
CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Succinct Compilation of Propositional Theories

Simone Bova

Vienna University of Technology

Universidad del Paı́s Vasco
February 6, 2013



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Outline

Classical Compilation

Parameterized Compilation

Research Agenda



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Outline

Classical Compilation

Parameterized Compilation

Research Agenda



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Many reasoning tasks in artificial intelligence (inference, decision)
are computationally intractable.

Example (LATINCOMPLETION)

1

2  

1 3 2

3 2 1

2 1 3

Problem LATINCOMPLETION

Instance A partial function f : [n]× [n]→ [n].

Question Does there exist a n× n Latin square extending f ?

LATINCOMPLETION is computationally intractable (Colbourn, 1984).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Many reasoning tasks in artificial intelligence (inference, decision)
are computationally intractable.

Example (LATINCOMPLETION)

1

2

 

1 3 2

3 2 1

2 1 3

Problem LATINCOMPLETION

Instance A partial function f : [n]× [n]→ [n].

Question Does there exist a n× n Latin square extending f ?

LATINCOMPLETION is computationally intractable (Colbourn, 1984).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Many reasoning tasks in artificial intelligence (inference, decision)
are computationally intractable.

Example (LATINCOMPLETION)

1

2  

1 3 2

3 2 1

2 1 3

Problem LATINCOMPLETION

Instance A partial function f : [n]× [n]→ [n].

Question Does there exist a n× n Latin square extending f ?

LATINCOMPLETION is computationally intractable (Colbourn, 1984).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

However, part of the information specifying such tasks is typically
background knowledge, ie:

1. known before the execution of individual tasks;

2. remains stable through the execution of several individual tasks.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

However, part of the information specifying such tasks is typically
background knowledge, ie:

1. known before the execution of individual tasks;

2. remains stable through the execution of several individual tasks.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

However, part of the information specifying such tasks is typically
background knowledge, ie:

1. known before the execution of individual tasks;

2. remains stable through the execution of several individual tasks.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

A proposition is a Boolean formula
(Boolean variables combined by ¬, ∧, ∨).

Example (Cont’d)

1

2

 

1 3 2

3 2 1

2 1 3

Is the proposition φ3 ∧ x111 ∧ x222 satisfiable? Yes!

In the above LATINCOMPLETION instance:

1. φ3, the propositional theory of the 3× 3 Latin square,
is background knowledge (known, stable);

2. x111 ∧ x222, the given partial function,
is online information (unknown, varying).

Infer the solution by combining 1 and 2.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

A proposition is a Boolean formula
(Boolean variables combined by ¬, ∧, ∨).

Example (Cont’d)

1

2

 

1 3 2

3 2 1

2 1 3

Is the proposition φ3 ∧ x111 ∧ x222 satisfiable?

Yes!

In the above LATINCOMPLETION instance:

1. φ3, the propositional theory of the 3× 3 Latin square,
is background knowledge (known, stable);

2. x111 ∧ x222, the given partial function,
is online information (unknown, varying).

Infer the solution by combining 1 and 2.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

A proposition is a Boolean formula
(Boolean variables combined by ¬, ∧, ∨).

Example (Cont’d)

1

2  

1 3 2

3 2 1

2 1 3

Is the proposition φ3 ∧ x111 ∧ x222 satisfiable? Yes!

In the above LATINCOMPLETION instance:

1. φ3, the propositional theory of the 3× 3 Latin square,
is background knowledge (known, stable);

2. x111 ∧ x222, the given partial function,
is online information (unknown, varying).

Infer the solution by combining 1 and 2.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

A proposition is a Boolean formula
(Boolean variables combined by ¬, ∧, ∨).

Example (Cont’d)

1

2  

1 3 2

3 2 1

2 1 3

Is the proposition φ3 ∧ x111 ∧ x222 satisfiable? Yes!

In the above LATINCOMPLETION instance:

1. φ3, the propositional theory of the 3× 3 Latin square,
is background knowledge (known, stable);

2. x111 ∧ x222, the given partial function,
is online information (unknown, varying).

Infer the solution by combining 1 and 2.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

A proposition is a Boolean formula
(Boolean variables combined by ¬, ∧, ∨).

Example (Cont’d)

1

2  

1 3 2

3 2 1

2 1 3

Is the proposition φ3 ∧ x111 ∧ x222 satisfiable? Yes!

In the above LATINCOMPLETION instance:

1. φ3, the propositional theory of the 3× 3 Latin square,
is background knowledge (known, stable);

2. x111 ∧ x222, the given partial function,
is online information (unknown, varying).

Infer the solution by combining 1 and 2.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

A proposition is a Boolean formula
(Boolean variables combined by ¬, ∧, ∨).

Example (Cont’d)

1

2  

1 3 2

3 2 1

2 1 3

Is the proposition φ3 ∧ x111 ∧ x222 satisfiable? Yes!

In the above LATINCOMPLETION instance:

1. φ3, the propositional theory of the 3× 3 Latin square,
is background knowledge (known, stable);

2. x111 ∧ x222, the given partial function,
is online information (unknown, varying).

Infer the solution by combining 1 and 2.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Example (Cont’d)

For (i, j, k) ∈ [n]3, the propositional variable xijk means, “(i, j) maps to k ”.

φn is the propositional theory of the n× n Latin square, ie,
satisfying assignments to φn correspond to n× n Latin squares
(mapping (i, j) to k iff the assignment maps variable xijk to >).

φn = φn1 ∧ φn2 ∧ φn3 where:

φn1 =
∧

(i,j)∈[n]2

 ∨
k∈[n]

xijk

 ∧ ∧
k∈[n]

xijk →

 ∧
k 6=k′∈[n]

¬xijk′

 ,

φn2 =
∧

(i,k)∈[n]2

∨
j∈[n]

xijk

 ∧ ∧
j∈[n]

xijk →

 ∧
j 6=j′∈[n]

¬xij′k

 ,

φn3 =
∧

(j,k)∈[n]2

∨
i∈[n]

xijk

 ∧ ∧
i∈[n]

xijk →

 ∧
i 6=i′∈[n]

¬xi′jk

 .



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Example (Cont’d)
For (i, j, k) ∈ [n]3, the propositional variable xijk means, “(i, j) maps to k ”.

φn is the propositional theory of the n× n Latin square, ie,
satisfying assignments to φn correspond to n× n Latin squares
(mapping (i, j) to k iff the assignment maps variable xijk to >).

φn = φn1 ∧ φn2 ∧ φn3 where:

φn1 =
∧

(i,j)∈[n]2

 ∨
k∈[n]

xijk

 ∧ ∧
k∈[n]

xijk →

 ∧
k 6=k′∈[n]

¬xijk′

 ,

φn2 =
∧

(i,k)∈[n]2

∨
j∈[n]

xijk

 ∧ ∧
j∈[n]

xijk →

 ∧
j 6=j′∈[n]

¬xij′k

 ,

φn3 =
∧

(j,k)∈[n]2

∨
i∈[n]

xijk

 ∧ ∧
i∈[n]

xijk →

 ∧
i 6=i′∈[n]

¬xi′jk

 .



