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Gadel Logic

Godel (propositional) logic, G, is:
e intuitionistic logic plus ((x — y) V (y — x)),
the intermediate logic of linear Kripke frames;
e Hijek’s basic logic plus (x — (x ® x)),
the many-valued logic of “minimum and its residual”,

[071]:([071],/\=@zmin,\/:max,x—>y,J_:0,T:1)

where x — y equals 1 if x < y and y otherwise.
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Free Godel Algebra

Definition (Godel Algebras)
Godel algebras are algebras in the variety generated by [0, 1].
Fact

The free X-generated Godel algebra, Gx, is (isomorphic to)
the Lindenbaum algebra of the X-variate fragment of Godel logic.
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Free Godel Algebra

Definition (Godel Algebras)
Godel algebras are algebras in the variety generated by [0, 1].
Fact

The free X-generated Godel algebra, Gx, is (isomorphic to)
the Lindenbaum algebra of the X-variate fragment of Godel logic.

Gx “supports” the investigation of (finite) consequence
relations and interpolation properties in Godel logic.
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Free Godel Algebra

Definition (Godel Algebras)
Godel algebras are algebras in the variety generated by [0, 1].

Fact
The free X-generated Godel algebra, Gx, is (isomorphic to)
the Lindenbaum algebra of the X-variate fragment of Godel logic.

Gx “supports” the investigation of (finite) consequence
relations and interpolation properties in Godel logic.

Gx has a nice combinatorial representation (X finite).
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Free X-generated Godel Algebra | Construction

Step 1: Construction of forest Fx:

t = 0: the subsets of X are the maximal elements in Fy atf = 0;

Ex.: P{x,y,z} att=0.

Oxyz Oxy Oxz Oyz 0x oy 0z
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Free X-generated Godel Algebra | Construction

Step 1: Construction of forest Fx:

t = 0: the subsets of X are the maximal elements in Fy atf = 0;

t =i+ 1: if Ris maximal in Fx at t = i, then there exists S st
S covers R and S is maximal in Fx att = i + 1 iff:
X=UrgTand S = {1}, or
X;«EUT;RTand(Z);AS C X\ Urer T

Ex.: P{x,y,z} att =1.

1 z

Yy X yz Yy zZ XZ X Z Xy X Yy XyzZ_Xy_ XZ_YyzZ X y
LN N N —_—\
Oxyz Oxy O0xz Oyz 0X Y Z 0
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Free X-generated Godel Algebra | Construction

Step 1: Construction of forest Fx:

t = 0: the subsets of X are the maximal elements in Fx att = 0;
t =i+ 1: if Ris maximal in Fyx at f = i, then there exists S st
S covers R and S is maximal in Fx att = i + 1 iff:
X=UrcgTand S = {1}, or
X#UrcgTand 0 # S € X\ Urer T

Ex.: F{x,y,z} att = 2.

IIT \\I \\TT\\/ \\/ \\/

P
y X yz 'y z y XyzZ_Xy._ Xz yz
ok ook NN /! \)\ =N\ L
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ONGOING WORK

GODEL LOGIC

o] o]
0000800000000 [e]e)
000000000000 00000000000

Free X-generated Godel Algebra | Construction

Step 1: Construction of forest Fx:
t = 0: the subsets of X are the maximal elements in Fy atf = 0;

t =i+ 1: if Ris maximal in Fx at t = i, then there exists S st
S covers R and S is maximal in Fx att = i + 1 iff:
X=UrgTand S = {1}, or
X;«EUT;RTand(Z);AS C X\ Urer T

Ex.: P{x,y,z} att=3.

1 1 1 X
. \
1 y X yz XyZ_ Xy XZ__yzZ X y
N N N —_—\ L
Oxyz Oxy Oxz Oyz 0X y 0
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Free X-generated Godel Algebra | Construction

Step 1: Construction of forest Fx:
t = 0: the subsets of X are the maximal elements in Fy atf = 0;

t =i+ 1: if Ris maximal in Fx at t = i, then there exists S st
S covers R and S is maximal in Fx att = i + 1 iff:
X=UrgTand S = {1}, or
X;«EUT;RTand(Z);AS C X\ Urer T

Ex.: P{x,y,z} att > 4.

1
|
1 y X XyZ_ Xy XZ_ yZ X
Oxyz Oxy Oxz Oy‘z \Ox/ \J‘y/ \Dz/ \0//
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Free X-generated Godel Algebra | Construction

Step 2: The generator x € X is the maximal antichain in Fx
“mentioning x” over each maximal chain in Fx.

Ex.: X = {x,y,z}. For each maximal chain in F,, .\,
the generator x picks the point containing x.

1 1
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Free X-generated Godel Algebra | Construction

Step 2: The generator x € X is the maximal antichain in Fx
“mentioning x” over each maximal chain in Fx.

