
find an assignment such that the combination of its images
under all the constraints is maximal in the poset.
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Valuation Structure | Example

A = ({0, . . . , 10},⊥ = 0 < · · · < 10 = >, min). min:
(i) associative, commutative (no precedence, no order);
(ii) monotone over ≤ (more constraints, worst solutions);
(iii) min{x ,⊥} = ⊥ (unsatisfied constraints);
(iv) min{x ,>} = x (trivial constraints).

Simone Bova Local Consistency and MV -Algebras



Motivation
Local Consistency

MV -Algebras
Conclusion

Soft Constraint Satisfaction Problems
Commutative Bounded Residuated Lattices

Soft Constraints | Example

Suppose f : {x1, x2} → {0, . . . , 5} pays f (x1) + f (x2) euro. . .

H5,0L

H5,1L

H5,2L

H5,3L

H5,4L

H5,5L
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H4,1L
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H3,1L

H3,2L
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H1,0L

H1,1L

(a) Crisp R1.

H0,5L H1,5L H2,5L H3,5L H4,5L H5,5L

H0,4L H1,4L H2,4L H3,4L H4,4L H5,4L

H0,3L H1,3L H2,3L H3,3L H4,3L H5,3L

H0,2L H1,2L H2,2L H3,2L H4,2L H5,2LH4,2L

H0,1L H1,1L H2,1L H3,1L H4,1L H5,1L

H0,0L H1,0L H2,0L H3,0L H4,0L H5,0L

(b) Soft R1 domain.
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(c) Soft R1 image.

Figure: R1 : {0, . . . , 5}2 → {0, . . . , 10}.
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Soft Constraints | Example

H0,5L H1,5L H2,5L H3,5L H4,5L H5,5L

H0,4L H1,4L H2,4L H3,4L H4,4L H5,4L

H0,3L H1,3L H2,3L H3,3L H4,3L H5,3L

H0,2L H1,2L H2,2L H3,2L H4,2L

H0,1L

(a) Crisp R2.

H0,5L H1,5L H2,5L H3,5L H4,5L H5,5L

H0,4L H1,4L H2,4L H3,4L H4,4L H5,4L

H0,3L H1,3L H2,3L H3,3L H4,3L H5,3L

H0,2L H1,2L H2,2L H3,2L H4,2L H5,2LH4,2L

H0,1L H1,1L H2,1L H3,1L H4,1L H5,1L

H0,0L H1,0L H2,0L H3,0L H4,0L H5,0L

(b) Soft R2 domain.
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0

(c) Soft R2 image.

Figure: R2 : {0, . . . , 5}2 → {0, . . . , 10}.
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Soft Constraints | Example
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(a) Crisp R3.

H0,5L H1,5L H2,5L H3,5L H4,5L H5,5L

H0,4L H1,4L H2,4L H3,4L H4,4L H5,4L

H0,3L H1,3L H2,3L H3,3L H4,3L H5,3L

H0,2L H1,2L H2,2L H3,2L H4,2L H5,2LH4,2L

H0,1L H1,1L H2,1L H3,1L H4,1L H5,1L

H0,0L H1,0L H2,0L H3,0L H4,0L H5,0L

(b) Soft R3 domain.

5 6 7 0 0 0

4 5 6 7 0 0

3 4 5 6 7 0

2 3 4 5 6 76

1 2 3 4 5 6

1 1 2 3 4 5

(c) Soft R3 image.

Figure: R3 : {0, . . . , 5}2 → {0, . . . , 10}.
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Combination and Maximization | Example

H2,2L

H3,3L

H1,1L

H3,2L H4,2L

H4,3L

H3,4L
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(b) mina{Ri(a)}.
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(c) Optimal a’s.

Figure: mina∈{0,...,5}2{R1(a), R2(a), R3(a)}.