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Example (Cont’d)
For (i, j, k) ∈ [n]3, the propositional variable xijk means, “(i, j) maps to k ”.

φn is the propositional theory of the n× n Latin square, ie,
satisfying assignments to φn correspond to n× n Latin squares
(mapping (i, j) to k iff the assignment maps variable xijk to >).

φn = φn1 ∧ φn2 ∧ φn3 where:

φn1 =
∧

(i,j)∈[n]2

 ∨
k∈[n]

xijk

 ∧ ∧
k∈[n]

xijk →

 ∧
k 6=k′∈[n]

¬xijk′

 ,

φn2 =
∧

(i,k)∈[n]2

∨
j∈[n]

xijk

 ∧ ∧
j∈[n]

xijk →

 ∧
j 6=j′∈[n]

¬xij′k

 ,

φn3 =
∧

(j,k)∈[n]2

∨
i∈[n]

xijk

 ∧ ∧
i∈[n]

xijk →

 ∧
i 6=i′∈[n]

¬xi′jk

 .



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Example (Cont’d)
For (i, j, k) ∈ [n]3, the propositional variable xijk means, “(i, j) maps to k ”.

φn is the propositional theory of the n× n Latin square, ie,
satisfying assignments to φn correspond to n× n Latin squares
(mapping (i, j) to k iff the assignment maps variable xijk to >).

φn = φn1 ∧ φn2 ∧ φn3 where:

φn1 =
∧

(i,j)∈[n]2

 ∨
k∈[n]

xijk

 ∧ ∧
k∈[n]

xijk →

 ∧
k 6=k′∈[n]

¬xijk′

 ,

φn2 =
∧

(i,k)∈[n]2

∨
j∈[n]

xijk

 ∧ ∧
j∈[n]

xijk →

 ∧
j 6=j′∈[n]

¬xij′k

 ,

φn3 =
∧

(j,k)∈[n]2

∨
i∈[n]

xijk

 ∧ ∧
i∈[n]

xijk →

 ∧
i 6=i′∈[n]

¬xi′jk

 .



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Exploit background knowledge against computational intractability:

1. preprocess the background knowledge into a compiled knowledge
that allows for solving the reasoning task easily (in polynomial time);

2. process many individual tasks using the shared compiled knowledge
together with task specific online information.

Compilation cost is amortized by reusing compiled knowledge
to ease a large number of individual executions.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Exploit background knowledge against computational intractability:

1. preprocess the background knowledge into a compiled knowledge
that allows for solving the reasoning task easily (in polynomial time);

2. process many individual tasks using the shared compiled knowledge
together with task specific online information.

Compilation cost is amortized by reusing compiled knowledge
to ease a large number of individual executions.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Exploit background knowledge against computational intractability:

1. preprocess the background knowledge into a compiled knowledge
that allows for solving the reasoning task easily (in polynomial time);

2. process many individual tasks using the shared compiled knowledge
together with task specific online information.

Compilation cost is amortized by reusing compiled knowledge
to ease a large number of individual executions.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Exploit background knowledge against computational intractability:

1. preprocess the background knowledge into a compiled knowledge
that allows for solving the reasoning task easily (in polynomial time);

2. process many individual tasks using the shared compiled knowledge
together with task specific online information.

Compilation cost is amortized by reusing compiled knowledge
to ease a large number of individual executions.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

The key problem in knowledge compilation since the 90s:

Problem CLAUSEENTAILMENT

Instance A proposition φ (theory) and a clause δ (query).

Question φ |= δ?

φ δ1 δ2

w x y z (x ∨ z) ∧ (x ∨ y) ∧ (¬w ∨ y ∨ ¬z) ∧ (¬w ∨ ¬x ∨ ¬y) ¬w ∨ ¬y ∨ z y ∨ z
0 0 0 0 0 1 0
0 0 0 1 0 1 1
0 0 1 0 0 1 1
0 0 1 1 1 1 1
0 1 0 0 1 1 0
0 1 0 1 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 0 0 1
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 0 1 0 1 1
1 1 1 0 0 0 1
1 1 1 1 0 1 1



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

The key problem in knowledge compilation since the 90s:

Problem CLAUSEENTAILMENT

Instance A proposition φ (theory) and a clause δ (query).

Question φ |= δ?

φ δ1 δ2

w x y z (x ∨ z) ∧ (x ∨ y) ∧ (¬w ∨ y ∨ ¬z) ∧ (¬w ∨ ¬x ∨ ¬y) ¬w ∨ ¬y ∨ z y ∨ z
0 0 0 0 0 1 0
0 0 0 1 0 1 1
0 0 1 0 0 1 1
0 0 1 1 1 1 1
0 1 0 0 1 1 0
0 1 0 1 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 0 0 1
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 0 1 0 1 1
1 1 1 0 0 0 1
1 1 1 1 0 1 1



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment
CLAUSEENTAILMENT is computationally intractable (coNP-hard).

Take φ, the theory, as background knowledge
and δ, the query, as online information
(practical case in artificial intelligence).

Definition (Compilation)
A compilation is a (computable) map c st for all φ and δ:

1. c(φ) |= δ iff φ |= δ (ie, c(φ) logically equivalent to φ);

2. c(φ) |= δ is poly-time decidable.

A series of hard instances, compiles into a series of easy equivalent instances:

(φ, δ1)  (c(φ), δ1)
(φ, δ2)  (c(φ), δ2)
(φ, δ3)  (c(φ), δ3)

...
...

...



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment
CLAUSEENTAILMENT is computationally intractable (coNP-hard).

Take φ, the theory, as background knowledge
and δ, the query, as online information
(practical case in artificial intelligence).

Definition (Compilation)
A compilation is a (computable) map c st for all φ and δ:

1. c(φ) |= δ iff φ |= δ (ie, c(φ) logically equivalent to φ);

2. c(φ) |= δ is poly-time decidable.

A series of hard instances, compiles into a series of easy equivalent instances:

(φ, δ1)  (c(φ), δ1)
(φ, δ2)  (c(φ), δ2)
(φ, δ3)  (c(φ), δ3)

...
...

...



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment
CLAUSEENTAILMENT is computationally intractable (coNP-hard).

Take φ, the theory, as background knowledge
and δ, the query, as online information
(practical case in artificial intelligence).

Definition (Compilation)
A compilation is a (computable) map c st for all φ and δ:

1. c(φ) |= δ iff φ |= δ (ie, c(φ) logically equivalent to φ);

2. c(φ) |= δ is poly-time decidable.

A series of hard instances, compiles into a series of easy equivalent instances:

(φ, δ1)  (c(φ), δ1)
(φ, δ2)  (c(φ), δ2)
(φ, δ3)  (c(φ), δ3)

...
...

...



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment
CLAUSEENTAILMENT is computationally intractable (coNP-hard).