Ex.: X = {x,y,z}. For each maximal chain in F,, .\,
the generator y picks the point containing v.

1

1

X —N—
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Free X-generated Godel Algebra | Construction

Step 3: The op’s over maximal antichains in Fx are defined
“maxchainwise” by the corr. operations in [0, 1].

Ex.: X ={x,y,z}. As L =01in [0, 1], L picks the point
containing 0 for each maximal chainin Fy, , .).

1

bbb G N Mg ek
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Free X-generated Godel Algebra | Construction

Step 3: Equip the maximal antichains in Fx with operations
defined “maxchainwise” by the corr. generic operations.

Ex.: X ={x,y,z}. As T =1in[0,1], T picks the point
containing 1 for each maximal chainin Fy, , .).

00 00 00
@@@99@@@@@@@@@@?@@\/ Q\/ @\/

‘SROXV sz Oyz \J‘/ \0‘/ \D‘ y ey X2 yZ //
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Free X-generated Godel Algebra | Construction

Step 3: Equip the maximal antichains in Fx with operations
defined “maxchainwise” by the corr. generic operations.

Ex.: X ={x,y,z}. Asx Ay = min{x,y} in [0, 1],
x Ay picks the minimum of x and y.
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Free X-generated Godel Algebra | Construction

Step 3: Equip the maximal antichains in Fx with operations
defined “maxchainwise” by the corr. generic operations.

Ex.: X ={x,y,z}. Asx Vy =max{x,y}in [0,1],
x V y picks the maximum of x and y.

0200
p0se0a0faT asl? sibeeafenfer
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Free X-generated Godel Algebra | Construction

Step 2: Equip the maximal antichains in Fx with operations
defined “maxchainwise” by the corr. generic operations.

Ex.: X={x,y,z}. Asx - yislifx <yand yowin [0,1],
x — ypicks 1if x <y and y ow.
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Interpolation Properties | Craig (CIP)

XNY=Zand XUY = W.

Definition

G has the CIP iff, for all ry and ty stFg ¥ — £,
there exists sy st r —sand Fgs — t.

Theorem ([BV99])
G has the CIP.

Corollary

For all Ax € Gy and Cy € Gy st Aw < Cw in Gy,
there exists By € Gz st Aw < By < Cw in Gy.
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CIP | Sampling with X = {x,z} and Y = {y, z}

IWQJ M\

Afxzy € Glazy and  Cpyoy € Gy

are such that Ay, oy < Cpy 2y in Gy zy- Hence, . ..
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CIP | Sampling with X = {x,z} and Y = {y, z}

1
LW 28

Afxzy € Glazy and  Cpyoy € Gy
Tt 1 %

ULUQ}T$MW 1] ! !

are such that Ay, oy < Cpy 2y in Gy zy- Hence, . ..
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CIP | Sampling with X = {x,z} and Y = {y, z}

%

... there exists B,y € G,

such that A{x,y,z} < B{x,y,z} < C{x,y,z} in G{x,y,z}-



GODEL LOGIC

ONGOING WORK
o o
0000000000000 00
0000®0000000

00000000000

CIP | Sampling with X = {x,z} and Y = {y, z}

%

... there exists B,y € G,

such that A{x,y,z} < B{x,y,z} < C{x,y,z} in G{x,y,z}-
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CIP | Sampling with X = {x,z} and Y = {y, z}

%

... there exists B,y € G,
11.11.1 %
11.1 I 11 I !
SERIESRERE R e

such that A{x,y,z} < B{x,y,z} < C{x,y,z} in G{x,y,z}-
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Interpolation Properties | Deductive (DIP)

XNY=Zand XUY =W.

Definition

G has the DIP iff, for all rx and ty str b £,
there exists sy str g sand s ¢ t.

Theorem ([KO09])
G has the DIP.

Corollary

Forall Ax €e Gxand Cy € Gy st AwNT C CwN T in Gy,
thereisBy € Gy st AwWNT CByNT CCwNTinGwy.
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DIP | Sampling with X = {x,z} and Y = {y, z}

VO

Afxz) € Gazy and Cyyzy € Gy

are st Apy oy NT C Crryzy N TInGyyy ). Hence, ...
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DIP | Sampling with X = {x,z} and Y = {y, z}

VO

Afxz) € Gazy and Cyyzy € Gy

UL gD OR0RY

are st Apy oy NT C Crryzy N TInGyyy ). Hence, ...
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DIP | Sampling with X = {x,z} and Y = {y, z}

]

... there exists By;y € Gy

st A{x,%z} NTC B{x,y,z} NTC C{xy,z} N Tin G{x7y,z}~
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DIP | Sampling with X = {x,z} and Y = {y, z}

]

... there exists By;y € Gy

st A{x,%z} NTC B{x,y,z} NTC C{x,y,z} N Tin G{x,y,z}~
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DIP | Sampling with X = {x,z} and Y = {y, z}

]

... there exists By;y € Gy

PP )

st A{x,%z} NTC B{x,y,z} NTC C{x,y,z} N Tin G{x,y,z}~
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Basic Logic

(Héjek’s) basic (propositional) logic, BL, is:

¢ the many-valued logic of all continuous triangular norms
and their residuals;

e the substructural logic of commutative bounded integral
divisible prelinear residuated lattices.
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Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).
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Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).

