Local Consistency and MV-Algebras

Simone Bova

bova@unisi.it www.mat.unisi.it/~bova

Department of Mathematics and Computer Science University of Siena (Siena, Italy)

3 October 2008 Universitat Pompeu Fabra (Barcelona, Spain)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Outline

Motivation

- Soft Constraint Satisfaction Problems
- Commutative Bounded Residuated Lattices

2 Local Consistency

- *k*-Hyperarc Consistency
- Enforcing Algorithm
- Lattice Orders and Nonidempotent Combinations

3 MV-Algebras

- Komori-Grigolia Variety
- Combinatorial Representations

Conclusion

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Outline

Motivation

- Soft Constraint Satisfaction Problems
- Commutative Bounded Residuated Lattices
- 2 Local Consistency

3 MV-Algebras

4 Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Constraint Satisfaction Problems

Problem: CSP Instance: (X, D, P) where: (i) X is a finite set of variables; (ii) D is a finite set of values (aka domain); (iii) $P = \{C_1, \dots, C_q\}$ is a finite set of constraints, that is, pairs (\mathbf{x}_i, R_i) having $\mathbf{x}_i \in X^m$ as scope and $R_i \subseteq D^m$ as relation.

Question: Is there an assignment $f: X \to D$ satisfying all constraints, that is, such that $f(\mathbf{x}_i) \in R_i$ for all $i \in \{1, ..., m\}$?

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

CSP | Example

$(\{x_1, x_2\}, \{0, \dots, 5\}, \{((x_1, x_2), R_1), ((x_1, x_2), R_2), ((x_1, x_2), R_3)\}), R_1, R_2, R_3 \subseteq \{0, \dots, 5\}^2$ as follows:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Is there $f: \{x_1, x_2\} \rightarrow \{0, \dots, 5\}$ satisfying all constraints?

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

CSP | Example

$(\{x_1, x_2\}, \{0, \dots, 5\}, \{((x_1, x_2), R_1), ((x_1, x_2), R_2), ((x_1, x_2), R_3)\}), R_1, R_2, R_3 \subseteq \{0, \dots, 5\}^2$ as follows:

Is there $f: \{x_1, x_2\} \rightarrow \{0, \dots, 5\}$ satisfying all constraints? Yes.

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Feasibility vs. Optimization

The *crisp* CSP is a *feasibility* question (any satisfying assignment is equally likely).

The *soft* CSP is an *optimization* question: each constraint maps assignments to a *valuation structure*, that is, a *bounded* poset equipped with a suitable *combination* operator; the task is to find an assignment such that the combination of its images under all the constraints is *maximal* in the poset.

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ● の Q @

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Valuation Structure | Example

- $A = (\{0, \dots, 10\}, \bot = 0 < \dots < 10 = \top, min).$ min:
 - (*i*) associative, commutative (no precedence, no order);
- (*ii*) monotone over \leq (more constraints, worst solutions);
- (*iii*) min{ x, \perp } = \perp (unsatisfied constraints);
- (*iv*) min{ x, \top } = x (trivial constraints).

(ロ) (同) (三) (三) (三) (三) (○)

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Soft Constraints | Example

Suppose $f: \{x_1, x_2\} \to \{0, ..., 5\}$ pays $f(x_1) + f(x_2)$ euro...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Soft Constraints | Example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Soft Constraints | Example

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Combination and Maximization | Example

... $f(x_i) = 3, f(x_j) = 4$ maximize the venue $f(x_1) + f(x_2)$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ 三日日 のの⊙

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Definition

Definition (Soft CSP)

A *soft CSP* is a tuple $\mathbf{P} = (X, D, P, \mathbf{A})$ with:

- (*i*) variables $X = \{1, ..., n\} = [n];$
- (*ii*) finite domains $D = (D_i)_{i \in [n]}$ where *i* ranges over D_i ;
- (iii) valuation structure A = (A, ≤, ⊙, ⊤, ⊥) st (A, ≤, ⊤, ⊥) is a bounded poset, (A, ⊙, ⊤) is a commutative monoid, ⊙ is monotone over ≤ (that is, x ≤ y implies z ⊙ x ≤ z ⊙ y);
- (iv) P finite multiset of constraints of the form

$$C_{\mathbf{Y}}:\prod_{i\in\mathbf{Y}}D_i\to \mathbf{A},$$

where $Y \subseteq X$ is the *scope* of C_Y .