Take φ, the theory, as background knowledge
and δ, the query, as online information
(practical case in artificial intelligence).

Definition (Compilation)
A compilation is a (computable) map c st for all φ and δ:

1. c(φ) |= δ iff φ |= δ (ie, c(φ) logically equivalent to φ);

2. c(φ) |= δ is poly-time decidable.

A series of hard instances,

compiles into a series of easy equivalent instances:

(φ, δ1)

 (c(φ), δ1)

(φ, δ2)

 (c(φ), δ2)

(φ, δ3)

 (c(φ), δ3)

...

...
...



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment
CLAUSEENTAILMENT is computationally intractable (coNP-hard).

Take φ, the theory, as background knowledge
and δ, the query, as online information
(practical case in artificial intelligence).

Definition (Compilation)
A compilation is a (computable) map c st for all φ and δ:

1. c(φ) |= δ iff φ |= δ (ie, c(φ) logically equivalent to φ);

2. c(φ) |= δ is poly-time decidable.

A series of hard instances, compiles into a series of easy equivalent instances:

(φ, δ1)  (c(φ), δ1)
(φ, δ2)  (c(φ), δ2)
(φ, δ3)  (c(φ), δ3)

...
...

...



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Succinctness

Example (Compilation into DNF, Cont’d)

• φ = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn) is size |φ| = n;

• |c(φ)| ≥ |(x1 ∧ x3 ∧ · · · ∧ xn−1) ∨ · · · ∨ (x2 ∧ x4 ∧ · · · ∧ xn)| ≥ 2n/2 · n/2;

• |c(φ)| is not polynomially bounded in the size of |φ|.

Definition (Succinctness)
A compilation c is succinct if |c(φ)| is polynomially bounded in |φ|, ie,
there exists d st for all φ,

|c(φ)| ∈ O(|φ|d).

Remark
Without succinctness, CLAUSEENTAILMENT compiles even requiring that
c(φ) |= δ is decidable in time O(|φ|d).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Succinctness

Example (Compilation into DNF, Cont’d)

• φ = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn) is size |φ| = n;

• |c(φ)| ≥ |(x1 ∧ x3 ∧ · · · ∧ xn−1) ∨ · · · ∨ (x2 ∧ x4 ∧ · · · ∧ xn)| ≥ 2n/2 · n/2;

• |c(φ)| is not polynomially bounded in the size of |φ|.

Definition (Succinctness)
A compilation c is succinct if |c(φ)| is polynomially bounded in |φ|, ie,
there exists d st for all φ,

|c(φ)| ∈ O(|φ|d).

Remark
Without succinctness, CLAUSEENTAILMENT compiles even requiring that
c(φ) |= δ is decidable in time O(|φ|d).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Succinctness

Example (Compilation into DNF, Cont’d)

• φ = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn) is size |φ| = n;

• |c(φ)| ≥ |(x1 ∧ x3 ∧ · · · ∧ xn−1) ∨ · · · ∨ (x2 ∧ x4 ∧ · · · ∧ xn)| ≥ 2n/2 · n/2;

• |c(φ)| is not polynomially bounded in the size of |φ|.

Definition (Succinctness)
A compilation c is succinct if |c(φ)| is polynomially bounded in |φ|, ie,
there exists d st for all φ,

|c(φ)| ∈ O(|φ|d).

Remark
Without succinctness, CLAUSEENTAILMENT compiles even requiring that
c(φ) |= δ is decidable in time O(|φ|d).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Succinctness

Example (Compilation into DNF, Cont’d)

• φ = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn) is size |φ| = n;

• |c(φ)| ≥ |(x1 ∧ x3 ∧ · · · ∧ xn−1) ∨ · · · ∨ (x2 ∧ x4 ∧ · · · ∧ xn)| ≥ 2n/2 · n/2;

• |c(φ)| is not polynomially bounded in the size of |φ|.

Definition (Succinctness)
A compilation c is succinct if |c(φ)| is polynomially bounded in |φ|, ie,
there exists d st for all φ,

|c(φ)| ∈ O(|φ|d).

Remark
Without succinctness, CLAUSEENTAILMENT compiles even requiring that
c(φ) |= δ is decidable in time O(|φ|d).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Succinctness

Example (Compilation into DNF, Cont’d)

• φ = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn) is size |φ| = n;

• |c(φ)| ≥ |(x1 ∧ x3 ∧ · · · ∧ xn−1) ∨ · · · ∨ (x2 ∧ x4 ∧ · · · ∧ xn)| ≥ 2n/2 · n/2;

• |c(φ)| is not polynomially bounded in the size of |φ|.

Definition (Succinctness)
A compilation c is succinct if |c(φ)| is polynomially bounded in |φ|, ie,
there exists d st for all φ,

|c(φ)| ∈ O(|φ|d).

Remark
Without succinctness, CLAUSEENTAILMENT compiles even requiring that
c(φ) |= δ is decidable in time O(|φ|d).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Compilability

LITERALENTAILMENT is CLAUSEENTAILMENT
restricted to instances (φ, δ) where δ is a literal.

Fact
LITERALENTAILMENT compiles succinctly.

Proof.
The map c sends φ to c(φ), the conjunction of all literals entailed by φ (computing c
involves solving ≤ |φ| many instances of a coNP-hard problem). For all literals δ,
clearly c(φ) |= δ is poly-time decidable (check δ occurs in c(φ) as a conjunct),
c(φ) |= δ iff φ |= δ. Moreover, |c(φ)| ≤ |φ|, thus c is succinct.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Compilability

LITERALENTAILMENT is CLAUSEENTAILMENT
restricted to instances (φ, δ) where δ is a literal.

Fact
LITERALENTAILMENT compiles succinctly.

Proof.
The map c sends φ to c(φ), the conjunction of all literals entailed by φ (computing c
involves solving ≤ |φ| many instances of a coNP-hard problem). For all literals δ,
clearly c(φ) |= δ is poly-time decidable (check δ occurs in c(φ) as a conjunct),
c(φ) |= δ iff φ |= δ. Moreover, |c(φ)| ≤ |φ|, thus c is succinct.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Compilability

LITERALENTAILMENT is CLAUSEENTAILMENT
restricted to instances (φ, δ) where δ is a literal.

Fact
LITERALENTAILMENT compiles succinctly.

Proof.
The map c sends φ to c(φ), the conjunction of all literals entailed by φ (computing c
involves solving ≤ |φ| many instances of a coNP-hard problem). For all literals δ,
clearly c(φ) |= δ is poly-time decidable (check δ occurs in c(φ) as a conjunct),
c(φ) |= δ iff φ |= δ. Moreover, |c(φ)| ≤ |φ|, thus c is succinct.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Classical Compilability | Incompilability

Theorem (Selman and Kautz, 1996)
CLAUSEENTAILMENT does not compile succinctly
(under standard assumptions in complexity theory).

