Combinatorics of Interpolation in Gödel Logic

Simone Bova

bova@dico.unimi.it

Department of Computer Science University of Milan (Milan, Italy)

TACL 2009
July 7-11, 2009, Amsterdam (Netherlands)

Outline

Gödel Logic
Gödel Logic
Free Gödel Algebra
Interpolation Properties

Ongoing Work
Basic Logic
Deductive Interpolation
Construction Sketch

Outline

Gödel Logic
Gödel Logic
Free Gödel Algebra
Interpolation Properties

Ongoing Work
Basic Logic
Deductive Interpolation
Construction Sketch

Gödel Logic

Gödel (propositional) logic, G, is:

- intuitionistic logic plus $((x \rightarrow y) \vee(y \rightarrow x))$, the intermediate logic of linear Kripke frames;
- Hájek's basic logic plus $(x \rightarrow(x \odot x))$, the many-valued logic of "minimum and its residual",

$$
[0,1]=([0,1], \wedge=\odot=\min , \vee=\max , x \rightarrow y, \perp=0, \top=1)
$$

where $x \rightarrow y$ equals 1 if $x \leq y$ and y otherwise.

Free Gödel Algebra

Definition (Gödel Algebras)
Gödel algebras are algebras in the variety generated by $[0,1]$.
Fact
The free X-generated Gödel algebra, G_{X}, is (isomorphic to) the Lindenbaum algebra of the X-variate fragment of Gödel logic.

Free Gödel Algebra

Definition (Gödel Algebras)

Gödel algebras are algebras in the variety generated by $[0,1]$.
Fact
The free X-generated Gödel algebra, G_{X}, is (isomorphic to) the Lindenbaum algebra of the X-variate fragment of Gödel logic.
G_{X} "supports" the investigation of (finite) consequence relations and interpolation properties in Gödel logic.

Free Gödel Algebra

Definition (Gödel Algebras)

Gödel algebras are algebras in the variety generated by $[0,1]$.
Fact
The free X-generated Gödel algebra, G_{X}, is (isomorphic to) the Lindenbaum algebra of the X-variate fragment of Gödel logic.
G_{X} "supports" the investigation of (finite) consequence relations and interpolation properties in Gödel logic.
G_{X} has a nice combinatorial representation (X finite).

Free X-generated Gödel Algebra | Construction

Step 1: Construction of forest F_{X} :
$t=0$: the subsets of X are the maximal elements in F_{X} at $t=0$;
$t=i+1$: if R is maximal in F_{X} at $t=i$, then there exists S st S covers R and S is maximal in F_{X} at $t=i+1$ iff:
$X=\bigcup_{T<R} T$ and $S=\{1\}$, or
$X \neq \bigcup_{T \leq R} T$ and $\emptyset \neq S \subseteq X \backslash \bigcup_{T \leq R} T$.
Ex.: $F_{\{x, y, z\}}$ at $t=0$.

Free X-generated Gödel Algebra | Construction

Step 1: Construction of forest F_{X} :
$t=0$: the subsets of X are the maximal elements in F_{X} at $t=0$;
$t=i+1$: if R is maximal in F_{X} at $t=i$, then there exists S st S covers R and S is maximal in F_{X} at $t=i+1$ iff:

$$
\begin{aligned}
& X=\bigcup_{T \leq R} T \text { and } S=\{1\}, \text { or } \\
& X \neq \bigcup_{T \leq R} T \text { and } \emptyset \neq S \subseteq X \backslash \bigcup_{T \leq R} T .
\end{aligned}
$$

Ex.: $F_{\{x, y, z\}}$ at $t=1$.

Free X-generated Gödel Algebra | Construction

Step 1: Construction of forest F_{X} :
$t=0$: the subsets of X are the maximal elements in F_{X} at $t=0$;
$t=i+1$: if R is maximal in F_{X} at $t=i$, then there exists S st S covers R and S is maximal in F_{X} at $t=i+1$ iff: $X=\bigcup_{T \leq R} T$ and $S=\{1\}$, or $X \neq \bigcup_{T \leq R} T$ and $\emptyset \neq S \subseteq X \backslash \bigcup_{T \leq R} T$.

Ex.: $F_{\{x, y, z\}}$ at $t=2$.