Problem 1: Give a constructive proof.
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Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).

Problem 1: Give a constructive proof.

Problem 2: Give a complexity bound.
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Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).
Problem 1: Give a constructive proof.

Problem 2: Give a complexity bound.

Fact (Functional Representation [BOS])

The elements of the Lindenbaum algebra of BL are suitable real

functions, “described by combining the geometry of Lukasiewicz logic
and the combinatorics of Godel logic”.
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Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).
Problem 1: Give a constructive proof.

Problem 2: Give a complexity bound.

Fact (Functional Representation [BOS])

The elements of the Lindenbaum algebra of BL are suitable real

functions, “described by combining the geometry of Lukasiewicz logic
and the combinatorics of Godel logic”.

Goal: Solve Problem 1 and Problem 2 in this setting.
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Deductive Interpolation

XNY=Zand XUY =W.

Fact ([M06])
For all vy and ty st r Fp t, there exists sy st v bp; sand s Fp t.

Fact

rip tiff (1) C £ (1) C [0, 1]V

Corollary

Forall rx and ty st 1y} (1) C 11 (1) € [0,1]W,

there exists sy st r;vl(l) - s;vl(l) C t 1 (1) C [0, 1]V
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Deductive Interpolation

XNY=Zand XUY =W.
Fact ([MO06])
For all vy and ty st r Fp t, there exists sy st v bp; sand s Fp t.
Fact
rip tiff (1) C £ (1) C [0, 1]V
Corollary
Forall rx and ty st 1y} (1) C 11 (1) € [0,1]W,
there exists sy st r;vl(l) - s;vl(l) - t;vl(l) c [0, 1]W.
Idea: Exploiting the functional representation of rx and sz,

construct a “strongest possible” interpolant sz, that is,
a sz with smallest possible

0, 1% 2 s (1) 2y '(1).
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Construction | Sampling with X = {x,z} and Y = {y, z}.

Idea: Exploiting the functional representation of r(, ., and sy,),
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Construction | Sampling with X = {x,z} and Y = {y, z}.

Idea: Exploiting the functional representation of r(, ., and sy,),

i1 Hkl }

}{hl \ /
{f3

The given 7, .y : [0, 1]%2t — [0, 1] decomposes
into finitely many “F.ukasiewicz functions”
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Construction | Sampling with X = {x,z} and Y = {y, z}.

Idea: Exploiting the functional representation of r(, ., and sy,),

z X xz\x/z
Oxz Ox 0z 0

The given 7, .y : [0, 1]%2t — [0, 1] decomposes

over a Godel skeleton,
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Construction | Sampling with X = {x,z} and Y = {y, z}.

Idea: Exploiting the functional representation of r(, ., and sy,),

The given 7, .y : [0, 1]%2t — [0, 1] decomposes

satisfying certain constraints.
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Construction | Sampling with X = {x,z} and Y = {y, z}.

Idea: Exploiting the functional representation of r(, ., and sy,),

{my}
{3 ¢

The target s, : [0, 1]#} — [0,1] decomposes
into finitely many “F.ukasiewicz functions”
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Construction | Sampling with X = {x,z} and Y = {y, z}.

Idea: Exploiting the functional representation of r(, ., and sy,),

0z 0
The target s, : [0, 1]#} — [0,1] decomposes

over a Godel skeleton,
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Construction | Sampling with X = {x,z} and Y = {y, z}.

Idea: Exploiting the functional representation of r(, ., and sy,),

(m)
QN o

The target s, : [0, 1]#} — [0,1] decomposes

satisfying certain constraints.
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Construction | Sampling with X = {x,z} and Y = {y, z}.

Idea:

construct a s, having the smallest s{*zl} (1) > rfxlz} (1).

o 5 @??Qg?

s{_zl} (1) is componentwise constrained by r{_x{z} (1),
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Construction | Sampling with X = {x,z} and Y = {y, z}.

Idea:

construct a s, having the smallest s{*zl} (1) > rfxlz} (1).

o f @@@@39

s{_zl} (1) is componentwise constrained by r{_x{z} (1),
following the Godel skeleton.
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Construction | Sampling with X = {x,z} and Y = {y, z}.

Idea:

construct a s, having the smallest s{*zl} (1) > rfxlz} (1).

o f @@@Qﬁg

s{_zl} (1) is componentwise constrained by r{_x{z} (1),
following the Godel skeleton.
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