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Fuzzy Logics

Fuzzy logics are propositional logics over �,→,⊥ st:
• variables X1, X2, . . . are interpreted over [0, 1];
• > = ⊥ → ⊥ and ⊥ are interpreted over 1 and 0;
• � and → are interpreted over binary functions on [0, 1];
• ¬· = · → ⊥.

Fuzzy conjunction and implication must maintain:
• the behavior of Boolean counterparts over {0, 1}2;
• intuitive properties of Boolean counterparts over [0, 1]2;
• validity (and power) of modus ponens.
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Continuous Triangular Norms

Definition (Continuous Triangular Norm, Residuum)
A (continuous) triangular norm ∗ is a continuous binary function
on [0, 1] that is associative, commutative, monotone (x 6 y
implies x ∗ z 6 y ∗ z) and has 1 as unit (x ∗ 1 = x). Given a
continuous triangular norm ∗, its residuum is the binary
function →∗ on [0, 1] defined by x →∗ y = max{z : x ∗ z 6 y}.

Triangular norms and their residua provide suitable
interpretations for fuzzy conjunction and implication.
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Triangular Tautologies

t, s, r, . . . terms over �,→,⊥ and variables X1, X2, . . . .

Definition (Triangular Tautology)
t is a triangular tautology iff t evaluates identically to 1 for every
assignment of the variables in [0, 1] and every interpretation of
� over a triangular norm, ∗, and of → over the corresponding
residuum, →∗.
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Hájek’s Basic Logic

Hájek’s Basic logic:
(BL1) (r → s) → ((s → t) → (r → t))
(BL2) (r � s) → r
(BL3) (r � (r → s)) → (s � (s → r))
(BL4) (r → (s → t)) → ((r � s) → t)
(BL5) ((r � s) → t) → (r → (s → t))
(BL6) ((r → s) → t) → (((s → r) → t) → t)
(BL7) ⊥ → r
(MP) r, r → s `BL s

Theorem (Cignoli et al., 2000)
`BL t iff t is a triangular tautology.
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BL-Algebras

x ∧ y = x � (x → y) aka divisibility,
x ∨ y = ((x → y) → y) ∧ ((y → x) → x),
¬x = x → ⊥,
> = ¬⊥.

Definition (BL-Algebras)
A BL-algebra is an algebra (A,�,→,⊥) of type (2, 2, 0) st:
(i) (A,�,>) is a commutative monoid;
(ii) (A, ∨, ∧,>,⊥) is a bounded lattice;
(iii) residuation holds, ie x � y 6 z iff y 6 x → z ;
(iv) prelinearity holds, ie (x → y) ∨ (y → x) = >.



MOTIVATION BACKGROUND CONTRIBUTION CONCLUSION

Free BL-Algebra and Basic Logic Truthfunctions

BL-algebras form the equivalent algebraic semantics of Basic
logic.

The free n-generated BL-algebra is isomorphic to the
Lindenbaum-Tarski algebra of the n-variate fragment of Basic
logic.

An explicit description of the free n-generated BL-algebra is
equivalent to an explicit description of the truthfunctions of the
n-variate fragment of Basic logic.
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Generic BL-Algebra

Definition (Generic BL-Algebra)
(n+1)[0, 1] = ([0, n+1],�(n+1)[0,1],→(n+1)[0,1],⊥(n+1)[0,1]) is the algebra
of type (2, 2, 0) such that ⊥(n+1)[0,1] = 0, and for all a1, a2 ∈ [0, n + 1],

a1 �(n+1)[0,1] a2 =

{
min{a1, a2} if ba1c 6= ba2c
(a1 − j �[0,1]WH a2 − j) + j if ba1c = ba2c = j

a1 →(n+1)[0,1] a2 =


n + 1 if a1 6 a2

a2 if ba2c < ba1c
(a1 − j →[0,1]WH a2 − j) + j if ba1c = ba2c = j

where a1 �[0,1]WH a2 = max{0, a1 + a2 − 1},
and a1 →[0,1]WH a2 = min{1, a2 + 1 − a1}.
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Generic BL-Algebra | Case n = 2
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(a) a1 �3[0,1] a2.
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(b) a1 →3[0,1] a2.

Figure: 3[0, 1] = ([0, 3],�3[0,1],→3[0,1]),⊥3[0,1] = 0).
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Generic BL-Algebra

Theorem (Aglianó and Montagna, 2003)
(n + 1)[0, 1] generates the variety generated by all the n-generated
BL-algebras.

Let Fn be the smallest set of n-ary functions from [0, n + 1][n] to
[0, n + 1] that contains the n-ary projection functions x1, . . . , xn,
the n-ary constant function 0, and is closed under pointwise
application of �(n+1)[0,1] and →(n+1)[0,1].

