BACKGROUNI 000 0000

CONCLUSION 0 00

BL-Functions and Free BL-Algebra

Simone Bova

bova@unisi.it www.mat.unisi.it/~bova

Department of Mathematics and Computer Science University of Siena (Italy)

> December 19, 2008 Ph.D. Thesis Defense

Motivation	Background	Contribution	CONCLUSION
000000	000 0000 0	0000000000000 000000000000000 0000000 000	000

Outline

Motivation

Basic Logic Truthfunctions

Background Generic BL-Algebra Free BL-Algebra over One Generator

Contribution

Free Finitely Generated BL-Algebra

Conclusion

Summary Publications

MOTIVATION	Background 000 0000 0	Contribution 0000000000000 0000000000000000 0000000	Conclusion o oo	
Outline				

Motivation Basic Logic Truthfunctions

Background

Contribution

Conclusion

BACKGROUNE 000 0000

CONCLUSION 0 00

Fuzzy Logics

Fuzzy logics are propositional logics over \odot , \rightarrow , \perp st:

- variables *X*₁, *X*₂, ... are interpreted over [0, 1];
- $\top = \bot \rightarrow \bot$ and \bot are interpreted over 1 and 0;
- \odot and \rightarrow are interpreted over binary functions on [0, 1];
- $\neg \cdot = \cdot \rightarrow \bot$.

Fuzzy conjunction and implication *must* maintain:

- the behavior of Boolean counterparts over {0, 1}²;
- *intuitive* properties of Boolean counterparts over [0, 1]²;
- validity (and power) of modus ponens.

BACKGROUNE

CONCLUSION 0 00

Continuous Triangular Norms

Definition (Continuous Triangular Norm, Residuum)

A (*continuous*) *triangular norm* * is a continuous binary function on [0, 1] that is associative, commutative, monotone ($x \le y$ implies $x * z \le y * z$) and has 1 as unit (x * 1 = x). Given a continuous triangular norm *, its *residuum* is the binary function \rightarrow_* on [0, 1] defined by $x \rightarrow_* y = max\{z : x * z \le y\}$.

Triangular norms and their residua provide suitable interpretations for fuzzy conjunction and implication.

BACKGROUN 000 0000

CONCLUSION 0 00

Triangular Tautologies

t, *s*, *r*, . . . terms over \odot , \rightarrow , \perp and variables X_1, X_2, \ldots

Definition (Triangular Tautology)

t is a *triangular tautology* iff *t* evaluates identically to 1 for every assignment of the variables in [0, 1] and every interpretation of \odot over a triangular norm, *, and of \rightarrow over the corresponding residuum, \rightarrow_* .

BACKGROUN 000 0000

CONCLUSION 0 00

Hájek's Basic Logic

Hájek's Basic logic: (BL1) $(r \rightarrow s) \rightarrow ((s \rightarrow t) \rightarrow (r \rightarrow t))$ (BL2) $(r \odot s) \rightarrow r$ (BL3) $(r \odot (r \rightarrow s)) \rightarrow (s \odot (s \rightarrow r))$ (BL4) $(r \to (s \to t)) \to ((r \odot s) \to t)$ (BL5) $((r \odot s) \rightarrow t) \rightarrow (r \rightarrow (s \rightarrow t))$ (BL6) $((r \rightarrow s) \rightarrow t) \rightarrow (((s \rightarrow r) \rightarrow t) \rightarrow t)$ $(BL7) \perp \rightarrow r$ (MP) $r, r \rightarrow s \vdash_{BL} s$

Theorem (Cignoli et al., 2000) $\vdash_{BL} t$ iff t is a triangular tautology.

ATION	BACKGROUND	Contribution	CONCLUS
10	000 0000 0	0000000000000 000000000000000 000000 000	000

BL-Algebras

$$x \wedge y = x \odot (x \to y)$$
 aka *divisibility*,
 $x \vee y = ((x \to y) \to y) \wedge ((y \to x) \to x),$
 $\neg x = x \to \bot,$
 $\top = \neg \bot.$

Definition (BL-Algebras)

MOTIV

A *BL*-algebra is an algebra $(A, \odot, \rightarrow, \bot)$ of type (2, 2, 0) st:

- (*i*) (A, \odot, \top) is a commutative monoid;
- (*ii*) $(A, \lor, \land, \top, \bot)$ is a bounded lattice;
- (*iii*) *residuation* holds, ie $x \odot y \leq z$ iff $y \leq x \rightarrow z$;
- (*iv*) *prelinearity* holds, ie $(x \rightarrow y) \lor (y \rightarrow x) = \top$.