Proof.
Suppose not. Let n ∈ N.
Key observation (easy). There exists a proposition τn of size O(n3) st for all 3CNF χ
on n variables, there exists a clause δχ st τn |= δχ if and only if χ is unsatisfiable.
Let τn  c(τn) be a succint compilation of τn.
We give a polynomial-time algorithm for the satisfiability of 3CNFs on n variables,
ie, 3SAT in P/poly which implies NP⊆P/poly and thus PH collapses to Σ

p
2 (Karp

and Lipton, 1980).
The algorithm, given a propositional formula χ on n variables, decides in
polynomial-time the question c(τn) |= δχ (here c(τn) is the advice), and reports that
χ is satisfiable if and only if the answer is negative.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Classical Compilability | Incompilability

Theorem (Selman and Kautz, 1996)
CLAUSEENTAILMENT does not compile succinctly
(under standard assumptions in complexity theory).

Proof.
Suppose not. Let n ∈ N.
Key observation (easy). There exists a proposition τn of size O(n3) st for all 3CNF χ
on n variables, there exists a clause δχ st τn |= δχ if and only if χ is unsatisfiable.
Let τn  c(τn) be a succint compilation of τn.
We give a polynomial-time algorithm for the satisfiability of 3CNFs on n variables,
ie, 3SAT in P/poly which implies NP⊆P/poly and thus PH collapses to Σ

p
2 (Karp

and Lipton, 1980).
The algorithm, given a propositional formula χ on n variables, decides in
polynomial-time the question c(τn) |= δχ (here c(τn) is the advice), and reports that
χ is satisfiable if and only if the answer is negative.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Outline

Classical Compilation

Parameterized Compilation

Research Agenda



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fixed-Parameter Tractability

3SAT: Given a 3CNF φ on n variables, is φ satisfiable?

3SAT is NP-hard:

1. solvable in exponential time O(dn) with d < 2;

2. believed not solvable in subexponential time 2o(n).

Theorem
3SAT is is solvable in time O(k2k · n) where k is the treewidth of the instance

, ie,
3SAT is fixed-parameter tractable wrt parameterization tw, ie,
it has a runtime of the form f (tw(φ))|φ|d for some constant d and function f .

O(k2k · n) faster than O(dn) if k is much smaller than n (k� n).

Example
Treewidth tw(φ) of typical industrial instance φ on 2000 vars is < 10.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fixed-Parameter Tractability

3SAT: Given a 3CNF φ on n variables, is φ satisfiable?

3SAT is NP-hard:

1. solvable in exponential time O(dn) with d < 2;

2. believed not solvable in subexponential time 2o(n).

Theorem
3SAT is is solvable in time O(k2k · n) where k is the treewidth of the instance

, ie,
3SAT is fixed-parameter tractable wrt parameterization tw, ie,
it has a runtime of the form f (tw(φ))|φ|d for some constant d and function f .

O(k2k · n) faster than O(dn) if k is much smaller than n (k� n).

Example
Treewidth tw(φ) of typical industrial instance φ on 2000 vars is < 10.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fixed-Parameter Tractability

3SAT: Given a 3CNF φ on n variables, is φ satisfiable?

3SAT is NP-hard:

1. solvable in exponential time O(dn) with d < 2;

2. believed not solvable in subexponential time 2o(n).

Theorem
3SAT is is solvable in time O(k2k · n) where k is the treewidth of the instance

, ie,
3SAT is fixed-parameter tractable wrt parameterization tw, ie,
it has a runtime of the form f (tw(φ))|φ|d for some constant d and function f .

O(k2k · n) faster than O(dn) if k is much smaller than n (k� n).

Example
Treewidth tw(φ) of typical industrial instance φ on 2000 vars is < 10.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fixed-Parameter Tractability

3SAT: Given a 3CNF φ on n variables, is φ satisfiable?

3SAT is NP-hard:

1. solvable in exponential time O(dn) with d < 2;

2. believed not solvable in subexponential time 2o(n).

Theorem
3SAT is is solvable in time O(k2k · n) where k is the treewidth of the instance

, ie,
3SAT is fixed-parameter tractable wrt parameterization tw, ie,
it has a runtime of the form f (tw(φ))|φ|d for some constant d and function f .

O(k2k · n) faster than O(dn) if k is much smaller than n (k� n).

Example
Treewidth tw(φ) of typical industrial instance φ on 2000 vars is < 10.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fixed-Parameter Tractability

3SAT: Given a 3CNF φ on n variables, is φ satisfiable?

3SAT is NP-hard:

1. solvable in exponential time O(dn) with d < 2;

2. believed not solvable in subexponential time 2o(n).

Theorem
3SAT is is solvable in time O(k2k · n) where k is the treewidth of the instance

, ie,
3SAT is fixed-parameter tractable wrt parameterization tw, ie,
it has a runtime of the form f (tw(φ))|φ|d for some constant d and function f .

O(k2k · n) faster than O(dn) if k is much smaller than n (k� n).

Example
Treewidth tw(φ) of typical industrial instance φ on 2000 vars is < 10.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fixed-Parameter Tractability

3SAT: Given a 3CNF φ on n variables, is φ satisfiable?

3SAT is NP-hard:

1. solvable in exponential time O(dn) with d < 2;

2. believed not solvable in subexponential time 2o(n).

Theorem
3SAT is is solvable in time O(k2k · n) where k is the treewidth of the instance

, ie,
3SAT is fixed-parameter tractable wrt parameterization tw, ie,
it has a runtime of the form f (tw(φ))|φ|d for some constant d and function f .

O(k2k · n) faster than O(dn) if k is much smaller than n (k� n).

Example
Treewidth tw(φ) of typical industrial instance φ on 2000 vars is < 10.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fixed-Parameter Tractability

3SAT: Given a 3CNF φ on n variables, is φ satisfiable?

3SAT is NP-hard:

1. solvable in exponential time O(dn) with d < 2;

2. believed not solvable in subexponential time 2o(n).

Theorem
3SAT is is solvable in time O(k2k · n) where k is the treewidth of the instance

, ie,
3SAT is fixed-parameter tractable wrt parameterization tw, ie,
it has a runtime of the form f (tw(φ))|φ|d for some constant d and function f .

O(k2k · n) faster than O(dn) if k is much smaller than n (k� n).

Example
Treewidth tw(φ) of typical industrial instance φ on 2000 vars is < 10.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fixed-Parameter Tractability

3SAT: Given a 3CNF φ on n variables, is φ satisfiable?

3SAT is NP-hard:

1. solvable in exponential time O(dn) with d < 2;

2. believed not solvable in subexponential time 2o(n).

Theorem
3SAT is is solvable in time O(k2k · n) where k is the treewidth of the instance, ie,
3SAT is fixed-parameter tractable wrt parameterization tw, ie,
it has a runtime of the form f (tw(φ))|φ|d for some constant d and function f .

O(k2k · n) faster than O(dn) if k is much smaller than n (k� n).

