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Idea

Many reasoning tasks in artificial intelligence (inference, decision)
are computationally intractable.

Example (LATINCOMPLETION)

1

2  

1 3 2

3 2 1

2 1 3

Problem LATINCOMPLETION

Instance A partial function f : [n]× [n]→ [n].

Question Does there exist a n× n Latin square extending f ?

LATINCOMPLETION is computationally intractable (Colbourn, 1984).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Many reasoning tasks in artificial intelligence (inference, decision)
are computationally intractable.

Example (LATINCOMPLETION)

1

2

 

1 3 2

3 2 1

2 1 3

Problem LATINCOMPLETION

Instance A partial function f : [n]× [n]→ [n].

Question Does there exist a n× n Latin square extending f ?

LATINCOMPLETION is computationally intractable (Colbourn, 1984).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

Many reasoning tasks in artificial intelligence (inference, decision)
are computationally intractable.

Example (LATINCOMPLETION)

1

2  

1 3 2

3 2 1

2 1 3

Problem LATINCOMPLETION

Instance A partial function f : [n]× [n]→ [n].

Question Does there exist a n× n Latin square extending f ?

LATINCOMPLETION is computationally intractable (Colbourn, 1984).



CLASSICAL COMPILATION PARAMETERIZED COMPILATION RESEARCH AGENDA

Idea

However, part of the information specifying such tasks is typically
background knowledge, ie:

1. known before the execution of individual tasks;

2. remains stable through the execution of several individual tasks.
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Idea

A proposition is a Boolean formula
(Boolean variables combined by ¬, ∧, ∨).

Example (Cont’d)

1

2

 

1 3 2

3 2 1

2 1 3

Is the proposition φ3 ∧ x111 ∧ x222 satisfiable? Yes!

In the above LATINCOMPLETION instance:

1. φ3, the propositional theory of the 3× 3 Latin square,
is background knowledge (known, stable);

2. x111 ∧ x222, the given partial function,
is online information (unknown, varying).

Infer the solution by combining 1 and 2.
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Idea

Example (Cont’d)

For (i, j, k) ∈ [n]3, the propositional variable xijk means, “(i, j) maps to k ”.

φn is the propositional theory of the n× n Latin square, ie,
satisfying assignments to φn correspond to n× n Latin squares
(mapping (i, j) to k iff the assignment maps variable xijk to >).

φn = φn1 ∧ φn2 ∧ φn3 where:

φn1 =
∧

(i,j)∈[n]2

 ∨
k∈[n]

xijk

 ∧ ∧
k∈[n]

xijk →

 ∧
k 6=k′∈[n]

¬xijk′

 ,

φn2 =
∧

(i,k)∈[n]2

∨
j∈[n]

xijk

 ∧ ∧
j∈[n]

xijk →

 ∧
j 6=j′∈[n]

¬xij′k

 ,

φn3 =
∧

(j,k)∈[n]2

∨
i∈[n]

xijk

 ∧ ∧
i∈[n]

xijk →

 ∧
i 6=i′∈[n]

¬xi′jk

 .
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Idea

Exploit background knowledge against computational intractability:

1. preprocess the background knowledge into a compiled knowledge
that allows for solving the reasoning task easily (in polynomial time);

2. process many individual tasks using the shared compiled knowledge
together with task specific online information.

Compilation cost is amortized by reusing compiled knowledge
to ease a large number of individual executions.
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Entailment

The key problem in knowledge compilation since the 90s:

Problem CLAUSEENTAILMENT

Instance A proposition φ (theory) and a clause δ (query).

Question φ |= δ?

φ δ1 δ2

w x y z (x ∨ z) ∧ (x ∨ y) ∧ (¬w ∨ y ∨ ¬z) ∧ (¬w ∨ ¬x ∨ ¬y) ¬w ∨ ¬y ∨ z y ∨ z
0 0 0 0 0 1 0
0 0 0 1 0 1 1
0 0 1 0 0 1 1
0 0 1 1 1 1 1
0 1 0 0 1 1 0
0 1 0 1 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 0 0 1
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 0 1 0 1 1
1 1 1 0 0 0 1
1 1 1 1 0 1 1
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Entailment
CLAUSEENTAILMENT is computationally intractable (coNP-hard).

