Voting Theory in Answer Set Programming

Kathrin Konczak

Institut fir Informatik, Universitit Potsdam, Postfach 90 03 27, D—14439 Potsdam
konczak@cs.uni-potsdam.de

Abstract. In this paper, we combine answer set programming with voting theory for the
first time. For this, we use the voting procedures defined in [5], which allow winner de-
termination under incomplete preference relations. We present the problem of scheduling
a meeting for a research group as an application. In those scheduling problems, often no
meetings are schedulable because of conflicting unavailabilities of the attendees or multiple
dates for meetings are possible, where one has to respect the preferences of the attendees. In
the first case, we provide a diagnostic model analyzing why no meeting was schedulable. In
the second case, we use voting procedures for incomplete preference relations to determine
preferred meetings.

1 Introduction

During the last decade, Answer Set Programming (ASP) [4] has become an increasingly acknowl-
edged tool for knowledge representation and reasoning. A main advantage of ASP is that it is
based on solid theoretical foundations, while being able to model commonsense reasoning in an
arguably satisfactory way. The availability of efficient solvers has furthermore stimulated its use
in practical applications, e.g. configuration, planning, scheduling, in recent years.

Automated group decision making is an important issue in Al: autonomous agents often have
to agree on a common decision, and may for this reason apply voting procedures, which is one of
the most common ways of making a collective choice. Voting procedures are usually defined for
total preference relations. But naturally, agents will only express partial preferences among a set
of given candidates. For this, we have focused in [5] on the application of a voting procedure when
the voters’ preferences are incomplete. There, we have defined lower and upper bounds for winners
of voting procedures, which are called possible and necessary winners.

In this paper, we connect for the first time voting procedures with ASP. More precisely, we
implement the voting procedures defined in [5] within ASP by using aggregate functions provided
by the DLV system [3,2]. Furthermore, we show the usefulness of these voting procedures within
an application of ASP, namely the problem of scheduling a meeting for a research group. There,
group members can express their preferences among a set of candidates, i.e. dates. Since usually
one wants to express partial orders instead of total orders, e.g. one prefers to meet on Monday
over Tuesday without given any requirements regarding time, the voting procedures for incomplete
preference relations [5] seem to be appropriate for such kinds of problems.

Furthermore, we present a formalism for analyzing the scheduling problem in the case where
no solutions are found. More precisely, we give a diagnostic model, following [7, 8], which gives
explanations why no meeting was schedulable.

In Section 2, we recall basic background on answer set programming and voting theory. In
Section 3, we present an encoding of voting procedures within answer set programming. In Sec-
tion 4, we describe the problem of scheduling a meeting for a research group, which consists of
several subgroups. In Section 4.1, we describe the basic problem, where a meeting is schedulable if
from every subgroup a certain number of persons is available. If no meeting is schedulable due to
unavailabilities of group members, we provide diagnostic reasoning for analyzing why no meeting
was schedulable in Section 4.2. Lastly, in Section 4.3 we combine the basic scheduling algorithm
with the voting procedures from [5] to determine preferred meetings, whenever multiple meetings
are schedulable. We conclude with Section 5.

46 Kathrin Konczak

2 Background

A logic program is a finite set of rules such as pg «— pi,...,Dm, n0t Ppai,-..,not p,, where
n >m > 0, and each p; (0 < i < n) is an atom. For such a rule r, we let head(r) denote the head, po,
of r and body(r) the body, {p1,...,pm, N0t Pms1,...,not p,}, of r. Let body™ (r) = {p1,...,pm}
and body™ (1) = {pm+1,-..,pn} For a set of rules I, we write head(II) = {head(r) | r € IT}. A
program is basic if body™ (r) = () for all its rules. The reduct, ITX, of a program IT relative to a
set X of atoms is defined by ITX = {head(r) « body™ (r) | r € II, body ™ (r) N X = 0}. A set of
atoms X is closed under a basic program IT if for any r € IT, head(r) € X if body™ (r) C X. The
smallest set of atoms being closed under a basic program II is denoted by Cn(II). Then, a set X
of atoms is an answer set of a program II if Cn(IIX) = X. We use AS(II) for denoting the set of
all answer sets of II.