. . . f (xi) = 3, f (xj) = 4 maximize the venue f (x1) + f (x2).
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Definition

Definition (Soft CSP)

A soft CSP is a tuple P = (X , D, P, A) with:
(i) variables X = {1, . . . , n} = [n];
(ii) finite domains D = (Di)i∈[n] where i ranges over Di ;
(iii) valuation structure A = (A,≤,�,>,⊥) st (A,≤,>,⊥) is a

bounded poset, (A,�,>) is a commutative monoid, � is
monotone over ≤ (that is, x ≤ y implies z � x ≤ z � y );

(iv) P finite multiset of constraints of the form

CY :
∏
i∈Y

Di → A,

where Y ⊆ X is the scope of CY .
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Definition

Notation (Y ⊆ X ): l(Y ) =
∏

i∈Y Di ; t |Y projects t ∈ l(X ) onto Y .

Definition (Solution, Inconsistence, Equivalence)

Any t ∈ l(X ) such that
⊙

CY∈P CY (t |Y ) is maximal wrt ≤ in

S(P) = {
⊙

CY∈P

CY (t |Y ) | t ∈ l(X )} ⊆ A

is a solution to P, and P is inconsistent if S(P) = {⊥}.
P = (X , D, P, A) is equivalent to P′ = (X , D, P ′, A)
iff for every t ∈ l(X ),⊙

CY∈P

CY (t |Y ) =
⊙

CY∈P′

CY (t |Y ).
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Soft CSP

Problem: SOFT-CSP
Instance: (X , D, P, A)

Goal: Find t ∈ l(X ) maximizing
⊙

CY∈P CY (t |Y ).
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Enforcing Algorithms

An enforcing algorithm enforces in a polynomial-time a local
consistency property over a given a soft CSP.

Either the input problem is found locally (hence, globally)
inconsistent, or it is transformed into an equivalent problem,
possibly inconsistent but easier (with a smaller solution space).

Despite their incompleteness as inconsistency test, enforcing
algorithms are useful as subprocedures in exhaustive search
methods (eg branch and bound).
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Valuation Structures

The generalization of local consistency notions and techniques
from the crisp to the soft setting plays a central role in the
algorithmic investigation of soft CSPs.

The minimal valuation structure has been specialized to
implement consistency techniques (eg fair valuation structures,
commutative idempotent semirings).

Question: Are there natural valuation structures?
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Valuation Structures

The generalization of local consistency notions and techniques
from the crisp to the soft setting plays a central role in the
algorithmic investigation of soft CSPs.

The minimal valuation structure has been specialized to
implement consistency techniques (eg fair valuation structures,
commutative idempotent semirings).

Question: Are there natural valuation structures?
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Logical Structures

Fact
A CSP is a soft CSP (X , D, P, A) where:
(i) D = (Di)i∈X with |{Di | i ∈ X}| = 1;
(ii) A = ({0, 1}, 0 < 1, min, 1, 0).

In the crisp CSP, A is a reduct of the Boolean algebra 2, the
algebraic counterpart of classical two-valued logic.

Proposal: Consider algebraic counterparts of nonclassical
many-valued logics as valuation structures for the soft CSP.
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Residuated Lattices

In Boolean logic the relation between conjunction, ∧, and
implication,→, is given by the residuation equivalences,

x ∧ y ≤ z iff x ≤ y → z iff y ≤ x → z,

which imply many of the properties of ∧ and→ (commutativity
of ∧, distributivity of ∧ over ∨, left-distributivity of→ over ∨, and
right-distributivity of→ over ∧).

The prominent approach in generalizing Boolean logic relies
upon generalizing Boolean conjunction, by means of a binary
operation, �, called fusion, and imposing the residuation
equivalences with ∧ replaced by �.
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Residuated Lattices

Definition (Commutative Bounded Residuated Lattice, CBRL)
A (commutative bounded) residuated lattice is an algebra
(A,∨,∧,�,→,>,⊥) of type (2, 2, 2, 2, 0, 0) st:
(i) (A,�,>) is a commutative monoid;
(ii) (A,∨,∧,>,⊥) is a bounded lattice;
(iii) residuation holds, that is x � y ≤ z if and only if y ≤ x → z.

The monotonicity of fusion over the order follows.
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Residuated Lattices

What additional structure is required to implement local
consistency techniques?