Free X-generated Gödel Algebra| Construction

Step 1: Construction of forest F_{X} :
$t=0$: the subsets of X are the maximal elements in F_{X} at $t=0$;
$t=i+1$: if R is maximal in F_{X} at $t=i$, then there exists S st S covers R and S is maximal in F_{X} at $t=i+1$ iff:

$$
\begin{aligned}
& X=\bigcup_{T \leq R} T \text { and } S=\{1\}, \text { or } \\
& X \neq \bigcup_{T \leq R} T \text { and } \emptyset \neq S \subseteq X \backslash \bigcup_{T \leq R} T .
\end{aligned}
$$

Ex.: $F_{\{x, y, z\}}$ at $t=3$.

Free X-generated Gödel Algebra | Construction

Step 1: Construction of forest F_{X} :
$t=0$: the subsets of X are the maximal elements in F_{X} at $t=0$;
$t=i+1$: if R is maximal in F_{X} at $t=i$, then there exists S st S covers R and S is maximal in F_{X} at $t=i+1$ iff:

$$
\begin{aligned}
& X=\bigcup_{T \leq R} T \text { and } S=\{1\}, \text { or } \\
& X \neq \bigcup_{T \leq R} T \text { and } \emptyset \neq S \subseteq X \backslash \bigcup_{T \leq R} T .
\end{aligned}
$$

$E x .: F_{\{x, y, z\}}$ at $t \geq 4$.

Free X-generated Gödel Algebra | Construction

Step 2: The generator $x \in X$ is the maximal antichain in F_{X} "mentioning x " over each maximal chain in F_{X}.
$E x .: X=\{x, y, z\}$. For each maximal chain in $F_{\{x, y, z\}}$, the generator x picks the point containing x.

Free X-generated Gödel Algebra | Construction

Step 2: The generator $x \in X$ is the maximal antichain in F_{X} "mentioning x " over each maximal chain in F_{X}.
$E x .: X=\{x, y, z\}$. For each maximal chain in $F_{\{x, y, z\}}$, the generator y picks the point containing y.

Free X-generated Gödel Algebra | Construction

Step 3: The op's over maximal antichains in F_{X} are defined "maxchainwise" by the corr. operations in $[0,1]$.
$E x .: X=\{x, y, z\}$. As $\perp=0$ in $[0,1], \perp$ picks the point containing 0 for each maximal chain in $F_{\{x, y, z\}}$.

Free X-generated Gödel Algebra | Construction

Step 3: Equip the maximal antichains in F_{X} with operations defined "maxchainwise" by the corr. generic operations.
$E x .: X=\{x, y, z\}$. As $\top=1$ in $[0,1]$, \top picks the point containing 1 for each maximal chain in $F_{\{x, y, z\}}$.

Free X-generated Gödel Algebra | Construction

Step 3: Equip the maximal antichains in F_{X} with operations defined "maxchainwise" by the corr. generic operations.

$$
\begin{aligned}
E x .: & X=\{x, y, z\} . \text { As } x \wedge y=\min \{x, y\} \text { in }[0,1], \\
& x \wedge y \text { picks the minimum of } x \text { and } y .
\end{aligned}
$$

Free X-generated Gödel Algebra | Construction

Step 3: Equip the maximal antichains in F_{X} with operations defined "maxchainwise" by the corr. generic operations.

$$
E x .: X=\{x, y, z\} . \text { As } x \vee y=\max \{x, y\} \text { in }[0,1] \text {, }
$$ $x \vee y$ picks the maximum of x and y.

Free X-generated Gödel Algebra | Construction

Step 2: Equip the maximal antichains in F_{X} with operations defined "maxchainwise" by the corr. generic operations.

$$
E x .: X=\{x, y, z\} . \text { As } x \rightarrow y \text { is } 1 \text { if } x \leq y \text { and } y \text { ow in }[0,1]
$$ $x \rightarrow y$ picks 1 if $x \leq y$ and y ow.

Interpolation Properties | Craig (CIP)

$X \cap Y=Z$ and $X \cup Y=W$.
Definition
G has the CIP iff, for all r_{X} and t_{Y} st $\vdash_{G} r \rightarrow t$, there exists s_{Z} st $\vdash_{G} r \rightarrow s$ and $\vdash_{G} s \rightarrow t$.