Let X = {x1,...,2m,} be a finite set of candidates and I = {1,...,n} a finite set of voters. A
complete preference profile is a collection 7 = (17, ..., T,) of total orders on X, where T; represents
the preferences of voter i. A wvoting procedure F' maps every complete preference profile 7 to a
nonempty subset of X, where F(7) denotes the set of winners of 7 w.r.t. F.. A positional scoring
procedure is defined from a scoring vector s = (s1,. .., Sm) of integers such that s; > so > ... > s,
and s; > s, e.g. the Borda procedure has the scoring vector sy, = m—Fk forall k =1,...,m; and
the plurality procedure the scoring vector s; = 1, and s = 0 for all £ > 1. For every € X and
every i € I, let 7(T;,z) = #{y | y >, } + 1 be the rank of x in the complete order Tj; * then, we
define the scoring function as S(z,T) = >, Sp(T;,x)- The positional scoring rule Fs associated
with a scoring vector s is defined by its set Fs(7) = {z | S(x,7) is maximal } that is, the set of
winning candidates for 7 with respect to F is the set of candidates in X maximizing the scoring
function S(., 7). For an overview of voting theory see [6, 1].

An incomplete preference profile R = (Ry,...,R,) is a collection of partial orders R; on
X, where R; represents the preferences of voter ¢. In the following, R; is often denoted as >,
or as »;. In [5], winners wrt incomplete preference profiles were defined by lower and upper
bounds: ©z € X is a necessary winner for R (w.r.t. F) iff for all complete extensions 7 of R
we have z € F(T), and € X is a possible winner for R (w.r.t. F) iff there exists a complete
extension 7 of R such that € F (7). The minimal (resp. mazximal) rank of a candidate x for
a partial order R is the lowest (resp. highest) possible rank of x obtained when considering all
complete extensions of R. These bounds can be computed in polynomial time, where the minimal
rank of x is determined by the number of candidates which are higher ranked in the order, i.e.
rank’y™(z) = #{y | y >r #} +1 and the maximal rank of z is determined by the number of lower
ranked candidates, i.e. rankB**(z) = m — #{y | * >r y}.

For positional scoring procedures F like Borda and plurality, necessary and possible winners
can be computed by considering the best and the worst case for values of scoring functions [5]:
Smin(z) =Y, Srankpes (z) and SR (x) = 37i_1 Srankmin() Then, x is a necessary winner for
R w.r.t. Fy iff S7m(x) > S (y) holds for all y # z; and z is a possible winner for R w.r.t. Fy
iff Sma(x) > SEpin(y) for all y # x.

A candidate z is a Condorcet winner for a complete profile 7 = (>=1,..., =) iff for all y # z,
#{i | x >=; y} > §. Analogously to positional scoring procedures, we can define possible and
necessary Condorcet winners [5]. Let

+1 ifnot (y >; z); ; +Life >, y;
Nﬁiax(%y):{l if y >¢(§/: o ’Ng‘m(x’y):{l ifnOtz(z 2iy)

N (x,y) = >0 Ng“™(z,y), and Ng“*(z,y) = > i NE*(x,y). Then, z is a necessary Con-
dorcet winner for R iff Vy # x, N2 (z,y) > 0, and x is a possible Condorcet winner for R iff

Yy # x, Ng*(z,y) > 0.

! The lower the rank, the more preferred is the candidate.

Voting Theory in Answer Set Programming 47

3 Encoding within Answer Set Programming

Next, we want to give an encoding of the voting procedures for incomplete preference profiles
within ASP. For this, we use aggregate functions as provided by the DLV system [2, 3].

