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Model Checking | Example
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Figure: G = ({1, . . . , 31}, {(a, b) | a + b perfect square}).

Is G Hamiltonian?

Problem HAMILTONICITY

Instance A finite relational {E}-structure G = (G,EG) with EG ⊆ G2.
Question Is φ true in G?

φ = ∃X∃Y(“X total order relation” ∧ “Y \ {(max,min)} cover relation of X”

∧ ∀x∀y(Yxy→ Exy)).
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Model Checking | Logic

σ = {R1, . . . ,Rk} is a finite finitary relational signature, that is,
Ri is a finitary relation symbol of arity ar(Ri) ∈ N for i = 1, . . . , k.

A = (A,RA
1 , . . . ,R

A
k ) is a σ-structure, that is,

A is a finite nonempty set (universe),
RA

i ⊆ Aar(Ri) is an ar(Ri)-ary relation on A (i = 1, . . . , k).

φ is a second-order σ-sentence.

Fact
For all σ-sentences φ and σ-structures A,
A |= φ xor A 6|= φ (φ is true xor false in A).
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Model Checking | Logic

Example
σ = {E}with ar(E) = 2.

{A | A is {E}-structure} is the class of finite directed graphs.

A |= ∃xz1z2z3(Exz1 ∧ Ez1z2 ∧ Ez2z3) iff A contains a 3-edge (non simple) path.

∃xz1z2z3(Exz1 ∧ Ez1z2 ∧ Ez2z3) is a conjunctive query,
or primitive positive first-order sentence (PP ⊆ FO).

A |= ∃X∀x(Xx ∨ ∃y(Xy ∧ Eyx)) iff A has a dominating set.

{A | A is {E}-structure st A |= ∀x¬Exx ∧ ∀xy(Exy→ Eyx)},
the class of finite simple (loopless undirected) graphs.
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Model Checking | Problem

Problem MODELCHECK(L, C),
where L is a class of σ-sentences,
and C is a class of σ-structures.

Instance A σ-sentence φ in L and a σ-structure A ∈ C.
Question A |= φ?

Remark
φ encoding has size k, A encoding has size n = (|A|+ 1) +

P
R∈σ |A|

ar(R).
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Model Checking | Combined Complexity

How hard is MODELCHECK(FO, C) computationally,
where FO is the class of first-order σ-sentences,
and C is the class of finite σ-structures?

Hard.

Theorem
The combined complexity of MODELCHECK(FO, C) is PSPACE-complete.

Proof (Idea).
Wts {(φ,A) ∈ FO × C | A |= φ} is PSPACE-complete.
Checking A |= φ is feasible in space O(kn).
A quantified Boolean formula Q1x1 · · ·Qnxnφ(x1, . . . , xn) is true iff
A |= Q1x1 · · ·Qnxnφ

′ where A = ({0, 1},PA), PA = {1}, and
φ′ = φ[xi/Pxi | i = 1, . . . , n].

Feasible (and useful) restrictions to MODELCHECK(FO, C)?
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Model Checking | Restricting MODELCHECK(FO, C)

Restrictions to MODELCHECK(FO, C) = {(φ,A) ∈ FO × C | A |= φ}:

1 Fix φ ∈ FO as a parameter, ie study {A | A |= φ} ⊆ C.

2 Fix A ∈ C as a parameter, ie study {φ | A |= φ} ⊆ FO.

3 Study MODELCHECK(L,S) with L ⊆ FO or S ⊆ C.

Effects on complexity:

1 Data complexity of MODELCHECK(FO, C) is O(knk) time.

2 Expression complexity of MODELCHECK(FO, C) is PSPACE-complete.

1&3 Data complexity of MODELCHECK(FO, T ) is O(f (k)n) time,
where T is the class of finite (simple) trees. Not this talk.

2&3 Expression complexity of MODELCHECK(PP,B) is polytime,
where PP ⊆ FO is the class of conjunctive queries,
and B is the class of finite (simple) bipartite graphs. This talk.
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(Nonuniform) CSP | Problem

Problem MODELCHECK(PP, C),
where PP ⊆ FO is the class of conjunctive queries (over σ),
and C is the class of σ-structures.