Corollary
The free n-generated BL-algebra is isomorphic to the set Fn,
equipped with the operations of (n + 1)[0, 1] defined pointwise.
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McNaughton Functions

Definition (McNaughton Function)
n positive integer, I ⊆ [n] = {1, . . . , n}. A continuous |I|-ary
function f : [0, 1]I → [0, 1] is a McNaughton function iff there are
|I|-ary linear polynomials with integer coefficients
p1, . . . , pk : RI → R st, for every a in [0, 1]I, f (a) = pj(a) for some
j ∈ [k]. f is said positive if f ({1}I) = 1, and negative ow.
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Figure: Unary McNaughton functions from [0, 1]{1} → [0, 1].
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Free BL-Algebra over One Generator

f : [0, 2]{1} → [0, 2] ∈ F1 have two forms.
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Figure: Form 1: (a), (b) positive McNaughton functions; (c) in F1.
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Free BL-Algebra over One Generator

f : [0, 2]{1} → [0, 2] ∈ F1 have two forms.

1
�����

2
1

x_1

1

(a)

1
�����

2
1 2

x_1

1

2

(b)

Figure: Form 2: (a) negative McNaughton function; (b) in F1.
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Free BL-Algebra over One Generator

f : [0, 2]{1} → [0, 2] ∈ F1 have two forms.
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Figure: F1.
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Proceedings of ISMVL‘05, 284–289, 2005.
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BLn-Tree

n positive integer, [n] = {1, . . . , n}.

Definition (Fubini Partition)
A Fubini partition of [n] is an ordered partition of [n] into
nonempty subsets.

Definition (BLn-Tree)
A BLn-tree is a rooted tree T = (V, E) st V is a finite multiset of
Fubini partitions of [n], V contains exactly one copy of ([n]),
([n]) is the root of the tree, and (u, v) ∈ E only if the last block of
u is equal to the union of the last two blocks of v.
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BLn-Tree | Case n = 2

1,2

1<2 1<2

2<1

(a) T = (V, E).

1,2

2<1

2<1

(b) T ′ = (V ′, E ′).

Figure: BL2-trees.
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Labeled BLn-Tree

Definition (Rational Polyhedron)
A k-dimensional (rational) simplex S in [0, 1]I (k 6 |I|) is the
convex hull of a set of k + 1 affinely independent 1 (rational)
vertices v1, . . . , vk+1 in [0, 1]I. A (rational) simplicial complex C in
[0, 1]I is a collection of (rational) simplexes in [0, 1]I st every face
of a simplex of C is in C, and the intersection of any two
simplexes of C is a face of each of them. A (rational) polyhedron
in [0, 1]I is the underlying space of a (rational) simplicial
complex in [0, 1]I, ie, the union of the (rational) simplexes in a
simplicial complex in [0, 1]I.

1No hyperplane of dimension m contains more than m + 1 of them.
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Labeled BLn-Tree

Definition (Labeled BLn-Tree)
A labeled BLn-tree, l(T), is a BLn-tree T = (V, E) with V ∪ E
labeled as follows. Let · · ·B < B ′ = v ∈ V with successors
{uj = · · ·C < C ′}j∈[k], so B ′ = C ∪ C ′. 2

(i) l(v) McNaughton function over [0, 1]B
′
, positive if B ′ 6= [n].

(ii) l(v, u1), . . . , l(v, uk) are st:
(ii.i) l(v, uj) is the relint 3 of a rational polyhedron in [0, 1]C.
(ii.ii) {l(v, uj)× {1}C′

| j ∈ [k]} partitions the 1-set of l(v) in: [0, 1]B
′

minus the union of [0, 1)B′
and {1}B′

.

l(T) is positive if l([n]) is positive (negative, ow).

2Display ([n]) by (∅, [n]).
3Relative interior.
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Labeled BLn-Tree | Case n = 2
Sampling a labeled BL2-tree, l(T).
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(a) T = (V, E).

f

g1 g2

g3

(b) l(V).

Figure: l sends V to McNaughton functions f , g1, g2, g3.
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Labeled BLn-Tree | Case n = 2
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(b) f : [0, 1]{1,2} → [0, 1].

Figure: f is positive, thus l(T) is positive.
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Labeled BLn-Tree | Case n = 2
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(b) g1 : [0, 1]{2} → [0, 1].

Figure: g1 is positive.
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Labeled BLn-Tree | Case n = 2
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(b) g2 : [0, 1]{2} → [0, 1].

Figure: g2 is positive.
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Labeled BLn-Tree | Case n = 2
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(b) g3 : [0, 1]{1} → [0, 1].