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Definition

Notation
$$(Y \subseteq X)$$
: $I(Y) = \prod_{i \in Y} D_i$; $t|_Y$ projects $t \in I(X)$ onto Y.

Definition (Solution, Inconsistence, Equivalence)

Any $t \in I(X)$ such that $\bigcirc_{C_Y \in P} C_Y(t|_Y)$ is maximal wrt \leq in

$$S(\mathbf{P}) = \{ \bigcup_{C_Y \in \mathbf{P}} C_Y(t|_Y) \mid t \in I(X) \} \subseteq A$$

is a solution to P, and P is inconsistent if $S(P) = \{\bot\}$. P = (X, D, P, A) is equivalent to P' = (X, D, P', A)iff for every $t \in I(X)$,

$$\bigodot_{C_Y \in \mathcal{P}} C_Y(t|_Y) = \bigodot_{C_Y \in \mathcal{P}'} C_Y(t|_Y).$$

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Problem: SOFT-CSP Instance: (X, D, P, \mathbf{A}) Goal: Find $t \in I(X)$ maximizing $\bigcirc_{C_Y \in P} C_Y(t|_Y)$.

Simone Bova Local Consistency and MV-Algebras

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Enforcing Algorithms

An *enforcing* algorithm enforces in a polynomial-time a *local consistency* property over a given a soft CSP.

Either the input problem is found locally (hence, globally) inconsistent, or it is transformed into an *equivalent* problem, possibly inconsistent but *easier* (with a smaller solution space).

Despite their incompleteness as inconsistency test, enforcing algorithms are useful as subprocedures in exhaustive search methods (eg *branch and bound*).

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Valuation Structures

The generalization of local consistency notions and techniques from the crisp to the soft setting plays a central role in the algorithmic investigation of soft CSPs.

The *minimal* valuation structure has been *specialized* to implement consistency techniques (eg *fair* valuation structures, commutative *idempotent* semirings).

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Valuation Structures

The generalization of local consistency notions and techniques from the crisp to the soft setting plays a central role in the algorithmic investigation of soft CSPs.

The *minimal* valuation structure has been *specialized* to implement consistency techniques (eg *fair* valuation structures, commutative *idempotent* semirings).

Question: Are there natural valuation structures?

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Logical Structures

Fact
A CSP is a soft CSP (*X*, *D*, *P*, **A**) *where:*
(*i*)
$$D = (D_i)_{i \in X}$$
 with $|\{D_i | i \in X\}| = 1;$
(*ii*) $\mathbf{A} = (\{0, 1\}, 0 < 1, \min, 1, 0).$

In the crisp CSP, **A** is a reduct of the Boolean algebra **2**, the algebraic counterpart of classical *two-valued* logic.

Proposal: Consider algebraic counterparts of nonclassical *many-valued* logics as valuation structures for the soft CSP.

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Residuated Lattices

In Boolean logic the relation between *conjunction*, \land , and *implication*, \rightarrow , is given by the *residuation* equivalences,

$$x \wedge y \leq z \text{ iff } x \leq y \rightarrow z \text{ iff } y \leq x \rightarrow z,$$

which imply many of the properties of \land and \rightarrow (commutativity of \land , distributivity of \land over \lor , left-distributivity of \rightarrow over \lor , and right-distributivity of \rightarrow over \land).