Instance A σ-sentence φ in PP and a σ-structure A ∈ C.

Question A |= φ?

Remark
CSP(A) is a shortcut for {φ | A |= φ} ⊆ PP .



MODEL CHECKING CONJUNTIVE QUERIES ONGOING RESEARCH REFERENCES

CSP | Hardness

Theorem
The expression complexity of MODELCHECK(PP, C) is NP-complete.

Proof (Idea).
Checking A |= φ with φ ∈ PP is in NP (in fact, wrt to both k and n) for all A ∈ C,
then the (combined so) expression complexity of MODELCHECK(PP, C) is in NP.
3COL ≤m

p {φ | C3 |= φ}, where C3 = (C3, IC3 ),
C3 = {•, •, •}, IC3 = {(•, •), (•, •), (•, •), (•, •), (•, •), (•, •)}.
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Figure: G 7→ φG = ∃u∃v∃w∃x∃y(Iwu ∧ Iwv ∧ Iwx ∧ Iwy ∧ Iuv ∧ Ixy).
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CSP | Tractability

Fact
CSP(C2) is in P, where C2 = (C2, IC2 ),
C2 = {•, •}, IC2 = {(•, •), (•, •)}.

Proof.
{φ | C2 |= φ} ≤m

p 2COL.
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CSP | Dichotomy

Hard problem.

Find some useful easy cases. . .

Theorem (Hell and Nešetřil)
Let C be the class of finite connected simple graphs and A ∈ C.
Then CSP(A) is in P if A is bipartite, and NP-complete otherwise.

. . . or better classify all easy cases.

Conjecture (Feder and Vardi Dichotomy Conjecture, early 90s)
Let C be the class of finite σ-structures and A ∈ C.
Then CSP(A) is in P or NP-complete.∗

No reasonable line of attack until Jeavons (late 90s) discovers polymorphisms,
a pertinent classification criterion for finite structures.

∗Ie, avoids NPI, nonobvious if P6=NP.
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CSP | Polymorphisms

If A “admits” only “trivial polymorphisms”,
then CSP(A) is NP-complete.

(The solution space of A |= φ lacks any algorithmically useful feature.)

Example (Trivial Polymorphisms⇒ Hardness)
C3 admits only trivial polymorphisms, ie, projection polymorphisms,
f ∈ Pol(IC3 ) iff f (x1, . . . , xi, . . . , xn) = xi for some i ∈ [n].

If A “admits” some “nontrivial polymorphism”,
then CSP(A) is polytime tractable.

(The solution space of A |= φ displays some algorithmically useful feature.)

Example (Nontrivial Polymorphisms⇒ Tractability)
C2 admits a nontrivial majority polymorphism,
t(x, x, y) = t(x, y, x) = t(y, x, x) = x.
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CSP | Polymorphisms

R ⊆ Ak k-ary relation on A. f : An → A n-ary operation on A.

f is a polymorphism of R, in symbols f ∈ Pol(R), if:

f f . . . f

a11 a12 . . . a1k ∈ R
a21 a22 . . . a2k ∈ R
...

...
. . .

...
...

an1 an2 . . . ank ∈ R

= = . . . = ⇓
b1 b2 . . . bk ∈ R

A = (A,RA
1 , . . . ,R

A
m) relational structure. Pol(A) =

T
i∈[m] Pol(RA

i ).

Theorem (Jeavons)
The complexity of CSP(A) is characterized by the algebra A = (A,Pol(A)):

1. Pol(A1) ⊆ Pol(A2) implies CSP(A2) ≤p
m CSP(A1);

2. Pol(A1) = Pol(A2) implies CSP(A1) ≡p
m CSP(A2).
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CSP | Polymorphisms | Classification

pointed

pointed

Taylor

Taylor

edge

edge

Gumm

near−unanimity

near−unanimity

Jonsson

Figure: Nontrivial polimorphisms classified in 6 blocks, orderer by
increasing triviality (left). Modulo Valeriote conjecture (right).

