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Gödel Logic
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GÖDEL LOGIC ONGOING WORK

Gödel Logic

Gödel (propositional) logic, G, is:
• intuitionistic logic plus ((x→ y) ∨ (y→ x)),

the intermediate logic of linear Kripke frames;
• Hájek’s basic logic plus (x→ (x� x)),

the many-valued logic of “minimum and its residual”,

[0, 1] = ([0, 1],∧ = � = min,∨ = max, x→ y,⊥ = 0,> = 1)

where x→ y equals 1 if x ≤ y and y otherwise.
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Free Gödel Algebra

Definition (Gödel Algebras)
Gödel algebras are algebras in the variety generated by [0, 1].

Fact
The free X-generated Gödel algebra, GX, is (isomorphic to)
the Lindenbaum algebra of the X-variate fragment of Gödel logic.

GX “supports” the investigation of (finite) consequence
relations and interpolation properties in Gödel logic.

GX has a nice combinatorial representation (X finite).
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GX “supports” the investigation of (finite) consequence
relations and interpolation properties in Gödel logic.
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Free X-generated Gödel Algebra | Construction

Step 1: Construction of forest FX:

t = 0: the subsets of X are the maximal elements in FX at t = 0;
t = i + 1: if R is maximal in FX at t = i, then there exists S st

S covers R and S is maximal in FX at t = i + 1 iff:
X =

⋃
T≤R T and S = {1}, or

X 6=
⋃

T≤R T and ∅ 6= S ⊆ X \
⋃

T≤R T.

Ex.: F{x,y,z} at t = 0.

0xyz 0xy 0xz 0yz 0x 0y 0z 0
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Step 1: Construction of forest FX:
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Step 1: Construction of forest FX:

t = 0: the subsets of X are the maximal elements in FX at t = 0;
t = i + 1: if R is maximal in FX at t = i, then there exists S st

S covers R and S is maximal in FX at t = i + 1 iff:
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Free X-generated Gödel Algebra | Construction

Step 2: The generator x ∈ X is the maximal antichain in FX
“mentioning x” over each maximal chain in FX.

Ex.: X = {x, y, z}. For each maximal chain in F{x,y,z},
the generator x picks the point containing x.
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Free X-generated Gödel Algebra | Construction

Step 3: The op’s over maximal antichains in FX are defined
“maxchainwise” by the corr. operations in [0, 1].

Ex.: X = {x, y, z}. As ⊥ = 0 in [0, 1], ⊥ picks the point
containing 0 for each maximal chain in F{x,y,z}.
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Free X-generated Gödel Algebra | Construction

Step 3: Equip the maximal antichains in FX with operations
defined “maxchainwise” by the corr. generic operations.

Ex.: X = {x, y, z}. As > = 1 in [0, 1], > picks the point
containing 1 for each maximal chain in F{x,y,z}.
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Free X-generated Gödel Algebra | Construction

Step 3: Equip the maximal antichains in FX with operations
defined “maxchainwise” by the corr. generic operations.

Ex.: X = {x, y, z}. As x ∧ y = min{x, y} in [0, 1],
x ∧ y picks the minimum of x and y.
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GÖDEL LOGIC ONGOING WORK
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Free X-generated Gödel Algebra | Construction

Step 2: Equip the maximal antichains in FX with operations
defined “maxchainwise” by the corr. generic operations.

Ex.: X = {x, y, z}. As x→ y is 1 if x ≤ y and y ow in [0, 1],
x→ y picks 1 if x ≤ y and y ow.
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Interpolation Properties | Craig (CIP)

X ∩ Y = Z and X ∪ Y = W.

Definition
G has the CIP iff, for all rX and tY st `G r→ t,
there exists sZ st `G r→ s and `G s→ t.

Theorem ([BV99])
G has the CIP.