Let X = {x1,...,Zm} be a set of candidates and V = {vy,...,v,} be a set of voters, where
each voter has a partial preference profile over X. For representing the number of candidates,
voters and preference relations, we use the following rules:

¢(x;) « for all candidates i =1,...,m (1)
v(v;) « for all voters i =1,...,n (2)
pref(V,X,Y) « for all voters V preferring X over Y (3)

Additionally, we need the following rules defining some basic concepts.

#mazint = 50 «— (4)
nbc(Nb) «— Nb = #count{M : ¢(M)} (5)
nbu(Nb) «— Nb = #count{V : v(V)} (6)

vtp(V) «— for V € {borda, plurality, condorcet} (7)
sp(S) « for S € {borda, plurality} (8)

Rule (4) is DLV specific. The number of all candidates and voters is computed by rules (5)-(6).
Rules (7)-(8) initialize the voting, respectively scoring, procedures. Since the computation of Borda,
plurality, and Condorcet winners will be done independently from each other, one can initialize
vtp(.) and sp(.) for all voting procedures.

Candidate x is a possible, respectively necessary, winner if there exists no candidate who
“beats” z. The algorithm given in Section 2 are directly carried over.

possible(V P, X) «— ¢(X),vtp(V P), not no_possible(V P, X) 9)

no_possible(VP, X) — ¢(X),c(Y), X # Y, vtp(VP), sp(VP), (10)
s-max(VP, X, XS),smin(VP,Y,YS), XS <YS

no_possible(condorcet, X) «— ¢(X),c(Y),Y # X, nbv(Nbv), (11)
Z = #count{V :pref(V,Y, X),v(V)},Z1 =2x Z, Nbw < Z1

necessary(V P, X) « ¢(X), vtp(V P), not no_necessary(V P, X) (12)

no-necessary(VP,X) «— ¢(X),c(Y), X # Y,vtp(VP), sp(V P), (13)
s-min(VP, X, XS),ssmaz(VP,Y,YS), XS <YS

no_necessary(condorcet, X) — ¢(X),c(Y),Y # X, nbv(Nbv), (14)

Z = #count{V : pref(V,X,Y),v(V)},Z1=2%Z,Z1 < Nbv

For computing the Borda score (cf. Section 2), we use rules (15)- (18).

borda_smaz(V,X,S) — v(V),c(X), S=#count{Y : pref(V,X,Y),c(Y)} (15)

borda_smin(V, X, S) — v(V), c(X), nbe(M), (16)
Rk = #count{Y :pref(V,Y,X),c(Y)},M = Rk + Rk1,Rk1 = S + 1

s.min(borda, X, S) — c(X), S = #sum{Sc,V : borda_smazx(V, X, Sc)} (17)

s-max(borda, X, S) — ¢(X), S = #sum{Sec,V : borda_smin(V, X, Sc)} (18)

48 Kathrin Konczak

For the plurality score (cf. Section 2), we use rules (19)- (26).

rmin(V, X, R) « v(V),c(X), R'=#count{Y : pref(V,Y,X),c(Y)},R=R' + 1 (19)
rmax(V, X, R) — v(V),c(X),nbc(M), Rl=#count{Y :pref(V,X,Y)},M = R1 + R (20)
plural_smin(V, X, 1) «— v(V), c(X),rmin(V, X, 1) (21)
plural_smin(V, X,0) «— v(V),c(X),rmin(V, X, R),R # 1 (22)
plural_smax(V, X,1) — v(V), c(X), rmaz(V, X, 1) (23)
plural_smax(V, X,0) — v(V),c(X),rmax(V,X,R),R # 1 (24)
s-min(plurality, X, S) « ¢(X), S=#count{V : plural_smax(V, X, 1)} (25)
s-max(plurality, X, S) — ¢(X), S=#count{V : plural _smin(V, X, 1)} (26)

Thus, rules (1)- (26) represent the encoding of our voting problem within answer set programming.
The logic program IT consisting of the rules (1)- (26) has exactly one answer set, which gives us
the set of all possible and necessary winners.