Taylor polymorphisms are maximally trivial
among nontrivial polymorphisms.
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CSP | Polymorphisms | Complexity

pointed, in Pedge, in P

Taylor

trivial, NP−complete

Theorem

1. Pol(A) trivial implies CSP(A) NP-complete.

2. Pol(A) has edge operations iff
CSP(A) in P via Dalmau algorithm (Berman et al.).

3. Pol(A) has pointed operations iff
CSP(A) in P via local consistency (Barto and Kozik, Bulatov).

CSP(A) is conjectured in P in the uncovered case (BJK conjecture).
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Tractability | Algorithms

Known tractable cases of the CSP(A) rely on two algorithms:

1. local consistency,
works iff A has pointed polymorphisms;

2. Dalmau algorithm (a generalized Gaussian elimination),
works iff A has edge polymorphisms.

Algebraic properties of A yield computational tractability of CSP(A). How?

1. Pointed polymorphisms bypass the incompleteness of local search.
If A admits pointed polymorphisms, eg a semilattice polymorphism,
then the local consistency algorithm is complete on CSP(A).

2. Edge polymorphisms bypass the complexity of exhaustive search.
If A admits edge polymorphisms, eg a Mal’tsev polymorphism,
then the solution space of CSP(A) admits a compact representation.
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2. Edge polymorphisms bypass the complexity of exhaustive search.
If A admits edge polymorphisms, eg a Mal’tsev polymorphism,
then the solution space of CSP(A) admits a compact representation.



MODEL CHECKING CONJUNTIVE QUERIES ONGOING RESEARCH REFERENCES

Tractability | Semilattice | Local Consistency

t : A2 → A is a semilattice operation if
t(x, x) = x, t(x, y) = t(y, x), and t(x, t(y, z)) = t(t(x, y), z).

Theorem
If A admits a semilattice polymorphism, then A has width 1
(ie, the 1-consistency algorithm decides CSP(A) in polytime).
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A = (A,EA) where A = {1, 2, 3, 4, 5} and
EA = {(3, a), (a, 3), (4, b), (b, 4) | a = 2, 5, b = 1, 2, 3, 5} ⊆ A2:

A

1 2 3 4 5

A

1 2 3 4 5

EA admits the semilattice polymorphism t(x, y) = max{x, y}
(x ≤ y iff x→y):

A

1 2 3 4 5

A

1 2 3 4 5

The 1-consistency algorithm decides CSP(A).
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Example
Run 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A):

x

1 2 3 4 5

y

1 2 3 4 5

z

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Initializing 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{x}

 φ has no constraints acting on x individually

x

1 2 3 4 5

y

1 2 3 4 5

z

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Initializing 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{x} φ has no constraints acting on x individually

x

1 2 3 4 5

y

1 2 3 4 5

z

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Initializing 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{x} φ has no constraints acting on x individually x 7→ {1, 2, 3, 4, 5}:

y

1 2 3 4 5

z

1 2 3 4 5

x

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Initializing 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y}

 φ has no constraints acting on y individually

y

1 2 3 4 5

z

1 2 3 4 5

x

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Initializing 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y} φ has no constraints acting on y individually

y

1 2 3 4 5

z

1 2 3 4 5

x

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Initializing 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y} φ has no constraints acting on y individually y 7→ {1, 2, 3, 4, 5}:

y

1 2 3 4 5

z

1 2 3 4 5

x

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Initializing 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{z}

 φ has no constraints acting on z individually

y

1 2 3 4 5

z

1 2 3 4 5

x

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Initializing 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{z} φ has no constraints acting on z individually

y

1 2 3 4 5

z

1 2 3 4 5

x

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Initializing 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{z} φ has no constraints acting on z individually z 7→ {1, 2, 3, 4, 5}:

y

1 2 3 4 5

z

1 2 3 4 5

x

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{x, y}

 φ has constraint Exy (x, y) 7→ EA

y

1 2 3 4 5

z

1 2 3 4 5

x

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{x, y} φ has constraint Exy

 (x, y) 7→ EA

y

1 2 3 4 5

z

1 2 3 4 5

x

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{x, y} φ has constraint Exy (x, y) 7→ EA