BACKGROUN 000 0000

CONCLUSION 0 00

Free BL-Algebra and Basic Logic Truthfunctions

BL-algebras form the equivalent algebraic semantics of Basic logic.

The free *n*-generated BL-algebra is isomorphic to the Lindenbaum-Tarski algebra of the *n*-variate fragment of Basic logic.

An explicit description of the free *n*-generated BL-algebra is equivalent to an explicit description of the *truthfunctions* of the *n*-variate fragment of Basic logic.

Motivation	BACKGROUND	Contribution	CONCLUSION	
000000	000 0000 0	00000000000000 0000000000000000 0000000	000	
Outline				

Motivation

Background Generic BL-Algebra Free BL-Algebra over One Generator

Contribution

Conclusion

BACKGROUND

CONCLUSION 0 00

Generic BL-Algebra

Definition (Generic BL-Algebra)

 $(n+1)[0,1] = ([0, n+1], \odot^{(n+1)[0,1]}, \rightarrow^{(n+1)[0,1]}, \perp^{(n+1)[0,1]})$ is the algebra of type (2, 2, 0) such that $\perp^{(n+1)[0,1]} = 0$, and for all $a_1, a_2 \in [0, n+1]$,

$$a_{1} \odot^{(n+1)[0,1]} a_{2} = \begin{cases} \min\{a_{1}, a_{2}\} & \text{if } \lfloor a_{1} \rfloor \neq \lfloor a_{2} \rfloor \\ (a_{1} - j \odot^{[0,1]_{WH}} a_{2} - j) + j & \text{if } \lfloor a_{1} \rfloor = \lfloor a_{2} \rfloor = j \end{cases}$$
$$a_{1} \rightarrow^{(n+1)[0,1]} a_{2} = \begin{cases} n+1 & \text{if } a_{1} \leqslant a_{2} \\ a_{2} & \text{if } \lfloor a_{2} \rfloor < \lfloor a_{1} \rfloor \\ (a_{1} - j \rightarrow^{[0,1]_{WH}} a_{2} - j) + j & \text{if } \lfloor a_{1} \rfloor = \lfloor a_{2} \rfloor = j \end{cases}$$

where $a_1 \odot^{[0,1]_{WH}} a_2 = \max\{0, a_1 + a_2 - 1\},\$ and $a_1 \rightarrow^{[0,1]_{WH}} a_2 = \min\{1, a_2 + 1 - a_1\}.$

BACKGROUND 000 0000

CONCLUSION 0 00

Generic BL-Algebra | *Case* n = 2

Figure: $3[0,1] = ([0,3], \odot^{3[0,1]}, \rightarrow^{3[0,1]}), \bot^{3[0,1]} = 0).$

BACKGROUND

CONCLUSION 0 00

Generic BL-Algebra

Theorem (Aglianó and Montagna, 2003)

(n + 1)[0, 1] generates the variety generated by all the n-generated BL-algebras.

Let F_n be the smallest set of *n*-ary functions from $[0, n + 1]^{[n]}$ to [0, n + 1] that contains the *n*-ary projection functions x_1, \ldots, x_n , the *n*-ary constant function 0, and is closed under pointwise application of $\odot^{(n+1)[0,1]}$ and $\rightarrow^{(n+1)[0,1]}$.

Corollary

The free n-generated BL-algebra is isomorphic to the set F_n , equipped with the operations of (n + 1)[0, 1] defined pointwise.