Take φ, the theory, as background knowledge
and δ, the query, as online information
(practical case in artificial intelligence).

Definition (Compilation)
A compilation is a (computable) map c st for all φ and δ:

1. c(φ) |= δ iff φ |= δ (ie, c(φ) logically equivalent to φ);

2. c(φ) |= δ is poly-time decidable.

A series of hard instances, compiles into a series of easy equivalent instances:

(φ, δ1)  (c(φ), δ1)
(φ, δ2)  (c(φ), δ2)
(φ, δ3)  (c(φ), δ3)

...
...

...
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Entailment

Example (Compilation into DNF)
Compile φ into DNF c(φ) logically equivalent to φ, eg:

φ = (x1 ∨ x2) ∧ (x3 ∨ x4),

c(φ) = (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4).

Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).
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Check c(φ) |= δ, eg, δ = ¬x3 ∨ x4:

c(φ) |= δ iff c(φ) ∧ ¬δ unsatisfiable,

iff c(φ) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff ((x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3) ∨ (x2 ∧ x4)) ∧ (x3 ∧ ¬x4) unsatisfiable,

iff x1 ∨ x2 unsatisfiable (false).

Thus, CLAUSEENTAILMENT compiles via such c:

1. c(φ) |= δ iff φ |= δ for all δ;

2. c(φ) |= δ is poly-time decidable (reduction to DNF satisfiability, easy).
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Succinctness

Example (Compilation into DNF, Cont’d)

• φ = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn) is size |φ| = n;

• |c(φ)| ≥ |(x1 ∧ x3 ∧ · · · ∧ xn−1) ∨ · · · ∨ (x2 ∧ x4 ∧ · · · ∧ xn)| ≥ 2n/2 · n/2;

• |c(φ)| is not polynomially bounded in the size of |φ|.

Definition (Succinctness)
A compilation c is succinct if |c(φ)| is polynomially bounded in |φ|, ie,
there exists d st for all φ,

|c(φ)| ∈ O(|φ|d).

Remark
Without succinctness, CLAUSEENTAILMENT compiles even requiring that
c(φ) |= δ is decidable in time O(|φ|d).
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Compilability

LITERALENTAILMENT is CLAUSEENTAILMENT
restricted to instances (φ, δ) where δ is a literal.

Fact
LITERALENTAILMENT compiles succinctly.

Proof.
The map c sends φ to c(φ), the conjunction of all literals entailed by φ (computing c
involves solving ≤ |φ| many instances of a coNP-hard problem). For all literals δ,
clearly c(φ) |= δ is poly-time decidable (check δ occurs in c(φ) as a conjunct),
c(φ) |= δ iff φ |= δ. Moreover, |c(φ)| ≤ |φ|, thus c is succinct.
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Classical Compilability | Incompilability

Theorem (Selman and Kautz, 1996)
CLAUSEENTAILMENT does not compile succinctly
(under standard assumptions in complexity theory).

Proof.
Suppose not. Let n ∈ N.
Key observation (easy). There exists a proposition τn of size O(n3) st for all 3CNF χ
on n variables, there exists a clause δχ st τn |= δχ if and only if χ is unsatisfiable.
Let τn  c(τn) be a succint compilation of τn.
We give a polynomial-time algorithm for the satisfiability of 3CNFs on n variables,
ie, 3SAT in P/poly which implies NP⊆P/poly and thus PH collapses to Σ

p
2 (Karp

and Lipton, 1980).
The algorithm, given a propositional formula χ on n variables, decides in
polynomial-time the question c(τn) |= δχ (here c(τn) is the advice), and reports that
χ is satisfiable if and only if the answer is negative.
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Fixed-Parameter Tractability

3SAT: Given a 3CNF φ on n variables, is φ satisfiable?