The prominent approach in generalizing Boolean logic relies upon generalizing Boolean conjunction, by means of a binary operation, \odot , called *fusion*, and imposing the residuation equivalences with \land replaced by \odot .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Residuated Lattices

Definition (Commutative Bounded Residuated Lattice, *CBRL*) A (commutative bounded) residuated lattice is an algebra $(A, \lor, \land, \odot, \rightarrow, \top, \bot)$ of type (2, 2, 2, 2, 0, 0) st: (*i*) (A, \odot, \top) is a commutative monoid; (*ii*) $(A, \lor, \land, \top, \bot)$ is a bounded lattice; (*iii*) residuation holds, that is $x \odot y \le z$ if and only if $y \le x \to z$.

The monotonicity of fusion over the order follows.

(ロ) (同) (三) (三) (三) (三) (○)

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Residuated Lattices

What additional structure is required to implement local consistency techniques?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Soft Constraint Satisfaction Problems Commutative Bounded Residuated Lattices

Residuated Lattices

What additional structure is required to implement local consistency techniques? *Divisibility* is necessary, *prelinearity* is auxiliary...

Definition (GBL-algebra, BL-algebra)

A *GBL-algebra* is a *CBRL* where *divisibility* holds, that is, $x \land y = x \odot (x \rightarrow y)$. A *BL-algebra* is a *GBL*-algebra where *prelinearity* holds, that is, $(x \rightarrow y) \lor (y \rightarrow x) = \top$.

BL- and *GBL*-algebras have a natural logical interpretation, respectively *Hájek*'s logic and the intersection of Hájek's and intuitionistic logic.

(ロ) (同) (三) (三) (三) (三) (○)

Outline

Local Consistency

- k-Hyperarc Consistency
- Enforcing Algorithm
- Lattice Orders and Nonidempotent Combinations

MV-Algebras

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

k-Hyperarc Consistency Enforcing Algorithm Lattice Orders and Nonidempotent Combinations

k-Hyperarc Consistency

A soft CSP is *k*-hyperarc consistent if it is possible to extend any consistent assignment of a variable *i* to an assignment of any other $\leq k - 1$ variables, constrained by *i*, avoiding additional costs [BG06, CS04, LS04].

If the valuation structure has a logical interpretation, enforcing local consistency coincides with performing logical inferences, aiming to a refutation.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

k-Hyperarc Consistency Enforcing Algorithm Lattice Orders and Nonidempotent Combinations

Definition

Notation
$$(Y \subseteq X, i \in Y, a \in D_i, t \in I(Y \setminus \{i\}))$$
:
 $(t \cdot a) = t' \in I(Y)$ st $t'|_{\{i\}} = a$ and $t'|_{Y \setminus \{i\}} = t$.

Definition (k-Hyperarc Consistency)

 $\mathbf{P} = (X, D, P, \mathbf{A})$ soft CSP, $Y \subseteq X$ st $2 \leq |Y| \leq k$ and $C_Y \in P$. Y is *k*-hyperarc consistent if for each $i \in Y$ and each $a \in D_i$ such that $C_{\{i\}}(a) > \bot$, there exists $t \in I(Y \setminus \{i\})$ such that,

$$C_Y(t \cdot a) = \top.$$

P is *k*-hyperarc consistent if every $Y \subseteq X$ st $2 \le |Y| \le k$ and $C_Y \in P$ is *k*-hyperarc consistent.

k-Hyperarc Consistency Enforcing Algorithm Lattice Orders and Nonidempotent Combinations

Algorithm: *k*-HYPERARCCONSISTENCY

Input: A soft CSP $\mathbf{P} = (X, D, P, \mathbf{A})$, where **A** is *GBL*-algebra.