Theorem 1. Let be given a set of candidates X, a set of voters V', partial preference profiles for
each voter over the set of candidates, and a voting procedure VP € {Borda, plurality, Condorcet}.
Then, the logic program II, consisting of the rules (1)- (26), has exactly one answer set' Y, where

1. the set {X : possible(VP,X) € Y} is the set of all possible winners wrt VP, and
2. the set {X : necessary(VP,X) € Y} is the set of all necessary winners wrt VP.

Proof. (Sketch) IT has exactly one answer set, which can be seen by considering the well-founded
semantics. Condition 1 and 2 follow by the semantics of aggregates functions.

4 Scheduling a meeting

In this section, we present an application of voting theory in scheduling problems. First, we de-
scribe the basic problem. Then, we include diagnostic reasoning and, afterwards, we present the
integration of voting procedures into the scheduling algorithm.

4.1 Schedule a meeting for a research group

Next, we want to describe a solution for the problem of scheduling a meeting for a research
group. We have given m possible times dy,...,d,, for scheduling a meeting. The group consists
of n subgroups Xi,...,X,. Each subgroup X; has k; members, where each member may have
unavailabilities for certain dates. We want to schedule a meeting such that from every group at
least k persons are available for that meeting.

Definition 1. Let D be a set of dates, X = X1,...,X, be a set of research groups, where X;
has k; members, and let NA be a set of unavailabilities na(p,d) expressing that person p € X;
is unavailable at time d € D. Furthermore, let k be the number of required persons from every
sub-group, which should at least attend to a meeting.

Then, we call M = (D, X, NA k) a meeting scheduling problem.

Furthermore, m € D is called meeting whenever for all X;, 1 < i < n, we have |{p € X :
na(p,m) ¢ NA}| > k.

Let M = (T, X, N A, k) be a meeting scheduling problem. Then, this problem is encoded within
answer set programming by the following set of rules, where & in rule (31) presents the number of
required persons from each research group.

g(X;) « for all subgroups X; of research group X (27)
p(P, X;) < for all members P of subgroup X; (28)
d(T) « for all possible dates T' (29)
na(P,T) « for all P and T, where P is unavailable for time T (30)
rnb(k) — (31)

Voting Theory in Answer Set Programming 49

a(P,G, D) «— not na(P, D),p(P,G), g(G),d(D) (32)
present_group(G, D) < rnb(R), N = #count{P : a(P,G, D)}, N > R, g(G),d(D) (33)
unpresentgroup(D) «— d(D), g(G), not present_group(G, D) (34)
meeting(M) — d(M), not unpresentgroup(M) (35)
meet — meeting(M),d(M) (36)
— not meet (37)

Fig. 1. Meeting Scheduler

Furthermore, we include the logic program in Figure 1. Rule (32) expresses the status of availability

of a person P from subgroup G for date D. Rules (33) and (34) express the status of subgroups.
A subgroup G is present for date D whenever the number of available persons is higher than the
number of required persons. Rule (35) generates possible meetings, where rules (36)—(37) ensure
that at least one meeting is generated. Let IT, be the logic program consisting of rules (27)—(37).
Il) has exactly one answer set if some meeting is schedulable, and ITp; has no answer set if
no meeting is schedulable. If there exists an answer set X of IIxq, then every date in the set
{M : meeting(M) € X} represents a solution of our meeting scheduling problem.

Theorem 2. Let M = (D, X, NA,k) be a meeting scheduling problem and IIxq as described in
rules (27)-(37). Then, one of the following holds:

1. Iy has no answer set iff there exists no m € D such that for all X; we have |[{P € X, :
P is available for m}| > k; or

2. ITnq has exactly one answer set X, where {m : meeting(m) € X} contains all schedulable
meetings for the scheduling problem M.