3SAT is NP-hard:

1. solvable in exponential time O(dn) with d < 2;

2. believed not solvable in subexponential time 2o(n).

Theorem
3SAT is is solvable in time O(k2k · n) where k is the treewidth of the instance

, ie,
3SAT is fixed-parameter tractable wrt parameterization tw, ie,
it has a runtime of the form f (tw(φ))|φ|d for some constant d and function f .

O(k2k · n) faster than O(dn) if k is much smaller than n (k� n).

Example
Treewidth tw(φ) of typical industrial instance φ on 2000 vars is < 10.
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Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Primal graph of φ.
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Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: {{1, 4}, {2, 3}, {5, 6, 8}, {7}} 4-bramble implies tw(φ) ≥ 3.
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Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Primal graph of φ. Elimination 2, 1, 6, 5, 4, 3, 8, 7 gives tw(φ) ≤ 3.
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Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Eliminating 2, neigborhood size |{3, 4}| = 2 . . .
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Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Eliminating 1, neigborhood size |{4, 7}| = 2 . . .
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Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: Eliminating 6, neigborhood size |{5, 8}| = 2 . . .
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Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3

2

7 8 6

5

Figure: Eliminating 5, neigborhood size |{3, 7, 8}| = 3 . . .
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Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 3

2

7 8 6

5

Figure: Eliminating 4, neigborhood size |{3, 7, 8}| = 3.

Done.
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7 8 6

5

Figure: Eliminating 4, neigborhood size |{3, 7, 8}| = 3. Done.
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Treewidth

Example
φ = (¬x7 ∨ ¬x5 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ ¬x8 ∨ ¬x4) ∧ (¬x8 ∨ x6 ∨ ¬x5) ∧ (x4 ∨ ¬x1 ∨ ¬x7).

1 4 3 5

2

7 8 6

Figure: tw(φ) = 3.
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Parameterized Compilation

CLAUSEENTAILMENT: Given (φ, δ), does φ |= δ?

A parameterization is a map κ sending pairs (φ, δ) into N.

Definition (Parametrically Succinct Compilation)
Let κ be a parameterization. A compilation c is (wrt parameterization κ):

1. kernel-size if |c(φ)| ≤ f (κ(φ, δ)) for some function f ;

2. fpt-size (or fixed-parameter tractable in size) if
|c(φ)| ≤ f (κ(φ, δ)) · |(φ, δ)|d for some function f and constant d.
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Parameterized Compilation

CLAUSEENTAILMENT fails classical compilation, ie,
does not compile succinctly (unless PH collapses).

Can we relativize classical incompilability by parametrized compilability? Ie:

1. find parameterizations κ st CLAUSEENTAILMENT

compiles in kernel-size (wrt κ);

2. find parameterizations κ st CLAUSEENTAILMENT

compiles in fpt-size (wrt κ).

Remark

1. There are examples witnessing (1) kernel-size compilability, (2 and not 1)
fpt-size compilability but kernel-size incompilability, and (not 2) fpt-size
incompilability.

2. Parameterizations κ yielding fixed-parameter tractability of
CLAUSEENTAILMENT are uninteresting wrt parameterized compilation.
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Implicates

φ is a proposition, δ is a clause:

1. δ implicate of φ if φ |= δ and > 6|= δ;

2. δ prime implicate of φ if,
φ |= δ′ |= δ implies δ |= δ′ for all implicates δ′ of φ.

pif(φ), prime implicate form of φ, is conjunction of prime implicates of φ.

Fact

1. For all clauses δ, φ |= δ iff δi |= δ for some clause δi of pif(φ).

2. pif(φ) |= δ is poly-time.

3. pif(φ) is logically equivalent to φ.