Figure: g3 is positive.
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Labeled BLn-Tree | Case n = 2
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(b) l(E).

Figure: l bijects btw E and a suitable set of rational polyhedra relints.
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Labeled BLn-Tree | Case n = 2
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(b) P1 × {1}{2}.

Figure: P1 = {(a1) | a1 = 0}. f |P1×{1}{2} = 1.
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Labeled BLn-Tree | Case n = 2
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(b) P2 × {1}{2}.

Figure: P2 = {(a1) | 0 < a1 < 1}. f |P2×{1}{2} = 1.
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Labeled BLn-Tree | Case n = 2
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(b) P3 × {1}{1}.

Figure: P3 = {(a2) | a2 = 0}. f |P3×{1}{1} = 1.
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Labeled BLn-Tree | Case n = 2

Suitability of {P1, P2, P3}:
(i) � = {a = (a1, a2) | f (a) = 1} ∈ [0, 1]{1,2} \

(
[0, 1){1,2} ∪ {1}{1,2}

)
;

(ii) P1 × {1}{2}, P2 × {1}{2}, P3 × {1}{1} form a partition of �.

0

1

a_1

0

1

a_2

0

1

0

a_1

(a) f : [0, 1]{1,2} → [0, 1].

1 2 3
a_1

1

2

3
a_2

(b) Part of f ’s 1-set.
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BLn-Encoding

Definition (BLn-Encoding)
A BLn-encoding is a pair (l(T), l ′(T ′)) of of labeled BLn-trees st
l ′(T ′) is positive if l(T) is positive.
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BLn-Encoding | Case n = 2
Sampling a BL2-encoding, (l(T), l ′(T ′)).
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(b) l(V), l ′(V ′).

Figure: l(V) and l ′(V ′) range over McNaughton functions.
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BLn-Encoding | Case n = 2
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Figure: l(V) specification, f : [0, 1]{1,2} → [0, 1].
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BLn-Encoding | Case n = 2
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Figure: l(V) specification, g1 : [0, 1]{2} → [0, 1].
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BLn-Encoding | Case n = 2
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Figure: l(V) specification, g2 : [0, 1]{2} → [0, 1].
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BLn-Encoding | Case n = 2
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Figure: l(V) specification, g3 : [0, 1]{1} → [0, 1].
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BLn-Encoding | Case n = 2
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Figure: l ′(V ′) specification, f ′ : [0, 1]{1,2} → [0, 1].
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BLn-Encoding | Case n = 2
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Figure: l ′(V ′) specification, g ′1 : [0, 1]{1} → [0, 1].
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BLn-Encoding | Case n = 2
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Figure: l ′(V ′) specification, g ′2 : [0, 1]{1} → [0, 1].
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BLn-Encoding | Case n = 2

1,2

1<2 1<2

2<1

1,2

2<1

2<1

(a) T = (V, E), T ′ = (V ′, E ′).

g1 g2

g3

f’

g1’

g2’

f P3

P1 P2

P1’

P2’

(b) l(E), l ′(E ′).

Figure: l(E) and l ′(E ′) range over suitable rational polyhedra relints.
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BLn-Encoding | Case n = 2
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Figure: l(E) specification, P1 = {(a1) | a1 = 0} ⊆ [0, 1]{1}.
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BLn-Encoding | Case n = 2
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Figure: l(E) specification, P2 = {(a1) | 0 < a1 < 1} ⊆ [0, 1]{1}.
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BLn-Encoding | Case n = 2
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Figure: l(E) specification, P3 = {(a1) | a1 = 0} ⊆ [0, 1]{2}.
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BLn-Encoding | Case n = 2

0

1

a_1

0

1

a_2

0

1

0

a_1

(a) f .

1 2 3
a_1

1

2

3
a_2

(b) Part of f ’s 1-set.

Figure: Suitability of {P1, P2, P3}.
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BLn-Encoding | Case n = 2
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Figure: l(E) specification, P ′1 = {(a2) | 1/2 < a2 < 1} ⊆ [0, 1]{2}.
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BLn-Encoding | Case n = 2
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Figure: l(E) specification, P ′2 = {(a2) | a2 = 1/2} ⊆ [0, 1]{2}.
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BLn-Encoding | Case n = 2
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(b) Part of f ′’s 1-set.

Figure: Suitability of {P ′1, P ′2}.
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REALIZE

Algorithm REALIZE

Input BLn-encoding (l(T), l ′(T ′)) and a ∈ [0, n + 1][n]

Output b ∈ [0, n + 1]

REALIZE receives in input (l(T), l ′(T ′)) and a and:
1. uniquely determines a McNaughton function f in

l(V) ∪ l ′(V ′), which is responsible for a;
2. outputs a value b which is a function of f and a only.