Theorem ([BV99])
G has the CIP.

Corollary

For all $A_{X} \in G_{X}$ and $C_{Y} \in G_{Y}$ st $A_{W} \leq C_{W}$ in G_{W}, there exists $B_{Z} \in G_{Z}$ st $A_{W} \leq B_{W} \leq C_{W}$ in G_{W}.

CIP | Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$

are such that $A_{\{x, y, z\}} \leq C_{\{x, y, z\}}$ in $G_{\{x, y, z\}}$. Hence, \ldots

CIP | Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$

are such that $A_{\{x, y, z\}} \leq C_{\{x, y, z\}}$ in $G_{\{x, y, z\}}$. Hence, \ldots

CIP | Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$

\ldots there exists $B_{\{z\}} \in G_{\{z\}}$

such that $A_{\{x, y, z\}} \leq B_{\{x, y, z\}} \leq C_{\{x, y, z\}}$ in $G_{\{x, y, z\}}$.

CIP | Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$

\ldots there exists $B_{\{z\}} \in G_{\{z\}}$

such that $A_{\{x, y, z\}} \leq B_{\{x, y, z\}} \leq C_{\{x, y, z\}}$ in $G_{\{x, y, z\}}$.

CIP | Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$

\ldots there exists $B_{\{z\}} \in G_{\{z\}}$

such that $A_{\{x, y, z\}} \leq B_{\{x, y, z\}} \leq C_{\{x, y, z\}}$ in $G_{\{x, y, z\}}$.

Interpolation Properties | Deductive (DIP)

$X \cap Y=Z$ and $X \cup Y=W$.
Definition
G has the DIP iff, for all r_{X} and t_{Y} st $r \vdash_{G} t$, there exists s_{Z} st $r \vdash_{G} s$ and $s \vdash_{G} t$.

Theorem ([KO09])
G has the DIP.
Corollary
For all $A_{X} \in G_{X}$ and $C_{Y} \in G_{Y}$ st $A_{W} \cap T \subseteq C_{W} \cap T$ in G_{W}, there is $B_{Z} \in G_{Z}$ st $A_{W} \cap T \subseteq B_{W} \cap T \subseteq C_{W} \cap T$ in G_{W}.

DIP \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$

$$
A_{\{x, z\}} \in G_{\{x, z\}} \quad \text { and } \quad C_{\{y, z\}} \in G_{\{y, z\}}
$$

are st $A_{\{x, y, z\}} \cap \top \subseteq C_{\{x, y, z\}} \cap T$ in $G_{\{x, y, z\}}$. Hence, \ldots

DIP \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$

$$
A_{\{x, z\}} \in G_{\{x, z\}} \quad \text { and } \quad C_{\{y, z\}} \in G_{\{y, z\}}
$$

are st $A_{\{x, y, z\}} \cap \top \subseteq C_{\{x, y, z\}} \cap \top$ in $G_{\{x, y, z\}}$. Hence, . .

DIP | Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$

\ldots there exists $B_{\{z\}} \in G_{\{z\}}$

st $A_{\{x, y, z\}} \cap T \subseteq B_{\{x, y, z\}} \cap T \subseteq C_{\{x, y, z\}} \cap T$ in $G_{\{x, y, z\}}$.

DIP \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$

\ldots there exists $B_{\{z\}} \in G_{\{z\}}$

st $A_{\{x, y, z\}} \cap T \subseteq B_{\{x, y, z\}} \cap \top \subseteq C_{\{x, y, z\}} \cap \top$ in $G_{\{x, y, z\}}$.

DIP \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$

\ldots there exists $B_{\{z\}} \in G_{\{z\}}$

st $A_{\{x, y, z\}} \cap T \subseteq B_{\{x, y, z\}} \cap \top \subseteq C_{\{x, y, z\}} \cap \top$ in $G_{\{x, y, z\}}$.

Outline

Gödel Logic
Gödel Logic
Free Gödel Algebra
Interpolation Properties

Ongoing Work
Basic Logic
Deductive Interpolation
Construction Sketch

Basic Logic

(Hájek's) basic (propositional) logic, BL, is:

- the many-valued logic of all continuous triangular norms and their residuals;
- the substructural logic of commutative bounded integral divisible prelinear residuated lattices.

Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).

Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).
Problem 1: Give a constructive proof.

Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).
Problem 1: Give a constructive proof.
Problem 2: Give a complexity bound.

Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).
Problem 1: Give a constructive proof.
Problem 2: Give a complexity bound.
Fact (Functional Representation [B08])
The elements of the Lindenbaum algebra of BL are suitable real functions, "described by combining the geometry of Łukasiewicz logic and the combinatorics of Gödel logic".

Deductive Interpolation

Fact ([M06])
BL has the DIP (not the CIP).
Problem 1: Give a constructive proof.
Problem 2: Give a complexity bound.
Fact (Functional Representation [B08])
The elements of the Lindenbaum algebra of BL are suitable real functions, "described by combining the geometry of Łukasiewicz logic and the combinatorics of Gödel logic".

Goal: Solve Problem 1 and Problem 2 in this setting.

Deductive Interpolation

$X \cap Y=Z$ and $X \cup Y=W$.
Fact ([M06])
For all r_{X} and t_{Y} st $r \vdash_{B L} t$, there exists s_{Z} st $r \vdash_{B L}$ s and $s \vdash_{B L} t$.
Fact
$r \vdash_{B L} t$ iff $r_{W}^{-1}(1) \subseteq t_{W}^{-1}(1) \subseteq[0,1]^{W}$.
Corollary
For all r_{X} and t_{Y} st $r_{W}^{-1}(1) \subseteq t_{W}^{-1}(1) \subseteq[0,1]^{W}$, there exists s_{Z} st $r_{W}^{-1}(1) \subseteq s_{W}^{-1}(1) \subseteq t_{W}^{-1}(1) \subseteq[0,1]^{W}$.

Deductive Interpolation

$X \cap Y=Z$ and $X \cup Y=W$.
Fact ([M06])
For all r_{X} and t_{Y} st $r \vdash_{B L} t$, there exists s_{Z} st $r \vdash_{B L} s$ and $s \vdash_{B L} t$.
Fact
$r \vdash_{B L} t$ iff $r_{W}^{-1}(1) \subseteq t_{W}^{-1}(1) \subseteq[0,1]^{W}$.
Corollary
For all r_{X} and t_{Y} st $r_{W}^{-1}(1) \subseteq t_{W}^{-1}(1) \subseteq[0,1]^{W}$,
there exists s_{Z} st $r_{W}^{-1}(1) \subseteq s_{W}^{-1}(1) \subseteq t_{W}^{-1}(1) \subseteq[0,1]^{W}$.
Idea: Exploiting the functional representation of r_{X} and s_{Z}, construct a "strongest possible" interpolant s_{Z}, that is, a s_{Z} with smallest possible

$$
[0,1]^{X} \supseteq s_{X}^{-1}(1) \supseteq r_{X}^{-1}(1) .
$$

Construction | Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$.

Idea: Exploiting the functional representation of $r_{\{x, z\}}$ and $s_{\{z\}}$, construct a $s_{\{z\}}$ having the smallest $s_{\{z\}}^{-1}(1) \supseteq r_{\{x, z\}}^{-1}(1)$.

Construction \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$.

Idea: Exploiting the functional representation of $r_{\{x, z\}}$ and $s_{\{z\}}$, construct a $s_{\{z\}}$ having the smallest $s_{\{z\}}^{-1}(1) \supseteq r_{\{x, z\}}^{-1}(1)$.

The given $r_{\{x, z\}}:[0,1]^{\{x, z\}} \rightarrow[0,1]$ decomposes into finitely many "Łukasiewicz functions"

over a Gödel skeleton,

Construction \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$.

Idea: Exploiting the functional representation of $r_{\{x, z\}}$ and $s_{\{z\}}$, construct a $s_{\{z\}}$ having the smallest $s_{\{z\}}^{-1}(1) \supseteq r_{\{x, z\}}^{-1}(1)$.

The given $r_{\{x, z\}}:[0,1]^{\{x, z\}} \rightarrow[0,1]$ decomposes
into finitely many "Łukasiewicz functions"
over a Gödel skeleton,

Construction \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$.

Idea: Exploiting the functional representation of $r_{\{x, z\}}$ and $s_{\{z\}}$, construct a $s_{\{z\}}$ having the smallest $s_{\{z\}}^{-1}(1) \supseteq r_{\{x, z\}}^{-1}(1)$.