BACKGROUND 000 000

CONCLUSION 0 00

McNaughton Functions

Definition (McNaughton Function)

n positive integer, $I \subseteq [n] = \{1, ..., n\}$. A continuous |I|-ary function $f: [0, 1]^I \rightarrow [0, 1]$ is a *McNaughton function* iff there are |I|-ary linear polynomials with integer coefficients $p_1, ..., p_k: \mathbb{R}^I \rightarrow \mathbb{R}$ st, for every **a** in $[0, 1]^I$, $f(\mathbf{a}) = p_j(\mathbf{a})$ for some $j \in [k]$. *f* is said *positive* if $f(\{1\}^I) = 1$, and *negative* ow.

Figure: Unary McNaughton functions from $[0, 1]^{\{1\}} \rightarrow [0, 1]$.

BACKGROUND

CONCLUSION 0 00

Free BL-Algebra over One Generator

 $f: [0,2]^{\{1\}} \to [0,2] \in F_1$ have two forms.

Figure: Form 1: (a), (b) positive McNaughton functions; (c) in F_1 .

CONCLUSION 0 00

Free BL-Algebra over One Generator

 $f: [0,2]^{\{1\}} \to [0,2] \in F_1$ have two forms.

Figure: Form 2: (a) negative McNaughton function; (b) in *F*₁.

BACKGROUND

CONCLUSION 0 00

Free BL-Algebra over One Generator

 $f: [0,2]^{\{1\}} \to [0,2] \in F_1$ have two forms.

BACKGROUND

CONCLUSION 0 00

References

Motivation 000000	BACKGROUND 000 0000 0	Contribution 0000000000000 0000000000000000000000	Conclusion o oo
	Outline		
Motivation			

Background

Contribution Free Finitely Generated BL-Algebra

Conclusion

Motivation	BACKGROUND	CONTRIBUTION	CONCLUSION
000000	000 0000 0	••••••••••••••••••••••••••••••••••••••	000

BL_n-*Tree*

n positive integer, $[n] = \{1, \ldots, n\}$.

Definition (Fubini Partition)

A *Fubini partition* of [n] is an ordered partition of [n] into nonempty subsets.

Definition (BL_n-Tree)

A BL_n -tree is a rooted tree T = (V, E) st V is a finite multiset of Fubini partitions of [n], V contains exactly one copy of ([n]), ([n]) is the root of the tree, and $(u, v) \in E$ only if the last block of u is equal to the union of the last two blocks of v.

BACKGROUND 000 0000 CONCLUSION 0 00

BL_n -Tree | Case n = 2

Figure: BL₂-trees.

BACKGROUNI

CONCLUSION 0 00

Labeled BL_n-Tree

Definition (Rational Polyhedron)

A *k*-dimensional (*rational*) simplex *S* in $[0, 1]^I$ ($k \leq |I|$) is the convex hull of a set of k + 1 affinely independent ¹ (*rational*) vertices v_1, \ldots, v_{k+1} in $[0, 1]^I$. A (*rational*) simplicial complex *C* in $[0, 1]^I$ is a collection of (rational) simplexes in $[0, 1]^I$ st every face of a simplex of *C* is in *C*, and the intersection of any two simplexes of *C* is a face of each of them. A (*rational*) polyhedron in $[0, 1]^I$ is the underlying space of a (rational) simplicial complex in a simplicial complex in $[0, 1]^I$.

¹No hyperplane of dimension *m* contains more than m + 1 of them.

BACKGROUNE

 CONCLUSION 0 00

Labeled BL_n-Tree

Definition (Labeled BL_n-Tree)

A *labeled* BL_n -tree, l(T), is a BL_n -tree T = (V, E) with $V \cup E$ labeled as follows. Let $\cdots B < B' = v \in V$ with successors $\{u_j = \cdots C < C'\}_{j \in [k]}$, so $B' = C \cup C'$.²

(*i*) l(v) McNaughton function over $[0,1]^{B'}$, positive if $B' \neq [n]$. (*ii*) $l(v,u_1), \ldots, l(v,u_k)$ are st:

- (*ii.i*) $l(v, u_j)$ is the relint ³ of a rational polyhedron in $[0, 1]^C$.
- (*ii.ii*) $\{l(v, u_j) \times \{1\}^{C'} \mid j \in [k]\}$ partitions the 1-set of l(v) in: $[0, 1]^{B'}$ minus the union of $[0, 1]^{B'}$ and $\{1\}^{B'}$.

l(T) is *positive* if l([n]) is positive (*negative*, ow).