Corollary
For all AX ∈ GX and CY ∈ GY st AW ≤ CW in GW,
there exists BZ ∈ GZ st AW ≤ BW ≤ CW in GW.
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CIP | Sampling with X = {x, z} and Y = {y, z}

A{x,z} ∈ G{x,z} and C{y,z} ∈ G{y,z}

are such that A{x,y,z} ≤ C{x,y,z} in G{x,y,z}. Hence, . . .



GÖDEL LOGIC ONGOING WORK

CIP | Sampling with X = {x, z} and Y = {y, z}

A{x,z} ∈ G{x,z} and C{y,z} ∈ G{y,z}

are such that A{x,y,z} ≤ C{x,y,z} in G{x,y,z}. Hence, . . .
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Interpolation Properties | Deductive (DIP)

X ∩ Y = Z and X ∪ Y = W.

Definition
G has the DIP iff, for all rX and tY st r `G t,
there exists sZ st r `G s and s `G t.

Theorem ([KO09])
G has the DIP.

Corollary
For all AX ∈ GX and CY ∈ GY st AW ∩ > ⊆ CW ∩ > in GW,
there is BZ ∈ GZ st AW ∩ > ⊆ BW ∩ > ⊆ CW ∩ > in GW.
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A{x,z} ∈ G{x,z} and C{y,z} ∈ G{y,z}

are st A{x,y,z} ∩ > ⊆ C{x,y,z} ∩ > in G{x,y,z}. Hence, . . .
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GÖDEL LOGIC ONGOING WORK

Basic Logic

(Hájek’s) basic (propositional) logic, BL, is:
• the many-valued logic of all continuous triangular norms

and their residuals;
• the substructural logic of commutative bounded integral

divisible prelinear residuated lattices.
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Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).

Problem 1: Give a constructive proof.
Problem 2: Give a complexity bound.

Fact (Functional Representation [B08])
The elements of the Lindenbaum algebra of BL are suitable real
functions, “described by combining the geometry of Łukasiewicz logic
and the combinatorics of Gödel logic”.

Goal: Solve Problem 1 and Problem 2 in this setting.
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GÖDEL LOGIC ONGOING WORK

Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).

Problem 1: Give a constructive proof.
Problem 2: Give a complexity bound.

Fact (Functional Representation [B08])
The elements of the Lindenbaum algebra of BL are suitable real
functions, “described by combining the geometry of Łukasiewicz logic
and the combinatorics of Gödel logic”.
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Deductive Interpolation

X ∩ Y = Z and X ∪ Y = W.

Fact ([M06])
For all rX and tY st r `BL t, there exists sZ st r `BL s and s `BL t.

Fact
r `BL t iff r−1

W (1) ⊆ t−1
W (1) ⊆ [0, 1]W.

Corollary
For all rX and tY st r−1

W (1) ⊆ t−1
W (1) ⊆ [0, 1]W,

there exists sZ st r−1
W (1) ⊆ s−1

W (1) ⊆ t−1
W (1) ⊆ [0, 1]W.

Idea: Exploiting the functional representation of rX and sZ,
construct a “strongest possible” interpolant sZ, that is,
a sZ with smallest possible

[0, 1]X ⊇ s−1
X (1) ⊇ r−1

X (1).
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Construction | Sampling with X = {x, z} and Y = {y, z}.

Idea: Exploiting the functional representation of r{x,z} and s{z},
construct a s{z} having the smallest s−1

{z}(1) ⊇ r−1
{x,z}(1).

8f< Æ

8g1..<

Æ

8h1..< 8i< Æ

8j1..<

Æ

8k1..<

Æ

The given r{x,z} : [0, 1]{x,z} → [0, 1] decomposes
into finitely many “Łukasiewicz functions”

over a Gödel skeleton,
satisfying certain constraints.
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Construction | Sampling with X = {x, z} and Y = {y, z}.

Idea: Exploiting the functional representation of r{x,z} and s{z},
construct a s{z} having the smallest s−1
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over a Gödel skeleton,
satisfying certain constraints.
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