y

1 2 3 4 5

z

1 2 3 4 5

x

1 2 3 4 5

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{x, y} φ has constraint Exy (x, y) 7→ EA  x 67→ {1, 2, 5}:

y

1 2 3 4 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{x, z}

 φ has no constraints on x and z no changes:

y

1 2 3 4 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{x, z} φ has no constraints on x and z

 no changes:

y

1 2 3 4 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{x, z} φ has no constraints on x and z no changes:

y

1 2 3 4 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y, x}

 φ has constraint Exy (x, y) 7→ EA

y

1 2 3 4 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y, x} φ has constraint Exy

 (x, y) 7→ EA

y

1 2 3 4 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y, x} φ has constraint Exy (x, y) 7→ EA

y

1 2 3 4 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y, x} φ has constraint Exy (x, y) 7→ EA  y 67→ {4}:

y

1 2 3 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”



MODEL CHECKING CONJUNTIVE QUERIES ONGOING RESEARCH REFERENCES

Tractability | Semilattice | Local Consistency

Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y, z}

 φ has constraint Eyz (y, z) 7→ EA

y

1 2 3 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y, z} φ has constraint Eyz

 (y, z) 7→ EA

y

1 2 3 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y, z} φ has constraint Eyz (y, z) 7→ EA

y

1 2 3 5

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{y, z} φ has constraint Eyz (y, z) 7→ EA  y 67→ {1, 2, 5}:

y

3

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{z, x}, {z, y}, {x, y}

y

3

z

1 2 3 4 5

x

3 4

Ax,Ay,Az 6= ∅ return “Yes!”
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{z, x}, {z, y}, {x, y} stabilizes at Ax = {4}, Ay = {3}, Az = {2, 5}:

y

3

z

2 5

x

4

Ax,Ay,Az 6= ∅ return “Yes!” Correct?
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{z, x}, {z, y}, {x, y} stabilizes at Ax = {4}, Ay = {3}, Az = {2, 5}:

y

3

z

2 5

x

4

Ax,Ay,Az 6= ∅

 return “Yes!” Correct?
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{z, x}, {z, y}, {x, y} stabilizes at Ax = {4}, Ay = {3}, Az = {2, 5}:

y

3

z

2 5

x

4

Ax,Ay,Az 6= ∅ return “Yes!”

Correct?
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Example (Cont’d)
Iterating 1-consistency on instance φ = ∃x∃y∃z(Exy ∧ Eyz) to CSP(A) . . .

{z, x}, {z, y}, {x, y} stabilizes at Ax = {4}, Ay = {3}, Az = {2, 5}:

y

3

z

2 5

x

4

Ax,Ay,Az 6= ∅ return “Yes!” Correct?
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Example (Cont’d)
Ax = {4}, Ay = {3}, Az = {2, 5}.

w 7→
W

Aw for w ∈ {x, y, z}witnesses A |= ∃x∃y∃z(Exy ∧ Eyz).„
A, x 7→ 4

y 7→ 3

«
|= Exy iff (4, 3) ∈ EA.

Check:

1. x 7→ 4 extends to some y 7→ a ∈ Ay st (4, a) ∈ EA, and
y 7→ 3 extends to some x 7→ b ∈ Ax st (b, 3) ∈ EA, by 1-consistency;

2.

t t

4 a ∈ EA

b 3 ∈ EA

= = ⇓
4 3 ∈ EA

as t semilattice implies t(
W

Aw, c) = t(c,
W

Aw) =
W

Aw for all c ∈ Aw

and w ∈ {x, y}, and t is a polymorphism of EA.
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Example (Cont’d)
Ax = {4}, Ay = {3}, Az = {2, 5}.

w 7→
W

Aw for w ∈ {x, y, z}witnesses A |= ∃x∃y∃z(Exy ∧ Eyz).

„
A, x 7→ 4

y 7→ 3

«
|= Exy iff (4, 3) ∈ EA.