Example
Treewidth tw(φ) of typical industrial instance φ on 2000 vars is < 10.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Primal graph of φ.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Primal graph of φ.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: {{1, 4}, {2, 3}, {5, 6, 8}, {7}} 4-bramble implies tw(φ) ≥ 3.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Primal graph of φ. Elimination 2, 1, 6, 5, 4, 3, 8, 7 gives tw(φ) ≤ 3.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Eliminating 2, neigborhood size |{3, 4}| = 2 . . .



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Eliminating 1, neigborhood size |{4, 7}| = 2 . . .



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Eliminating 6, neigborhood size |{5, 8}| = 2 . . .



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3

2

7 8 6

5

Figure: Eliminating 5, neigborhood size |{3, 7, 8}| = 3 . . .



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 3

2

7 8 6

5

Figure: Eliminating 4, neigborhood size |{3, 7, 8}| = 3.

Done.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 3

2

7 8 6

5

Figure: Eliminating 4, neigborhood size |{3, 7, 8}| = 3. Done.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: tw(φ) = 3.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT: Given (φ, δ), does φ |= δ?

A parameterization is a map κ sending pairs (φ, δ) into N.

Definition (Parametrically Succinct Compilation)
Let κ be a parameterization. A compilation c is (wrt parameterization κ):

1. kernel-size if |c(φ)| ≤ f (κ(φ, δ)) for some function f ;

2. fpt-size (or fixed-parameter tractable in size) if
|c(φ)| ≤ f (κ(φ, δ)) · |(φ, δ)|d for some function f and constant d.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT: Given (φ, δ), does φ |= δ?

A parameterization is a map κ sending pairs (φ, δ) into N.

Definition (Parametrically Succinct Compilation)
Let κ be a parameterization. A compilation c is (wrt parameterization κ):

1. kernel-size if |c(φ)| ≤ f (κ(φ, δ)) for some function f ;

2. fpt-size (or fixed-parameter tractable in size) if
|c(φ)| ≤ f (κ(φ, δ)) · |(φ, δ)|d for some function f and constant d.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT: Given (φ, δ), does φ |= δ?

A parameterization is a map κ sending pairs (φ, δ) into N.

Definition (Parametrically Succinct Compilation)
Let κ be a parameterization. A compilation c is (wrt parameterization κ):

1. kernel-size if |c(φ)| ≤ f (κ(φ, δ)) for some function f ;

2. fpt-size (or fixed-parameter tractable in size) if
|c(φ)| ≤ f (κ(φ, δ)) · |(φ, δ)|d for some function f and constant d.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT: Given (φ, δ), does φ |= δ?

A parameterization is a map κ sending pairs (φ, δ) into N.

Definition (Parametrically Succinct Compilation)
Let κ be a parameterization. A compilation c is (wrt parameterization κ):

1. kernel-size if |c(φ)| ≤ f (κ(φ, δ)) for some function f ;

2. fpt-size (or fixed-parameter tractable in size) if
|c(φ)| ≤ f (κ(φ, δ)) · |(φ, δ)|d for some function f and constant d.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT: Given (φ, δ), does φ |= δ?

A parameterization is a map κ sending pairs (φ, δ) into N.

Definition (Parametrically Succinct Compilation)
Let κ be a parameterization. A compilation c is (wrt parameterization κ):

1. kernel-size if |c(φ)| ≤ f (κ(φ, δ)) for some function f ;

2. fpt-size (or fixed-parameter tractable in size) if
|c(φ)| ≤ f (κ(φ, δ)) · |(φ, δ)|d for some function f and constant d.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT fails classical compilation, ie,
does not compile succinctly (unless PH collapses).

Can we relativize classical incompilability by parametrized compilability? Ie:

1. find parameterizations κ st CLAUSEENTAILMENT

compiles in kernel-size (wrt κ);

2. find parameterizations κ st CLAUSEENTAILMENT

compiles in fpt-size (wrt κ).

Remark

1. There are examples witnessing (1) kernel-size compilability, (2 and not 1)
fpt-size compilability but kernel-size incompilability, and (not 2) fpt-size
incompilability.

2. Parameterizations κ yielding fixed-parameter tractability of
CLAUSEENTAILMENT are uninteresting wrt parameterized compilation.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT fails classical compilation, ie,
does not compile succinctly (unless PH collapses).

Can we relativize classical incompilability by parametrized compilability? Ie:

1. find parameterizations κ st CLAUSEENTAILMENT

compiles in kernel-size (wrt κ);

2. find parameterizations κ st CLAUSEENTAILMENT

compiles in fpt-size (wrt κ).

Remark

1. There are examples witnessing (1) kernel-size compilability, (2 and not 1)
fpt-size compilability but kernel-size incompilability, and (not 2) fpt-size
incompilability.

2. Parameterizations κ yielding fixed-parameter tractability of
CLAUSEENTAILMENT are uninteresting wrt parameterized compilation.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT fails classical compilation, ie,
does not compile succinctly (unless PH collapses).

Can we relativize classical incompilability by parametrized compilability? Ie:

1. find parameterizations κ st CLAUSEENTAILMENT

compiles in kernel-size (wrt κ);

2. find parameterizations κ st CLAUSEENTAILMENT

compiles in fpt-size (wrt κ).

Remark

1. There are examples witnessing (1) kernel-size compilability, (2 and not 1)
fpt-size compilability but kernel-size incompilability, and (not 2) fpt-size
incompilability.

2. Parameterizations κ yielding fixed-parameter tractability of
CLAUSEENTAILMENT are uninteresting wrt parameterized compilation.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT fails classical compilation, ie,
does not compile succinctly (unless PH collapses).

Can we relativize classical incompilability by parametrized compilability? Ie:

1. find parameterizations κ st CLAUSEENTAILMENT

compiles in kernel-size (wrt κ);

2. find parameterizations κ st CLAUSEENTAILMENT

compiles in fpt-size (wrt κ).

Remark

1. There are examples witnessing (1) kernel-size compilability, (2 and not 1)
fpt-size compilability but kernel-size incompilability, and (not 2) fpt-size
incompilability.

2. Parameterizations κ yielding fixed-parameter tractability of
CLAUSEENTAILMENT are uninteresting wrt parameterized compilation.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT fails classical compilation, ie,
does not compile succinctly (unless PH collapses).

Can we relativize classical incompilability by parametrized compilability? Ie:

1. find parameterizations κ st CLAUSEENTAILMENT

compiles in kernel-size (wrt κ);

2. find parameterizations κ st CLAUSEENTAILMENT

compiles in fpt-size (wrt κ).

Remark

1. There are examples witnessing (1) kernel-size compilability, (2 and not 1)
fpt-size compilability but kernel-size incompilability, and (not 2) fpt-size
incompilability.

2. Parameterizations κ yielding fixed-parameter tractability of
CLAUSEENTAILMENT are uninteresting wrt parameterized compilation.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Parameterized Compilation

CLAUSEENTAILMENT fails classical compilation, ie,
does not compile succinctly (unless PH collapses).