²Display ([n]) by (\emptyset , [n]).

³Relative interior.

BACKGROUNI 000 0000 CONCLUSION 0 00

Labeled BL_n -*Tree* | *Case* n = 2

Sampling a labeled BL_2 -tree, l(T).

Figure: l sends *V* to McNaughton functions *f*, *g*₁, *g*₂, *g*₃.

BACKGROUND

 CONCLUSION 0 00

Labeled BL_n -Tree | Case n = 2

Figure: f is positive, thus l(T) is positive.

BACKGROUNI

 CONCLUSION 0 00

Figure: g_1 is positive.

BACKGROUNE

 CONCLUSION 0 00

*Figure: g*² is positive.

BACKGROUNI

 CONCLUSION 0 00

Labeled BL_n *-Tree* | *Case* n = 2

*Figure: g*³ is positive.

BACKGROUNE

 CONCLUSION 0 00

Labeled BL_n -Tree | Case n = 2

Figure: l bijects btw *E* and a *suitable* set of rational polyhedra relints.

BACKGROUNI

 CONCLUSION 0 00

BACKGROUNI

 CONCLUSION 0 00

BACKGROUNI

 CONCLUSION 0 00

BACKGROUNE 000 0000 CONCLUSION 0 00

Labeled BL_n -*Tree* | *Case* n = 2

Suitability of $\{P_1, P_2, P_3\}$: (*i*) $\blacksquare = \{\mathbf{a} = (a_1, a_2) \mid f(\mathbf{a}) = 1\} \in [0, 1]^{\{1, 2\}} \setminus ([0, 1)^{\{1, 2\}} \cup \{1\}^{\{1, 2\}});$ (*ii*) $P_1 \times \{1\}^{\{2\}}, P_2 \times \{1\}^{\{2\}}, P_3 \times \{1\}^{\{1\}}$ form a partition of \blacksquare .

BACKGROUNE

 CONCLUSION 0 00

BL_n-Encoding

Definition (BL_n-Encoding)

A BL_n -encoding is a pair (l(T), l'(T')) of of labeled BL_n -trees st l'(T') is positive if l(T) is positive.

BACKGROUNI 000 0000 CONCLUSION 0 00

BL_n -Encoding | Case n = 2

Sampling a BL₂-encoding, (l(T), l'(T')).

Figure: l(V) and l'(V') range over McNaughton functions.

BACKGROUND 000 0000 CONCLUSION 0 00

Figure: l(V) specification, $f: [0, 1]^{\{1,2\}} \rightarrow [0, 1]$.

BACKGROUNI 000 0000 CONTRIBUTION

CONCLUSION 0 00

 BL_n -Encoding | Case n = 2

Figure: l(V) specification, $g_1: [0,1]^{\{2\}} \rightarrow [0,1]$.

BACKGROUNI 000 0000 CONTRIBUTION

CONCLUSION 0 00

 BL_n -Encoding | Case n = 2

Figure: l(V) specification, $g_2: [0, 1]^{\{2\}} \rightarrow [0, 1]$.

BACKGROUNI 000 0000 CONTRIBUTION

CONCLUSION 0 00

 BL_n -Encoding | Case n = 2

Figure: l(V) specification, $g_3: [0, 1]^{\{1\}} \rightarrow [0, 1]$.

BACKGROUND 000 0000 CONTRIBUTION

CONCLUSION 0 00

Figure: l'(V') specification, $f': [0, 1]^{\{1,2\}} \to [0, 1]$.

BACKGROUNI 000 0000 CONTRIBUTION

CONCLUSION 0 00

 BL_n -Encoding | Case n = 2

Figure: l'(V') specification, $g'_1: [0, 1]^{\{1\}} \to [0, 1]$.

BACKGROUNI 000 0000 CONCLUSION 0 00

 BL_n -Encoding | Case n = 2

Figure: l'(V') specification, $g'_2: [0, 1]^{\{1\}} \to [0, 1]$.