The given $r_{\{x, z\}}:[0,1]^{\{x, z\}} \rightarrow[0,1]$ decomposes
into finitely many "モukasiewicz functions"
over a Gödel skeleton,
satisfying certain constraints.

Construction \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$.

Idea: Exploiting the functional representation of $r_{\{x, z\}}$ and $s_{\{z\}}$, construct a $s_{\{z\}}$ having the smallest $s_{\{z\}}^{-1}(1) \supseteq r_{\{x, z\}}^{-1}(1)$.

The target $s_{\{z\}}:[0,1]^{\{z\}} \rightarrow[0,1]$ decomposes into finitely many " $Ł u k a s i e w i c z ~ f u n c t i o n s " ~$
over a Gödel skeleton, satisfying certain constraints.

Construction \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$.

Idea: Exploiting the functional representation of $r_{\{x, z\}}$ and $s_{\{z\}}$, construct a $s_{\{z\}}$ having the smallest $s_{\{z\}}^{-1}(1) \supseteq r_{\{x, z\}}^{-1}(1)$.

The target $s_{\{z\}}:[0,1]^{\{z\}} \rightarrow[0,1]$ decomposes
into finitely many "Łukasiewicz functions"
over a Gödel skeleton,

Construction \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$.

Idea: Exploiting the functional representation of $r_{\{x, z\}}$ and $s_{\{z\}}$, construct a $s_{\{z\}}$ having the smallest $s_{\{z\}}^{-1}(1) \supseteq r_{\{x, z\}}^{-1}(1)$.

The target $s_{\{z\}}:[0,1]^{\{z\}} \rightarrow[0,1]$ decomposes
into finitely many "モukasiewicz functions"
over a Gödel skeleton,
satisfying certain constraints.

Construction \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$.

Idea: Exploiting the functional representation of $r_{\{x, z\}}$ and $s_{\{z\}}$,

 construct a $s_{\{z\}}$ having the smallest $s_{\{z\}}^{-1}(1) \supseteq r_{\{x, z\}}^{-1}(1)$.
$s_{\{z\}}^{-1}(1)$ is componentwise constrained by $r_{\{x, z\}}^{-1}(1)$,

Construction \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$.

Idea: Exploiting the functional representation of $r_{\{x, z\}}$ and $S_{\{z\}}$,

 construct a $s_{\{z\}}$ having the smallest $s_{\{z\}}^{-1}(1) \supseteq r_{\{x, z\}}^{-1}(1)$.
©

$s_{\{z\}}^{-1}(1)$ is componentwise constrained by $r_{\{x, z\}}^{-1}(1)$, following the Gödel skeleton.

Construction \mid Sampling with $X=\{x, z\}$ and $Y=\{y, z\}$.

Idea: Exploiting the functional representation of $r_{\{x, z\}}$ and $S_{\{z\}}$,

 construct a $s_{\{z\}}$ having the smallest $s_{\{z\}}^{-1}(1) \supseteq r_{\{x, z\}}^{-1}(1)$.
(2)

$s_{\{z\}}^{-1}(1)$ is componentwise constrained by $r_{\{x, z\}}^{-1}(1)$, following the Gödel skeleton.

References

F. Montagna.

Interpolation and Beth's Property in Propositional Many-Valued Logics: A Semantic Investigation. Ann. Pure Appl. Logic, 141:148-179, 2006.
S. Bova.

BL-Functions and Free BL-Algebra.
PhD Thesis, University of Siena, 2008.
P. Hájek.

Metamathematics of Fuzzy Logic.
Kluwer, Dordrecht, 1998.
M. Busaniche and D. Mundici.

Geometry of Robinson Consistency in Łukasiewicz Logic.
Ann. Pure Appl. Logic, 147:1-22, 2007.
H. Kihara and H. Ono.

Interpolation Properties, Beth Definability Properties and Amalgamation Properties for Substructural Logics.
J. Logic Comput., 2009.
M. Baaz and H. Veith.

Interpolation in Fuzzy Logic.
Arch. Math. Logic, 38:461-489, 1999.
N. Galatos, P. Jipsen, T. Kowalski, and H. Ono.

Residuated Lattices: An Algebraic Glimpse at Substructural Logics.
Elsevier, 2007.

Thanks!