Can we relativize classical incompilability by parametrized compilability? Ie:

1. find parameterizations κ st CLAUSEENTAILMENT

compiles in kernel-size (wrt κ);

2. find parameterizations κ st CLAUSEENTAILMENT

compiles in fpt-size (wrt κ).

Remark

1. There are examples witnessing (1) kernel-size compilability, (2 and not 1)
fpt-size compilability but kernel-size incompilability, and (not 2) fpt-size
incompilability.

2. Parameterizations κ yielding fixed-parameter tractability of
CLAUSEENTAILMENT are uninteresting wrt parameterized compilation.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Implicates

φ is a proposition, δ is a clause:

1. δ implicate of φ if φ |= δ and > 6|= δ;

2. δ prime implicate of φ if,
φ |= δ′ |= δ implies δ |= δ′ for all implicates δ′ of φ.

pif(φ), prime implicate form of φ, is conjunction of prime implicates of φ.

Fact

1. For all clauses δ, φ |= δ iff δi |= δ for some clause δi of pif(φ).

2. pif(φ) |= δ is poly-time.

3. pif(φ) is logically equivalent to φ.

Remark
Prime implicate forms can be redundant.
Irredundant prime implicate forms are not unique.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Implicates

φ is a proposition, δ is a clause:

1. δ implicate of φ if φ |= δ and > 6|= δ;

2. δ prime implicate of φ if,
φ |= δ′ |= δ implies δ |= δ′ for all implicates δ′ of φ.

pif(φ), prime implicate form of φ, is conjunction of prime implicates of φ.

Fact

1. For all clauses δ, φ |= δ iff δi |= δ for some clause δi of pif(φ).

2. pif(φ) |= δ is poly-time.

3. pif(φ) is logically equivalent to φ.

Remark
Prime implicate forms can be redundant.
Irredundant prime implicate forms are not unique.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Implicates

φ is a proposition, δ is a clause:

1. δ implicate of φ if φ |= δ and > 6|= δ;

2. δ prime implicate of φ if,
φ |= δ′ |= δ implies δ |= δ′ for all implicates δ′ of φ.

pif(φ), prime implicate form of φ, is conjunction of prime implicates of φ.

Fact

1. For all clauses δ, φ |= δ iff δi |= δ for some clause δi of pif(φ).

2. pif(φ) |= δ is poly-time.

3. pif(φ) is logically equivalent to φ.

Remark
Prime implicate forms can be redundant.
Irredundant prime implicate forms are not unique.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Implicates

φ is a proposition, δ is a clause:

1. δ implicate of φ if φ |= δ and > 6|= δ;

2. δ prime implicate of φ if,
φ |= δ′ |= δ implies δ |= δ′ for all implicates δ′ of φ.

pif(φ), prime implicate form of φ, is conjunction of prime implicates of φ.

Fact

1. For all clauses δ, φ |= δ iff δi |= δ for some clause δi of pif(φ).

2. pif(φ) |= δ is poly-time.

3. pif(φ) is logically equivalent to φ.

Remark
Prime implicate forms can be redundant.
Irredundant prime implicate forms are not unique.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Implicates

φ is a proposition, δ is a clause:

1. δ implicate of φ if φ |= δ and > 6|= δ;

2. δ prime implicate of φ if,
φ |= δ′ |= δ implies δ |= δ′ for all implicates δ′ of φ.

pif(φ), prime implicate form of φ, is conjunction of prime implicates of φ.

Fact

1. For all clauses δ, φ |= δ iff δi |= δ for some clause δi of pif(φ).

2. pif(φ) |= δ is poly-time.

3. pif(φ) is logically equivalent to φ.

Remark
Prime implicate forms can be redundant.
Irredundant prime implicate forms are not unique.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Implicates

φ is a proposition, δ is a clause:

1. δ implicate of φ if φ |= δ and > 6|= δ;

2. δ prime implicate of φ if,
φ |= δ′ |= δ implies δ |= δ′ for all implicates δ′ of φ.

pif(φ), prime implicate form of φ, is conjunction of prime implicates of φ.

Fact

1. For all clauses δ, φ |= δ iff δi |= δ for some clause δi of pif(φ).

2. pif(φ) |= δ is poly-time.

3. pif(φ) is logically equivalent to φ.

Remark
Prime implicate forms can be redundant.
Irredundant prime implicate forms are not unique.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Implicates

φ is a proposition, δ is a clause:

1. δ implicate of φ if φ |= δ and > 6|= δ;

2. δ prime implicate of φ if,
φ |= δ′ |= δ implies δ |= δ′ for all implicates δ′ of φ.

pif(φ), prime implicate form of φ, is conjunction of prime implicates of φ.

Fact

1. For all clauses δ, φ |= δ iff δi |= δ for some clause δi of pif(φ).

2. pif(φ) |= δ is poly-time.

3. pif(φ) is logically equivalent to φ.

Remark
Prime implicate forms can be redundant.
Irredundant prime implicate forms are not unique.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Implicates

φ is a proposition, δ is a clause:

1. δ implicate of φ if φ |= δ and > 6|= δ;

2. δ prime implicate of φ if,
φ |= δ′ |= δ implies δ |= δ′ for all implicates δ′ of φ.

pif(φ), prime implicate form of φ, is conjunction of prime implicates of φ.

Fact

1. For all clauses δ, φ |= δ iff δi |= δ for some clause δi of pif(φ).

2. pif(φ) |= δ is poly-time.

3. pif(φ) is logically equivalent to φ.

Remark
Prime implicate forms can be redundant.
Irredundant prime implicate forms are not unique.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Implicates

1 X X X X
2 X X X X
3 X X X X

w x y z φ x ∨ z x ∨ y ¬w ∨ y ∨ ¬z ¬w ∨ ¬y ∨ z ¬w ∨ ¬x ∨ ¬z ¬w ∨ ¬x ∨ ¬y
0 0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 1 0 1 1 1 1
0 0 1 0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1 1 1
0 1 1 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1 1 1
1 0 0 1 0 1 0 0 1 1 1
1 0 1 0 0 0 1 1 0 1 1
1 0 1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1
1 1 0 1 0 1 1 0 1 0 1
1 1 1 0 0 1 1 1 0 1 0
1 1 1 1 0 1 1 1 1 0 0

φ has 3 irredundant prime implicate forms.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Kernel-Size Compilation

Parameterization minvar(φ, δ) is the smallest k ∈ N such that
φ is logically equivalent to a proposition on k variables.

Observation
CLAUSEENTAILMENT compiles in kernel-size wrt parameterization minvar.

Proof.
Let φ be a proposition. Take c(φ) be the prime implicate normal form of φ
(computable by Quine and McKluskey algorithm, hard).
Then c(φ) uses exactly minvar(φ, δ) = k variables, thus |c(φ)| ≤ k2k.