Output: \perp , or a *k*-hyperarc consistent soft CSP, equivalent to **P**.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

k-Hyperarc Consistency Enforcing Algorithm Lattice Orders and Nonidempotent Combinations

Pseudocode | 1

```
k-HyperarcConsistency((X, D, P, \mathbf{A}))
     Q \leftarrow \{1, \ldots, n\}
2
     while Q \neq \emptyset do
3
       i \leftarrow \mathsf{POP}(Q)
4
       foreach Y \subseteq X such that 2 < |Y| < k, i \in Y and C_Y \in P do
5
          domainShrink \leftarrow PROJECT(Y, i)
6
          if C_{\{i\}}(a) = \bot for each a \in D_i then
7
             return 🗆
8
          else if domainShrink then
9
             PUSH(Q, i)
10
          endif
11
       endforeach
12
    endwhile
13
    return (X, D, P', \mathbf{A})
```

k-Hyperarc Consistency Enforcing Algorithm Lattice Orders and Nonidempotent Combinations

Pseudocode | 2

PROJECT(Y, i)14 15 foreach $a \in D_i$ such that $C_{\{i\}}(a) > \bot$ do 16 $x \leftarrow a$ maximal element in $\{C_Y(t \cdot a) \mid t \in I(Y \setminus \{i\})\}$ 17 $C_{\{i\}}(a) \leftarrow C_{\{i\}}(a) \odot x$ 18 if $C_{\{i\}}(a) = \bot$ then 19 domainShrink

true 20 endif 21 foreach $t \in I(Y \setminus \{i\})$ do $C_{Y}(t \cdot a) \leftarrow (x \rightarrow C_{Y}(t \cdot a))$ 22 23 ▷ by divisibility, z < x implies $(y \odot x) \odot (x \rightarrow z) = y \odot z$ 24 endforeach 25 endforeach 26 return domainShrink

k-Hyperarc Consistency Enforcing Algorithm Lattice Orders and Nonidempotent Combinations

Correctness and Complexity

Lemma (Complexity)

Let $\mathbf{P} = (X, D, P, \mathbf{A})$ be soft CSP with X = [n], $d = \max_{i \in [n]} |D_i|$ and e = |P|. Then, k-HYPERARCCONSISTENCY(\mathbf{P}) runs in $O(e^2 \cdot d^{k+1})$ time.

Lemma (Soundness)

Let $\mathbf{P} = (X, D, P, \mathbf{A})$ be a soft CSP. Consider the output of *k*-HYPERARCCONSISTENCY(\mathbf{P}):

(i) if it is \perp , then **P** is inconsistent;

(ii) ow it is a k-hyperarc consistent soft CSP equivalent to P.

k-Hyperarc Consistency Enforcing Algorithm Lattice Orders and Nonidempotent Combinations

Lattice Orders and Nonidempotent Combinations

$Y \subseteq X, t, t' \in I(Y)$, **A** *GBL*-algebra.

- $C_Y(t) \le C_Y(t')$ says that t' is preferred to t (the distance between $C_Y(t)$ and $C_Y(t')$ gives the degree of such preference, ranging over **A**'s *depth*).
- C_Y(t) || C_Y(t') says that t' and t are incomparable (A's width gives the number of simultaneous rankings supported by A).
- A's and V's serve to embed consistency techniques over residuated lattices inside branch and bound methods (tentative).
- $C_Y(t) \odot C_Y(t) < C_Y(t)$ says that repetitions matter.

(ロ) (同) (三) (三) (三) (三) (○)

Komori-Grigolia Variety Combinatorial Representations

Outline

ocal Consistency

MV-Algebras

- Komori-Grigolia Variety
- Combinatorial Representations

4 Conclusion

・ロ> < 回> < 回> < 回> < 回> < 回

Komori-Grigolia Variety Combinatorial Representations

Prelinearity

k-HYPERARCCONSISTENCY works without prelinearity.

The bonus of prelinearity is the *representability* of finite algebras in locally finite subvarieties of *BL*-algebras.

Definition (*MV*-Algebras)

An *MV-algebra* is a *BL*-algebra where *involutiveness* holds, that is, $(x \rightarrow \bot) \rightarrow \bot = x$.