Remark
Prime implicate forms can be redundant.
Irredundant prime implicate forms are not unique.
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Implicates

1 X X X X
2 X X X X
3 X X X X

w x y z φ x ∨ z x ∨ y ¬w ∨ y ∨ ¬z ¬w ∨ ¬y ∨ z ¬w ∨ ¬x ∨ ¬z ¬w ∨ ¬x ∨ ¬y
0 0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 1 0 1 1 1 1
0 0 1 0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1 1 1
0 1 1 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1 1 1
1 0 0 1 0 1 0 0 1 1 1
1 0 1 0 0 0 1 1 0 1 1
1 0 1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1
1 1 0 1 0 1 1 0 1 0 1
1 1 1 0 0 1 1 1 0 1 0
1 1 1 1 0 1 1 1 1 0 0

φ has 3 irredundant prime implicate forms.
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Kernel-Size Compilation

Parameterization minvar(φ, δ) is the smallest k ∈ N such that
φ is logically equivalent to a proposition on k variables.

Observation
CLAUSEENTAILMENT compiles in kernel-size wrt parameterization minvar.

Proof.
Let φ be a proposition. Take c(φ) be the prime implicate normal form of φ
(computable by Quine and McKluskey algorithm, hard).
Then c(φ) uses exactly minvar(φ, δ) = k variables, thus |c(φ)| ≤ k2k.

Conjecture
CLAUSEENTAILMENT not in fpt-time wrt parameterization minvar.
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Kernel-Size Compilation

F class of propositions, κ parameterization.
F is κ-bounded if there exists k st for all φ ∈ F , κ(φ) ≤ k.

CLAUSEENTAILMENT(F) is CLAUSEENTAILMENT
restricted to instances (φ, δ) with φ ∈ F .

Conjecture
CLAUSEENTAILMENT(F) compiles in constant-size if and only if
F is minvar-bounded.
The proposition gives sufficiency (necessity is open).
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Fpt-Size Compilation

Parameterization mintw(φ, δ) is the smallest k ∈ N such that
φ is logically equivalent to a CNF of treewidth k.

Observation
CLAUSEENTAILMENT compiles in fpt-size wrt parameterization mintw.

Proof.
Let φ be a proposition using n variables. Let φ′ be an irredundant prime implicate
normal form of φ with minimum treewidth (among all irredundant prime implicate
normal forms of φ). Then, tw(φ′) = mintw(φ, δ) = k. Take c(φ) to be the join tree
form (a certain CNF) of a small tree decomposition of φ′ (computable, hard). Then
|c(φ)| ≤ k2k · n.

Conjecture
CLAUSEENTAILMENT not in fpt-time neither compiles in kernel-size
wrt parameterization mintw.
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Fpt-Size Incompilability

Parameterization clsize(φ, δ) = |δ| is the number of literals in clause δ.

Observation
CLAUSEENTAILMENT does not compile in fpt-size prime implicate form
wrt parameterization clsize.

Proof.
Assume f and d witness fpt-size compilation c in prime implicate form, ie,
|c(φ)| ≤ f (|δ|)|φ|d for all φ and δ. For all m, n ∈ N, let

φmn =

 ∧
(i,j)∈[m]×[n]

(xi ∨ yij)

 ∧
 ∨

i∈[m]

¬xi

 .

Then |φmn| = O(mn). Moreover, φmn has mn + (n + 1)m ≥ nm prime implicates
({y11, . . . , y1n,¬x1} × {y21, . . . , y2n,¬x2} × · · · × {ym1, . . . , ymn,¬xm}). Therefore
|c(φmn)| ≥ nm. Let |δ| = k and m, n ∈ N st f (k)|φmn|d < nm ≤ |c(φmn)|.

Conjecture
CLAUSEENTAILMENT does not compile in fpt-size wrt parameterization clsize.
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Propositional Logic

Compilation map (Darwiche and Marquis, 2002):

1. propositional reasoning tasks (entailment et cetera);

2. propositional logic formalisms (formulas et cetera).

A certain formalism supports certain tasks in poly-time.

Typical complexity issues within the compilation map
(under standard hypotheses in classical complexity):

1. a formalism does not support a task in poly-time;

2. a formalism does not compile into another formalism in poly-size.

Revisit complexity issues of the compilation map within
parameterized tractability and parameterized compilability.
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parameterized tractability and parameterized compilability.
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