Conjecture
CLAUSEENTAILMENT not in fpt-time wrt parameterization minvar.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Kernel-Size Compilation

Parameterization minvar(φ, δ) is the smallest k ∈ N such that
φ is logically equivalent to a proposition on k variables.

Observation
CLAUSEENTAILMENT compiles in kernel-size wrt parameterization minvar.

Proof.
Let φ be a proposition. Take c(φ) be the prime implicate normal form of φ
(computable by Quine and McKluskey algorithm, hard).
Then c(φ) uses exactly minvar(φ, δ) = k variables, thus |c(φ)| ≤ k2k.

Conjecture
CLAUSEENTAILMENT not in fpt-time wrt parameterization minvar.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Kernel-Size Compilation

Parameterization minvar(φ, δ) is the smallest k ∈ N such that
φ is logically equivalent to a proposition on k variables.

Observation
CLAUSEENTAILMENT compiles in kernel-size wrt parameterization minvar.

Proof.
Let φ be a proposition. Take c(φ) be the prime implicate normal form of φ
(computable by Quine and McKluskey algorithm, hard).
Then c(φ) uses exactly minvar(φ, δ) = k variables, thus |c(φ)| ≤ k2k.

Conjecture
CLAUSEENTAILMENT not in fpt-time wrt parameterization minvar.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Kernel-Size Compilation

Parameterization minvar(φ, δ) is the smallest k ∈ N such that
φ is logically equivalent to a proposition on k variables.

Observation
CLAUSEENTAILMENT compiles in kernel-size wrt parameterization minvar.

Proof.
Let φ be a proposition. Take c(φ) be the prime implicate normal form of φ
(computable by Quine and McKluskey algorithm, hard).
Then c(φ) uses exactly minvar(φ, δ) = k variables, thus |c(φ)| ≤ k2k.

Conjecture
CLAUSEENTAILMENT not in fpt-time wrt parameterization minvar.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Kernel-Size Compilation

F class of propositions, κ parameterization.
F is κ-bounded if there exists k st for all φ ∈ F , κ(φ) ≤ k.

CLAUSEENTAILMENT(F) is CLAUSEENTAILMENT
restricted to instances (φ, δ) with φ ∈ F .

Conjecture
CLAUSEENTAILMENT(F) compiles in constant-size if and only if
F is minvar-bounded.
The proposition gives sufficiency (necessity is open).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Kernel-Size Compilation

F class of propositions, κ parameterization.
F is κ-bounded if there exists k st for all φ ∈ F , κ(φ) ≤ k.

CLAUSEENTAILMENT(F) is CLAUSEENTAILMENT
restricted to instances (φ, δ) with φ ∈ F .

Conjecture
CLAUSEENTAILMENT(F) compiles in constant-size if and only if
F is minvar-bounded.
The proposition gives sufficiency (necessity is open).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Kernel-Size Compilation

F class of propositions, κ parameterization.
F is κ-bounded if there exists k st for all φ ∈ F , κ(φ) ≤ k.

CLAUSEENTAILMENT(F) is CLAUSEENTAILMENT
restricted to instances (φ, δ) with φ ∈ F .

Conjecture
CLAUSEENTAILMENT(F) compiles in constant-size if and only if
F is minvar-bounded.

The proposition gives sufficiency (necessity is open).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Kernel-Size Compilation

F class of propositions, κ parameterization.
F is κ-bounded if there exists k st for all φ ∈ F , κ(φ) ≤ k.

CLAUSEENTAILMENT(F) is CLAUSEENTAILMENT
restricted to instances (φ, δ) with φ ∈ F .

Conjecture
CLAUSEENTAILMENT(F) compiles in constant-size if and only if
F is minvar-bounded.
The proposition gives sufficiency (necessity is open).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fpt-Size Compilation

Parameterization mintw(φ, δ) is the smallest k ∈ N such that
φ is logically equivalent to a CNF of treewidth k.

Observation
CLAUSEENTAILMENT compiles in fpt-size wrt parameterization mintw.

Proof.
Let φ be a proposition using n variables. Let φ′ be an irredundant prime implicate
normal form of φ with minimum treewidth (among all irredundant prime implicate
normal forms of φ). Then, tw(φ′) = mintw(φ, δ) = k. Take c(φ) to be the join tree
form (a certain CNF) of a small tree decomposition of φ′ (computable, hard). Then
|c(φ)| ≤ k2k · n.

Conjecture
CLAUSEENTAILMENT not in fpt-time neither compiles in kernel-size
wrt parameterization mintw.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fpt-Size Compilation

Parameterization mintw(φ, δ) is the smallest k ∈ N such that
φ is logically equivalent to a CNF of treewidth k.

Observation
CLAUSEENTAILMENT compiles in fpt-size wrt parameterization mintw.

Proof.
Let φ be a proposition using n variables. Let φ′ be an irredundant prime implicate
normal form of φ with minimum treewidth (among all irredundant prime implicate
normal forms of φ). Then, tw(φ′) = mintw(φ, δ) = k. Take c(φ) to be the join tree
form (a certain CNF) of a small tree decomposition of φ′ (computable, hard). Then
|c(φ)| ≤ k2k · n.

Conjecture
CLAUSEENTAILMENT not in fpt-time neither compiles in kernel-size
wrt parameterization mintw.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fpt-Size Compilation

Parameterization mintw(φ, δ) is the smallest k ∈ N such that
φ is logically equivalent to a CNF of treewidth k.

Observation
CLAUSEENTAILMENT compiles in fpt-size wrt parameterization mintw.

Proof.
Let φ be a proposition using n variables. Let φ′ be an irredundant prime implicate
normal form of φ with minimum treewidth (among all irredundant prime implicate
normal forms of φ). Then, tw(φ′) = mintw(φ, δ) = k. Take c(φ) to be the join tree
form (a certain CNF) of a small tree decomposition of φ′ (computable, hard). Then
|c(φ)| ≤ k2k · n.

Conjecture
CLAUSEENTAILMENT not in fpt-time neither compiles in kernel-size
wrt parameterization mintw.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fpt-Size Compilation

Parameterization mintw(φ, δ) is the smallest k ∈ N such that
φ is logically equivalent to a CNF of treewidth k.

Observation
CLAUSEENTAILMENT compiles in fpt-size wrt parameterization mintw.

Proof.
Let φ be a proposition using n variables. Let φ′ be an irredundant prime implicate
normal form of φ with minimum treewidth (among all irredundant prime implicate
normal forms of φ). Then, tw(φ′) = mintw(φ, δ) = k. Take c(φ) to be the join tree
form (a certain CNF) of a small tree decomposition of φ′ (computable, hard). Then
|c(φ)| ≤ k2k · n.

Conjecture
CLAUSEENTAILMENT not in fpt-time neither compiles in kernel-size
wrt parameterization mintw.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fpt-Size Incompilability

Parameterization clsize(φ, δ) = |δ| is the number of literals in clause δ.

Observation
CLAUSEENTAILMENT does not compile in fpt-size prime implicate form
wrt parameterization clsize.