BACKGROUN 000 0000 CONTRIBUTION

CONCLUSION 0 00

Figure: l(E) and l'(E') range over suitable rational polyhedra relints.

BACKGROUNI

CONTRIBUTION

CONCLUSION 0 00

BL_n -Encoding | Case n = 2

Figure: l(E) specification, $P_1 = \{(a_1) \mid a_1 = 0\} \subseteq [0, 1]^{\{1\}}$.

BACKGROUNI

CONTRIBUTION

CONCLUSION 0 00

BL_n -Encoding | Case n = 2

Figure: l(E) specification, $P_2 = \{(a_1) \mid 0 < a_1 < 1\} \subseteq [0, 1]^{\{1\}}$.

BACKGROUNI

CONTRIBUTION

CONCLUSION 0 00

BL_n -Encoding | Case n = 2

Figure: l(E) specification, $P_3 = \{(a_1) \mid a_1 = 0\} \subseteq [0, 1]^{\{2\}}$.

BACKGROUND

CONTRIBUTION

CONCLUSION 0 00

BL_n -Encoding | Case n = 2

Figure: Suitability of $\{P_1, P_2, P_3\}$.

BACKGROUNI

CONTRIBUTION

CONCLUSION 0 00

 BL_n -Encoding | Case n = 2

Figure: l(E) specification, $P'_1 = \{(a_2) \mid 1/2 < a_2 < 1\} \subseteq [0, 1]^{\{2\}}$.

BACKGROUNI

CONTRIBUTION

CONCLUSION 0 00

 BL_n -Encoding | Case n = 2

Figure: l(E) specification, $P'_2 = \{(a_2) \mid a_2 = 1/2\} \subseteq [0, 1]^{\{2\}}$.

BACKGROUND

CONTRIBUTION

CONCLUSION 0 00

BL_n -Encoding | Case n = 2

Figure: Suitability of $\{P'_1, P'_2\}$.

REALIZE

Algorithm REALIZE Input BL_n-encoding (l(T), l'(T')) and $\mathbf{a} \in [0, n+1]^{[n]}$ Output $b \in [0, n+1]$

REALIZE receives in input (l(T), l'(T')) and **a** and:

- 1. uniquely determines a McNaughton function f in $l(V) \cup l'(V')$, which is *responsible* for **a**;
- 2. outputs a value *b* which is a function of *f* and **a** only.

Proposition (Realization)

For any BL_n -encoding e, $REALIZE(e, \cdot)$ is a function, denoted by $f_e: [0, n+1]^{[n]} \rightarrow [0, n+1]$.

Backgroune 000 CONTRIBUTION

CONCLUSION 0 00

REALIZE | *Pseudocode*

```
REALIZE((l(T), l'(T')), \mathbf{a} = (a_1, \dots, a_n) \in [0, n+1]^{[n]})
     if |a_i| = 0 for some i \in [n]
2
      k(S) \leftarrow l(T)
3
     else
4
       if l'(T') is negative
5
            output 0
6
       endif
7
      k(S) \leftarrow l'(T')
8
     endif
     Q = B_1 < \cdots < B_m \leftarrow the Fubini partition corresponding to a (m \ge 2)
9
10 \quad i \leftarrow 1
11 c \leftarrow the root of S
12 while i \leq m
13
        U \leftarrow the successors of c that are copies of B_1 < \cdots < B_i < B_{i+1} \cup \cdots \cup B_m
        \mathbf{a'} \leftarrow the point in [0,1]^{B_i} such that a'_i = a_i - \lfloor a_j \rfloor for all j \in B_i
14
15
        if exists u \in U such that \mathbf{a'} \in k(c, u)
        i \leftarrow i + 1, c \leftarrow u
16
17
        else
            \mathbf{a}^{\prime\prime} \leftarrow the point in [0,1]^{B_i \cup \cdots \cup B_m} such that a_i^{\prime\prime} = a_i - \lfloor a_i \rfloor for all j \in B_i \cup \cdots \cup B_m
18
            if k(c)(\mathbf{a''}) < 1 and \mathbf{a''} \neq \{n+1\}^{B_i \cup \cdots \cup B_m'}
19
20
               output k(c)(\mathbf{a''}) + |a_i| where j is any index in B_i \cup \cdots \cup B_m
21
            else
22
               output n + 1
23
            endif
24
        endif
25
     endwhile
```

BACKGROUND

CONTRIBUTION

CONCLUSION 0 00

REALIZE | *Case* n = 2

Sampling REALIZE on the BL₂-encoding ((l(T), l'(T'))).