Check:

1. x 7→ 4 extends to some y 7→ a ∈ Ay st (4, a) ∈ EA, and
y 7→ 3 extends to some x 7→ b ∈ Ax st (b, 3) ∈ EA, by 1-consistency;

2.

t t

4 a ∈ EA

b 3 ∈ EA

= = ⇓
4 3 ∈ EA

as t semilattice implies t(
W

Aw, c) = t(c,
W

Aw) =
W

Aw for all c ∈ Aw

and w ∈ {x, y}, and t is a polymorphism of EA.
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Example (Cont’d)
Ax = {4}, Ay = {3}, Az = {2, 5}.

w 7→
W

Aw for w ∈ {x, y, z}witnesses A |= ∃x∃y∃z(Exy ∧ Eyz).„
A, x 7→ 4

y 7→ 3

«
|= Exy iff (4, 3) ∈ EA.

Check:

1. x 7→ 4 extends to some y 7→ a ∈ Ay st (4, a) ∈ EA, and
y 7→ 3 extends to some x 7→ b ∈ Ax st (b, 3) ∈ EA, by 1-consistency;

2.

t t

4 a ∈ EA

b 3 ∈ EA

= = ⇓
4 3 ∈ EA

as t semilattice implies t(
W

Aw, c) = t(c,
W

Aw) =
W

Aw for all c ∈ Aw

and w ∈ {x, y}, and t is a polymorphism of EA.
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Example (Cont’d)
Ax = {4}, Ay = {3}, Az = {2, 5}.

w 7→
W

Aw for w ∈ {x, y, z}witnesses A |= ∃x∃y∃z(Exy ∧ Eyz).„
A, x 7→ 4

y 7→ 3

«
|= Exy iff (4, 3) ∈ EA.

Check:

1. x 7→ 4 extends to some y 7→ a ∈ Ay st (4, a) ∈ EA, and
y 7→ 3 extends to some x 7→ b ∈ Ax st (b, 3) ∈ EA, by 1-consistency;

2.

t t

4 a ∈ EA

b 3 ∈ EA

= = ⇓
4 3 ∈ EA

as t semilattice implies t(
W

Aw, c) = t(c,
W

Aw) =
W

Aw for all c ∈ Aw

and w ∈ {x, y}, and t is a polymorphism of EA.
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Example (Cont’d)
Ax = {4}, Ay = {3}, Az = {2, 5}.

w 7→
W

Aw for w ∈ {x, y, z}witnesses A |= ∃x∃y∃z(Exy ∧ Eyz).„
A, x 7→ 4

y 7→ 3

«
|= Exy iff (4, 3) ∈ EA.

Check:

1. x 7→ 4 extends to some y 7→ a ∈ Ay st (4, a) ∈ EA, and
y 7→ 3 extends to some x 7→ b ∈ Ax st (b, 3) ∈ EA, by 1-consistency;

2.

t t

4 a ∈ EA

b 3 ∈ EA

= = ⇓
4 3 ∈ EA

as t semilattice implies t(
W

Aw, c) = t(c,
W

Aw) =
W

Aw for all c ∈ Aw

and w ∈ {x, y}, and t is a polymorphism of EA.
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Example (Cont’d)
Ax = {4}, Ay = {3}, Az = {2, 5}.

w 7→
W

Aw for w ∈ {x, y, z}witnesses A |= ∃x∃y∃z(Exy ∧ Eyz).„
A, x 7→ 4

y 7→ 3

«
|= Exy iff (4, 3) ∈ EA.

Check:

1. x 7→ 4 extends to some y 7→ a ∈ Ay st (4, a) ∈ EA, and
y 7→ 3 extends to some x 7→ b ∈ Ax st (b, 3) ∈ EA, by 1-consistency;

2.

t t

4 a ∈ EA

b 3 ∈ EA

= = ⇓
4 3 ∈ EA

as t semilattice implies t(
W

Aw, c) = t(c,
W

Aw) =
W

Aw for all c ∈ Aw

and w ∈ {x, y}, and t is a polymorphism of EA.
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Example (Cont’d)
Ax = {4}, Ay = {3}, Az = {2, 5}.

w 7→
W

Aw for w ∈ {x, y, z}witnesses A |= ∃x∃y∃z(Exy ∧ Eyz).„
A, x 7→ 4

y 7→ 3

«
|= Exy iff (4, 3) ∈ EA.