Proof.
Assume f and d witness fpt-size compilation c in prime implicate form, ie,
|c(φ)| ≤ f (|δ|)|φ|d for all φ and δ. For all m, n ∈ N, let

φmn =

 ∧
(i,j)∈[m]×[n]

(xi ∨ yij)

 ∧
 ∨

i∈[m]

¬xi

 .

Then |φmn| = O(mn). Moreover, φmn has mn + (n + 1)m ≥ nm prime implicates
({y11, . . . , y1n,¬x1} × {y21, . . . , y2n,¬x2} × · · · × {ym1, . . . , ymn,¬xm}). Therefore
|c(φmn)| ≥ nm. Let |δ| = k and m, n ∈ N st f (k)|φmn|d < nm ≤ |c(φmn)|.

Conjecture
CLAUSEENTAILMENT does not compile in fpt-size wrt parameterization clsize.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fpt-Size Incompilability

Parameterization clsize(φ, δ) = |δ| is the number of literals in clause δ.

Observation
CLAUSEENTAILMENT does not compile in fpt-size prime implicate form
wrt parameterization clsize.

Proof.
Assume f and d witness fpt-size compilation c in prime implicate form, ie,
|c(φ)| ≤ f (|δ|)|φ|d for all φ and δ. For all m, n ∈ N, let

φmn =

 ∧
(i,j)∈[m]×[n]

(xi ∨ yij)

 ∧
 ∨

i∈[m]

¬xi

 .

Then |φmn| = O(mn). Moreover, φmn has mn + (n + 1)m ≥ nm prime implicates
({y11, . . . , y1n,¬x1} × {y21, . . . , y2n,¬x2} × · · · × {ym1, . . . , ymn,¬xm}). Therefore
|c(φmn)| ≥ nm. Let |δ| = k and m, n ∈ N st f (k)|φmn|d < nm ≤ |c(φmn)|.

Conjecture
CLAUSEENTAILMENT does not compile in fpt-size wrt parameterization clsize.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fpt-Size Incompilability

Parameterization clsize(φ, δ) = |δ| is the number of literals in clause δ.

Observation
CLAUSEENTAILMENT does not compile in fpt-size prime implicate form
wrt parameterization clsize.

Proof.
Assume f and d witness fpt-size compilation c in prime implicate form, ie,
|c(φ)| ≤ f (|δ|)|φ|d for all φ and δ. For all m, n ∈ N, let

φmn =

 ∧
(i,j)∈[m]×[n]

(xi ∨ yij)

 ∧
 ∨

i∈[m]

¬xi

 .

Then |φmn| = O(mn). Moreover, φmn has mn + (n + 1)m ≥ nm prime implicates
({y11, . . . , y1n,¬x1} × {y21, . . . , y2n,¬x2} × · · · × {ym1, . . . , ymn,¬xm}). Therefore
|c(φmn)| ≥ nm. Let |δ| = k and m, n ∈ N st f (k)|φmn|d < nm ≤ |c(φmn)|.

Conjecture
CLAUSEENTAILMENT does not compile in fpt-size wrt parameterization clsize.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Fpt-Size Incompilability

Parameterization clsize(φ, δ) = |δ| is the number of literals in clause δ.

Observation
CLAUSEENTAILMENT does not compile in fpt-size prime implicate form
wrt parameterization clsize.

Proof.
Assume f and d witness fpt-size compilation c in prime implicate form, ie,
|c(φ)| ≤ f (|δ|)|φ|d for all φ and δ. For all m, n ∈ N, let

φmn =

 ∧
(i,j)∈[m]×[n]

(xi ∨ yij)

 ∧
 ∨

i∈[m]

¬xi

 .

Then |φmn| = O(mn). Moreover, φmn has mn + (n + 1)m ≥ nm prime implicates
({y11, . . . , y1n,¬x1} × {y21, . . . , y2n,¬x2} × · · · × {ym1, . . . , ymn,¬xm}). Therefore
|c(φmn)| ≥ nm. Let |δ| = k and m, n ∈ N st f (k)|φmn|d < nm ≤ |c(φmn)|.

Conjecture
CLAUSEENTAILMENT does not compile in fpt-size wrt parameterization clsize.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Outline

Classical Compilation

Parameterized Compilation

Research Agenda



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Propositional Logic

Compilation map (Darwiche and Marquis, 2002):

1. propositional reasoning tasks (entailment et cetera);

2. propositional logic formalisms (formulas et cetera).

A certain formalism supports certain tasks in poly-time.

Typical complexity issues within the compilation map
(under standard hypotheses in classical complexity):

1. a formalism does not support a task in poly-time;

2. a formalism does not compile into another formalism in poly-size.

Revisit complexity issues of the compilation map within
parameterized tractability and parameterized compilability.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Propositional Logic

Compilation map (Darwiche and Marquis, 2002):

1. propositional reasoning tasks (entailment et cetera);

2. propositional logic formalisms (formulas et cetera).

A certain formalism supports certain tasks in poly-time.

Typical complexity issues within the compilation map
(under standard hypotheses in classical complexity):

1. a formalism does not support a task in poly-time;

2. a formalism does not compile into another formalism in poly-size.

Revisit complexity issues of the compilation map within
parameterized tractability and parameterized compilability.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Propositional Logic

Compilation map (Darwiche and Marquis, 2002):

1. propositional reasoning tasks (entailment et cetera);

2. propositional logic formalisms (formulas et cetera).

A certain formalism supports certain tasks in poly-time.

Typical complexity issues within the compilation map
(under standard hypotheses in classical complexity):

1. a formalism does not support a task in poly-time;

2. a formalism does not compile into another formalism in poly-size.

Revisit complexity issues of the compilation map within
parameterized tractability and parameterized compilability.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Literature

M. Cadoli, F.M. Donini, P. Liberatore, and M. Schaerf.
Preprocessing of Intractable Problems.
Information and Computation, 176(2), 89–120, 2002.

H. Chen.
Parameterized Compilability.
In Proceedings of IJCAI’05, 412–417, 2005.

C. Colbourn.
The Complexity of Completing Partial Latin Squares.
Discrete Applied Mathematics, 8, 25–30, 1984.

A. Darwiche and P. Marquis.
A Knowledge Compilation Map.
Journal of Artificial Intelligence Research, 17:229–264, 2002.

G. Gogic, H. Kautz, H. Papadimitriou, and B. Selman.
The Comparative Linguistics of Knowledge Representation.
In Proceedings of IJCAI’95, 862–869, 1995.

P. Mathieu and J.-P. Delahaye.
A Kind of Logical Compilation for Knowledge Bases.
Theoretical Computer Science, 131(1):197–218, 1994.

B. Selman and H.A. Kautz.
Knowledge Compilation and Theory Approximation.
Journal of the ACM, 43:193–224, 1996.



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Gracias por su atención!


	Classical Compilation
	Parameterized Compilation
	Research Agenda
	
	