Komori-Grigolia Variety Combinatorial Representations

Generic MV-Algebra

For every $x, y \in [0, 1]$, let:

(i)
$$x \odot y = \max\{0, x+y-1\};$$
 (iv) $x \land y = x \odot (x \rightarrow y);$
(ii) $x \rightarrow y = \min\{1, y+1-x\};$ (v) $x \lor y = (x \rightarrow y) \rightarrow y;$
(iii) $\bot = 0;$ (vi) $\top = \bot \rightarrow \bot.$

Fact

(*i*) [0, 1]_{MV} = ([0, 1], ∨, ∧, ⊙, →, ⊤, ⊥) is an MV-algebra;
 (*ii*) [0, 1]_{MV} generates the variety of MV-algebras.

Komori-Grigolia Variety Combinatorial Representations

Standard MV-Operations

Komori-Grigolia Variety Combinatorial Representations

Komori-Grigolia Varieties

For every $m \ge 1$, let $L_m = \{0, 1/m, \dots, (m-1)/m, 1\} \subseteq [0, 1]$.

Fact

$$L_m = (L_m, \lor|_{L_m}, \land|_{L_m}, \odot|_{L_m}, \rightarrow |_{L_m}, \top|_{L_m}, \perp|_{L_m})$$
 is an MV-algebra.

 MV_m , the variety generated by L_m (Komori-Grigolia).

Theorem (Free *n*-Generated MV_m -Algebra, $F_n(MV_m)$)

Let *m* be prime. The free *n*-generated MV-algebra in MV_m is the direct product of 2^n chains L_1 and $(m + 1)^n - 2^n$ chains L_m .

(a) $F_2(MV_2)$.

Komori-Grigolia Variety Combinatorial Representations

Combinatorial Representations

Fact

Let *m* be prime. $F_n(MV_m)$ is the algebra of $(m+1)^n$ -dimensional integer vectors having the first 2^n coordinates ranging over L_1 and the last $(m+1)^n - 2^n$ coordinates ranging over L_m , equipped with standard *MV*-operations defined coordinatewise.

Features of $F_n(MV_m)$'s lattice reduct: (*i*) size $2^{2^n} \cdot (m+1)^{(m+1)^n-2^n}$:

(*ii*) depth
$$2^n + m((m+1)^n - 2^n)$$
;

(*iii*) width
$$\geq \binom{(m+1)^n}{\lfloor (m+1)^n/2 \rfloor}$$
 by Sperner's lemma.

Komori-Grigolia Variety Combinatorial Representations

Combinatorial Representations | Examples

 $F_2(MV_3)$ has domain $\{(a_1, \ldots, a_4, b_1, \ldots, b_{12}) \mid a_i \in L_1, b_j \in L_3\}$ of size 268, 435, 456, depth 40 and width \geq 12870.

 $\begin{array}{l} F_1(MV_2) \text{'s contains the 12} \\ \text{3-dimensional vectors } (a,b,c) \\ \text{st } a,c \in \{0,1\}, b \in \{0,1/2,1\}. \\ F_1(MV_2) \text{'s lattice reduct has} \\ \text{depth 4 and width} \\ 4 > {3 \choose \lfloor 3/2 \rfloor} = 3. \end{array}$

Figure: $F_1(MV_2)$.

Outline

3 MV-Algebras

Summary

We presented certain subvarieties of commutative bounded residuated lattices as *natural* valuation structures for soft CSP's.

These structures constitute the algebraic counterparts of nonclassical *many-valued* logics, and provide a uniform *logical* interpretation of enforcing procedures.

Divisibility and *prelinearity* allow for a sound implementation and a concrete representation of useful techniques of local consistency.

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

References

S. Bistarelli and F. Gadducci.

Enhancing Constraints Manipulation in Semiring-Based Formalisms. ECAI 2006, 63-67, 2006.

R. L. O. Cignoli, I. M. L. D'Ottaviano, and D. Mundici. Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 1999.

M. C. Cooper and T. Schiex. Arc Consistency for Soft Constraints.

Artificial Intellingence, 154(1-2):199-227, 2004.

N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, 2007.

J. Larrosa and T. Schiex. Solving Weighted CSP by Maintaining Arc Consistency. Artificial Intellingence, 159(1-2):1–26, 2004.

< ■ > < ■ > 三目目 のQ@