Figure: REALIZE($(l(T), l'(T')), \cdot$): $[0,3]^{\{1,2\}} \rightarrow [0,3]$.

Backgroune

CONTRIBUTION

CONCLUSION 0 00

REALIZE | *Case* n = 2

Figure: (b) REALIZE($(l(T), l'(T')), \cdot$) restricted to *f*'s responsibilities.

Backgroune 000 Contribution

CONCLUSION 0 00

REALIZE | *Case* n = 2

Figure: (d) REALIZE($(l(T), l'(T')), \cdot$) restricted to $\bigcup_{i \in [3]} g_i$'s resp..

Backgroune

CONTRIBUTION

CONCLUSION 0 00

REALIZE | *Case* n = 2

Figure: (b) REALIZE($(l(T), l'(T')), \cdot$) restricted to f''s responsibilities.

Backgroune 000 CONTRIBUTION

CONCLUSION 0 00

REALIZE | *Case* n = 2

Figure: (d) REALIZE($(l(T), l'(T')), \cdot$) restricted to $\bigcup_{i \in [2]} g''_i$'s resp..

Motivation	BACKGROUND	CONTRIBUTION	CONCLUSION	
000000	000 0000 0	0000000000000 0000000000000000 000000 000	0 00	
BLFunctions				

Definition (BL_n-Function)

A function $g: [0, n + 1]^{[n]} \rightarrow [0, n + 1]$ is an *n*-ary BL-function iff $g = f_e$ for some BL_n-encoding *e*.

BACKGROUNI

Contribution

CONCLUSION 0 00

Functional Representation

Theorem (Functional Representation)

The set of n-ary BL-functions equipped with pointwise defined operations $\odot^{(n+1)[0,1]}$ and $\rightarrow^{(n+1)[0,1]}$ is isomorphic to the free *n*-generated BL-algebra.

 $t^{(n+1)[0,1]}$ denotes the *n*-ary term operation of (n + 1)[0,1] corresponding to term *t*.

(t, t') iff $t^{(n+1)[0,1]} = t'^{(n+1)[0,1]}$ is an equivalence over terms, whose representatives are *n*-ary BL-functions.

BACKGROUNI

CONTRIBUTION

CONCLUSION 0 00

Functional Representation | Proof

Lemma (Closure)

The class of n-ary BL-functions contains all the n-ary term operations of (n + 1)[0, 1]*.*

Lemma (Normal Form)

Let *f* be any *n*-ary BL-function. There is an algorithm $T(\cdot)$ that takes in input (an encoding of) *f* and returns in output a term T(f) over $(\odot, \rightarrow, \bot)$ and $\{X_i \mid i \in [n]\}$ st $T(f)^{(n+1)[0,1]} = f$.

(e, e') iff $f_e = f_{e'}$ is an equivalence over BL_n-encodings, whose blocks have cardinality > 1, so canonicity lacks.

Motivation 000000	BACKGROUND 000 0000 0	Contribution 00000000000000 000000000000000000000	Conclusion 0 00
	Ои	tline	

Motivation

Background

Contribution

Conclusion Summary

Publications

BACKGROUN 000 0000

CONCLUSION • •

Summary and Future Work

We gave a concrete representation of the free BL-algebra over finitely many generators (ie, Basic logic truthfunctions) in terms of a suitable class of real functions.

The problem was open, even for the case of two generators.

This result encourages the development of further work on locally finite subvarieties of BL-algebras, tight countermodels to BL-quasiequations, and constructive amalgamation property.

BACKGROUNI 000

CONCLUSION O •O

Publications

Accepted to Theoretical Computer Science.

BACKGROUND

CONCLUSION ○ ○●

Thank you!