Divisibility is necessary,
prelinearity is auxiliary. . .

Definition (GBL-algebra, BL-algebra)

A GBL-algebra is a CBRL where divisibility holds, that is,
x ∧ y = x � (x → y). A BL-algebra is a GBL-algebra where
prelinearity holds, that is, (x → y) ∨ (y → x) = >.

BL- and GBL-algebras have a natural logical interpretation,
respectively Hájek’s logic and the intersection of Hájek’s and
intuitionistic logic.
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intuitionistic logic.

Simone Bova Local Consistency and MV -Algebras



Motivation
Local Consistency

MV -Algebras
Conclusion

k -Hyperarc Consistency
Enforcing Algorithm
Lattice Orders and Nonidempotent Combinations

Outline

1 Motivation

2 Local Consistency
k -Hyperarc Consistency
Enforcing Algorithm
Lattice Orders and Nonidempotent Combinations

3 MV -Algebras

4 Conclusion

Simone Bova Local Consistency and MV -Algebras



Motivation
Local Consistency

MV -Algebras
Conclusion

k -Hyperarc Consistency
Enforcing Algorithm
Lattice Orders and Nonidempotent Combinations

k -Hyperarc Consistency

A soft CSP is k-hyperarc consistent if it is possible to extend
any consistent assignment of a variable i to an assignment of
any other ≤ k − 1 variables, constrained by i , avoiding
additional costs [BG06, CS04, LS04].

If the valuation structure has a logical interpretation, enforcing
local consistency coincides with performing logical inferences,
aiming to a refutation.
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Definition

Notation (Y ⊆ X , i ∈ Y , a ∈ Di , t ∈ l(Y \ {i})):
(t · a) = t ′ ∈ l(Y ) st t ′|{i} = a and t ′|Y\{i} = t .

Definition (k -Hyperarc Consistency)

P = (X , D, P, A) soft CSP, Y ⊆ X st 2 ≤ |Y | ≤ k and CY ∈ P. Y
is k-hyperarc consistent if for each i ∈ Y and each a ∈ Di such
that C{i}(a) > ⊥, there exists t ∈ l(Y \ {i}) such that,

CY (t · a) = >.

P is k-hyperarc consistent if every Y ⊆ X st 2 ≤ |Y | ≤ k and
CY ∈ P is k -hyperarc consistent.
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Specification

Algorithm: k -HYPERARCCONSISTENCY

Input: A soft CSP P = (X , D, P, A),
where A is GBL-algebra.

Output: ⊥, or a k -hyperarc consistent soft CSP,
equivalent to P.
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Pseudocode | 1

k -HYPERARCCONSISTENCY((X , D, P, A))
1 Q ← {1, . . . , n}
2 while Q 6= ∅ do
3 i ← POP(Q)
4 foreach Y ⊆ X such that 2 ≤ |Y | ≤ k , i ∈ Y and CY ∈ P do
5 domainShrink← PROJECT(Y , i)
6 if C{i}(a) = ⊥ for each a ∈ Di then
7 return ⊥
8 else if domainShrink then
9 PUSH(Q, i)
10 endif
11 endforeach
12 endwhile
13 return (X , D, P ′, A)
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Pseudocode | 2

PROJECT(Y , i)
14 domainShrink← false
15 foreach a ∈ Di such that C{i}(a) > ⊥ do
16 x ← a maximal element in {CY (t · a) | t ∈ l(Y \ {i})}
17 C{i}(a)← C{i}(a)� x
18 if C{i}(a) = ⊥ then
19 domainShrink← true
20 endif
21 foreach t ∈ l(Y \ {i}) do
22 CY (t · a)← (x → CY (t · a))
23 B by divisibility, z ≤ x implies (y � x)� (x → z) = y � z
24 endforeach
25 endforeach
26 return domainShrink
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Correctness and Complexity

Lemma (Complexity)

Let P = (X , D, P, A) be soft CSP with X = [n], d = maxi∈[n] |Di |
and e = |P|. Then, k -HYPERARCCONSISTENCY(P) runs in
O(e2 · dk+1) time.