Check:

1. x 7→ 4 extends to some y 7→ a ∈ Ay st (4, a) ∈ EA, and
y 7→ 3 extends to some x 7→ b ∈ Ax st (b, 3) ∈ EA, by 1-consistency;

2.

t t

4 a ∈ EA

b 3 ∈ EA

= =

⇓

4 3

∈ EA

as t semilattice implies t(
W

Aw, c) = t(c,
W

Aw) =
W

Aw for all c ∈ Aw

and w ∈ {x, y},

and t is a polymorphism of EA.
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Example (Cont’d)
Ax = {4}, Ay = {3}, Az = {2, 5}.

w 7→
W

Aw for w ∈ {x, y, z}witnesses A |= ∃x∃y∃z(Exy ∧ Eyz).„
A, x 7→ 4

y 7→ 3

«
|= Exy iff (4, 3) ∈ EA.

Check:

1. x 7→ 4 extends to some y 7→ a ∈ Ay st (4, a) ∈ EA, and
y 7→ 3 extends to some x 7→ b ∈ Ax st (b, 3) ∈ EA, by 1-consistency;

2.

t t

4 a ∈ EA

b 3 ∈ EA

= = ⇓
4 3 ∈ EA

as t semilattice implies t(
W

Aw, c) = t(c,
W

Aw) =
W

Aw for all c ∈ Aw

and w ∈ {x, y}, and t is a polymorphism of EA.
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Theorem
If A admits a semilattice polymorphism t, then A has width 1
(ie, the 1-consistency algorithm decides CSP(A) in polytime).

Proof (Idea).
φ instance of CSP(A) over variables {x1, . . . , xn}. Run 1-consistency.
If Axi = ∅ for some i ∈ {1, . . . , n}, then A 6|= φ.
Otherwise A |= φ, witnessed by xi 7→

W
Axi ∈ A

(A is a complete join semilattice under a ≤ b iff t(a, b) = b,
so every S ⊆ A has a least upper bound in A).
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Tractability | Mal’tsev | Dalmau Algorithm

t : A3 → A is a Mal’tsev operation if t(x, y, y) = t(y, y, x) = x.

Theorem
If A admits a Mal’tsev polymorphism,
then the solution space of CSP(A) admits a compact representation
(and Dalmau algorithm decides CSP(A) in polytime).
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Example
A = (A,RA) where A = {0, 1, 2, 3, 4}, RA = {(a, b, c) | Z5 |= a + b = c} ⊆ A3.

RA admits the Mal’tsev polymorphism t(x, y, z) = x− y + z (over Z5):

t t t

a1 + a2 = a3 ∈ RA

b1 + b2 = b3 ∈ RA

c1 + c2 = c3 ∈ RA

= = = ⇓
(a1 − b1 + c1) + (a2 − b2 + c2) = (a3 − b3 + c3) ∈ RA

Dalmau algorithm decides CSP(A) in polytime.
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Example
A = (A,RA) where A = {0, 1, 2, 3, 4}, RA = {(a, b, c) | Z5 |= a + b = c} ⊆ A3.

RA admits the Mal’tsev polymorphism t(x, y, z) = x− y + z (over Z5):

t t t

a1 + a2 = a3 ∈ RA

b1 + b2 = b3 ∈ RA

c1 + c2 = c3 ∈ RA

= = =

⇓

(a1 − b1 + c1)

+

(a2 − b2 + c2)

=

(a3 − b3 + c3)

∈ RA

Dalmau algorithm decides CSP(A) in polytime.
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Example (Cont’d)
φ = ∃x∃y∃z(Rxzx ∧ Rxyy) instance of CSP(A) with 2 constraints.

C1 =

24 0 1 2 3 4
a a a a a a ∈ {0, 1, 2, 3, 4}
0 0 0 0 0

35 solutions to Rxzx.

C2 =

24 0 0 0 0 0
0 1 2 3 4 a ∈ {0, 1, 2, 3, 4}
a a a a a

35 solutions to Rxyy.