Proposition (Realization)
For any BLn-encoding e, REALIZE(e, ·) is a function,
denoted by fe : [0, n + 1][n] → [0, n + 1].
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REALIZE | Pseudocode

REALIZE((l(T), l′(T ′)), a = (a1 , . . . , an) ∈ [0, n + 1][n])
1 if baic = 0 for some i ∈ [n]
2 k(S)← l(T)
3 else
4 if l′(T ′) is negative
5 output 0
6 endif
7 k(S)← l′(T ′)
8 endif
9 Q = B1 < · · · < Bm ← the Fubini partition corresponding to a (m > 2)
10 i← 1
11 c← the root of S
12 while i 6 m
13 U← the successors of c that are copies of B1 < · · · < Bi < Bi+1 ∪ · · · ∪ Bm
14 a′ ← the point in [0, 1]Bi such that a′j = aj − bajc for all j ∈ Bi
15 if exists u ∈ U such that a′ ∈ k(c, u)
16 i← i + 1, c← u
17 else
18 a′′ ← the point in [0, 1]Bi∪···∪Bm such that a′′j = aj − bajc for all j ∈ Bi ∪ · · · ∪ Bm

19 if k(c)(a′′) < 1 and a′′ 6= {n + 1}Bi∪···∪Bm

20 output k(c)(a′′) + bajcwhere j is any index in Bi ∪ · · · ∪ Bm
21 else
22 output n + 1
23 endif
24 endif
25 endwhile
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REALIZE | Case n = 2
Sampling REALIZE on the BL2-encoding ((l(T), l ′(T ′)).

g1 g2

g3

f’

g1’

g2’

f

P2’

P1

P3

P1’

P2

(a) (l(T), l ′(T ′))

0

1

2

3

a_1

0

1

2

3

a_2

0

1

2

3

0

1

2a_1

(b) REALIZE((l(T), l ′(T ′)), ·).

Figure: REALIZE((l(T), l ′(T ′)), ·) : [0, 3]{1,2} → [0, 3].
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REALIZE | Case n = 2

1 2 3
a_1

1

2

3
a_2

f

(a) f ’s responsibilities.

0

1

2

3

a_1

0

1

2

3

a_2

0

1

2

3

0

1

2a_1

(b)

Figure: (b) REALIZE((l(T), l ′(T ′)), ·) restricted to f ’s responsibilities.
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REALIZE | Case n = 2
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Figure: (d) REALIZE((l(T), l ′(T ′)), ·) restricted to
⋃

i∈[3] gi’s resp..
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REALIZE | Case n = 2
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Figure: (b) REALIZE((l(T), l ′(T ′)), ·) restricted to f ′’s responsibilities.
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REALIZE | Case n = 2
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Figure: (d) REALIZE((l(T), l ′(T ′)), ·) restricted to
⋃

i∈[2] g ′i ’s resp..
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BLn-Functions

Definition (BLn-Function)
A function g : [0, n + 1][n] → [0, n + 1] is an n-ary BL-function iff
g = fe for some BLn-encoding e.
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Functional Representation

Theorem (Functional Representation)
The set of n-ary BL-functions equipped with pointwise defined
operations �(n+1)[0,1] and →(n+1)[0,1] is isomorphic to the free
n-generated BL-algebra.

t(n+1)[0,1] denotes the n-ary term operation of (n + 1)[0, 1]

corresponding to term t.

(t, t ′) iff t(n+1)[0,1] = t ′(n+1)[0,1] is an equivalence over terms,
whose representatives are n-ary BL-functions.
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Functional Representation | Proof

Lemma (Closure)
The class of n-ary BL-functions contains all the n-ary term operations
of (n + 1)[0, 1].

Lemma (Normal Form)
Let f be any n-ary BL-function. There is an algorithm T(·) that takes
in input (an encoding of) f and returns in output a term T(f ) over
(�,→,⊥) and {Xi | i ∈ [n]} st T(f )(n+1)[0,1] = f .

(e, e ′) iff fe = fe ′ is an equivalence over BLn-encodings,
whose blocks have cardinality > 1, so canonicity lacks.
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Summary and Future Work

We gave a concrete representation of the free BL-algebra over
finitely many generators (ie, Basic logic truthfunctions) in
terms of a suitable class of real functions.

The problem was open, even for the case of two generators.

This result encourages the development of further work on
locally finite subvarieties of BL-algebras, tight countermodels
to BL-quasiequations, and constructive amalgamation property.
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Thank you!
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