Lemma (Soundness)

Let P = (X , D, P, A) be a soft CSP. Consider the output of
k -HYPERARCCONSISTENCY(P):
(i) if it is ⊥, then P is inconsistent;
(ii) ow it is a k-hyperarc consistent soft CSP equivalent to P.
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Lattice Orders and Nonidempotent Combinations

Y ⊆ X , t , t ′ ∈ l(Y ), A GBL-algebra.
CY (t) ≤ CY (t ′) says that t ′ is preferred to t (the distance
between CY (t) and CY (t ′) gives the degree of such
preference, ranging over A’s depth).
CY (t) ‖ CY (t ′) says that t ′ and t are incomparable (A’s
width gives the number of simultaneous rankings
supported by A).
∧’s and ∨’s serve to embed consistency techniques over
residuated lattices inside branch and bound methods
(tentative).
CY (t)� CY (t) < CY (t) says that repetitions matter.
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Komori-Grigolia Variety
Combinatorial Representations

Prelinearity

k -HYPERARCCONSISTENCY works without prelinearity.

The bonus of prelinearity is the representability of finite
algebras in locally finite subvarieties of BL-algebras.

Definition (MV -Algebras)
An MV-algebra is a BL-algebra where involutiveness holds,
that is, (x → ⊥)→ ⊥ = x .
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Generic MV -Algebra

For every x , y ∈ [0, 1], let:

(i) x�y = max{0, x +y−1};
(ii) x → y = min{1, y +1−x};
(iii) ⊥ = 0;

(iv) x ∧ y = x � (x → y);
(v) x ∨ y = (x → y)→ y ;
(vi) > = ⊥ → ⊥.

Fact
(i) [0, 1]MV = ([0, 1],∨,∧,�,→,>,⊥) is an MV-algebra;
(ii) [0, 1]MV generates the variety of MV-algebras.
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Standard MV -Operations
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Komori-Grigolia Varieties

For every m ≥ 1, let Lm = {0, 1/m, . . . , (m − 1)/m, 1} ⊆ [0, 1].

Fact
Lm = (Lm,∨|Lm ,∧|Lm ,�|Lm ,→ |Lm ,>|Lm ,⊥|Lm) is an MV-algebra.

MVm, the variety generated by Lm (Komori-Grigolia).

Theorem (Free n-Generated MVm-Algebra, Fn(MVm))

Let m be prime. The free
n-generated MV-algebra in
MVm is the direct product of 2n

chains L1 and (m + 1)n − 2n

chains Lm.

(a) F2(MV2).
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Combinatorial Representations

Fact
Let m be prime. Fn(MVm) is the algebra of
(m + 1)n-dimensional integer vectors having the first 2n

coordinates ranging over L1 and the last (m + 1)n − 2n

coordinates ranging over Lm, equipped with standard
MV-operations defined coordinatewise.

Features of Fn(MVm)’s lattice reduct:
(i) size 22n · (m + 1)(m+1)n−2n

;
(ii) depth 2n + m((m + 1)n − 2n);

(iii) width ≥
( (m+1)n

b(m+1)n/2c
)

by Sperner’s lemma.
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Combinatorial Representations | Examples

F2(MV3) has domain {(a1, . . . , a4, b1, . . . , b12) | ai ∈ L1, bj ∈ L3}
of size 268, 435, 456, depth 40 and width ≥ 12870.

F1(MV2)’s contains the 12
3-dimensional vectors (a, b, c)
st a, c ∈ {0, 1}, b ∈ {0, 1/2, 1}.
F1(MV2)’s lattice reduct has
depth 4 and width
4 >

( 3
b3/2c

)
= 3.

Figure: F1(MV2).
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Summary

We presented certain subvarieties of commutative bounded
residuated lattices as natural valuation structures for soft CSP’s.

These structures constitute the algebraic counterparts of
nonclassical many-valued logics, and provide a uniform logical
interpretation of enforcing procedures.

Divisibility and prelinearity allow for a sound implementation
and a concrete representation of useful techniques of local
consistency.
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