S2 = C1 ∩ C2 =

24 0
a a ∈ {0, 1, 2, 3, 4}
0

35 solutions to Rxzx ∧ Rxyy.

S2 6= ∅.

A |= φ.
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φ instance of CSP(A) with m constraints and k variables,

φ = ∃x1 · · · ∃xk(φ1(x1, . . . , xk) ∧ · · · ∧ φm(x1, . . . , xk)).

Ci ⊆ A{x1,...,xk} solutions ith constraint (i ∈ {1, . . . ,m}).
Si = C1 ∩ · · · ∩ Ci solutions first i constraints (i ∈ {0, 1, . . . ,m}).
Sm solutions of φ (ie, any a ∈ Sm witnesses A |= φ).

NAIVEALGORITHM(φ)

1 S0 = A{x1,...,xk}

I size O(2k)

2 for i = 1, . . . ,m
3 Si = Si−1 ∩ Ci

I size O(2k)

4 if (Si = ∅) output A 6|= φ
5 endfor
6 output A |= φ

Correct, but not polytime!
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6 output A |= φ
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If a k-ary relation R ⊆ Ak on a set A admits a Mal’tsev polymorphism t,
then R admits a compact representation R′, that is a R′ ⊆ R such that:

1. |R′| ≤ 2|A|k = O(k) versus |R| ≤ |A|k = O(2k);

2. R is equal to t(R′), the smallest relation containing R′ closed under t
(a,b, c ∈ t(R′) implies (t(a1,b1, c1), . . . , t(ak,bk, ck)) ∈ t(R′)), ie,
each a ∈ R is derivable from R′ using the Mal’tsev polymorphism t of R.

R′ and t provide a poly(k) size encoding for R!

R′ constructed by: For all (i, a, b) ∈ {1, . . . , k} × A× A,
there exist a,b ∈ R such that aj = bj for all j < i, ai = a, bi = b,
iff there exist a′,b′ ∈ R′ such that a′j = b′j for all j < i, a′i = a, b′i = b.
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Example (k = 3, A = {0, 1, 2, 3, 4})
R = {0, 1, 2, 3, 4}3 admits Mal’tsev polymorphism t(x, y, z) = x− y + z,

t(x, y, y) = t(y, y, x) = x.

Define R′ = {(a, 0, 0), (0, a, 0), (0, 0, a) | a ∈ {0, 1, 2, 3, 4}} ⊆ R.

Check:

1. |R′| ≤ |A|k ≤ 2|A|k� |A|k = |R|;
2. For instance, derive (2, 3, 1) ∈ R from R′ using t:

t t t

2 0 0 ∈ R′

0 0 0 ∈ R′

0 3 0 ∈ R′

= = =

2 3 0

t t t

2 3 0
0 0 0 ∈ R′

0 0 1 ∈ R′

= = =

2 3 1 ∈ R
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Related Problems

1. If a finite digraph admits Gumm polymorphisms,
then it admits edge polymorphisms (Valeriote conjecture)?

2. Classify the complexity of the CSP: P/NP-complete?
3. Classify the complexity of the quantified CSP:

P/NP-complete/PSPACE-complete?
4. Classify the complexity of the valued CSP.
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Containment of Conjunctive Queries

Problem PPDEFCONT(C),
where C is the class of finite σ-structures.

Instance Two conjunctive queries φ1 and φ2, over σ,
with free variables x1, . . . , xn, and a σ-structure A.

Question A |= φ1 ⊆ φ2, ie,
for all b ∈ A{x1,...,xn}, A,b |= φ1 implies A,b |= φ2?

Theorem (B, Chen and Valeriote)
Let C be the class of finite σ-structures and A ∈ C.
Then PPDEFCONT(A) = {(φ1, φ2) | A |= φ1 ⊆ φ2} is:

1. Π
p
2-complete, if A omits Taylor polymorphisms;

2. coNP-complete, if A admits Taylor but omits Gumm polymorphisms;

3. in P, if A admits edge polymorphisms.

Remark
Complete trichotomy classification modulo Valeriote and BJK conjecture.
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