Example 1. At a university, we have a research group consisting of three subgroups: g1, g2 and
g3. Group g1 has three members (pi,pl,pi), go has three members (p?,p3,p3), and g3 has only
two members (p$,p3). They want to meet either on Monday or on Tuesday, where a meeting in
the morning, in the afternoon, or in the evening is possible. Hence, we have 6 times: d; (Monday
morning), do (Monday afternoon), ds (Monday evening), ds (Tuesday morning), ds (Tuesday
afternoon), and dg (Tuesday evening). Furthermore, we have the following unavailabilities: Persons
pi is unavailable on Monday (di,ds,d3), p3 is unavailable on Tuesday (d4,d4,ds), p3 is in the
mornings unavailable (dq,dy), and p3 is in the evenings unavailable (d3, dg). We want to schedule a
meeting, where at least two persons from every subgroup can attend to it. With the unavailabilities
at hand, we can schedule a meeting at times dj, ds, ds that is on Monday. If additionally person
p3 becomes unavailable on Monday, no meeting is schedulable.

4.2 Including diagnostic reasoning

With a huge number of subgroups of a research project, it often happens that no meeting is
schedulable since the unavailabilities of persons are conflicting for every date. For this case, we
develop a diagnostic model such that the reasons why no meeting is schedulable are determined
by the diagnostic model. Furthermore, whenever a meeting is schedulable, the diagnostic model
should give out all possible meetings. This idea of including diagnostic reasoning is closely related
to the diagnostic model for the configuration of the Debian GNU/Linux system [7,8]. There, the
configuration problem gives suitable combinations of software packages which have to be installed
in a Linux system. Software packages may interact in different ways, e.g. they are conflicting with
each other or are requiring other software packages. In the case where no suitable configuration
of software packages exists, the diagnostic model in [7,8] determine an error set, a problem set,
and an explanation set for analyzing why no configuration of the software packages is possible.
The error set expresses why no configuration has been found, e.g. required software packages are

50 Kathrin Konczak

meet «— d(M), meeting(M) (38)
meeting(M) — d(M), not unpresentgroup(M) (39)
unpresentgroup(D) «— d(D), g(G), not present_group(G, D) (40)
a(P, G, D) «— not na(P, D), p(P,G), g(q),d(D) (41)
present_group(G, D) «— rnb(R), N = #count{P : a(P,G,D)}, N > R, g(G),d(D) (42)
exists_date «— d(D) (43)
nodate < not exists_date (44)
smallgroup(G) — g(G),rnb(R), nbgroup(N,G), N < R (45)
nbgroup(N,G) «— N = #count{P : p(P,G)}, g9(G) (46)
unpresent(G, D) — g(G), d(D), not present_group(G, D), not meet (47)
person_unavailable(P, G, D) « unpresent(G, D), na(P, D),p(P,G), g(G),d(D),not meet (48)
incomplete «— d(M), not h(M), not meet (49)
h(M) «+ d(M), not unpresentgroup(M) (50)

Fig. 2. Diagnostic Model of meeting scheduler

missing or selected packages are conflicting with each other. The problem set contains all software
packages which are involved in a conflict. The explanation set points out why software packages
causing errors are chosen to be in a configuration, e.g. the user has selected them or a package is
required by another one.

In the following we want to carry over the diagnostic model for configuration problems to
a meeting scheduling problem M = (D, X, NA k) for a research group. We have the following
reasons, why no meeting is schedulable:

(R1) There are no dates for a meeting available.
(R2) For each date there exists at least one subgroup such that one of the following conditions
holds:
(R2a) the number of persons from that group is smaller than the number of required persons
for that subgroup (without consideration of unavailabilities), or
(R2b) there are too many persons unavailable for the date such that not enough persons can
attend that meeting.

The logic program given in Figure 2 represents the encoding of the diagnostic model. Rules (38)-
(42) are the same as in Figure 1 except for Rule (37), which is replaced by the following rules
for the diagnostic output. Rule (43) and (44) handle reason (R1), whenever no date is available.
Rule (45) and (46) handle reason (R2a), whenever one subgroup is smaller than the required
number of persons. Rule (47)—(50) handle reason (R2b), where no meeting is schedulable since for
every date at least one subgroup is not present due to unavailabilities of group members.

The logic program I1%, consisting of rules (27)-(31) and (38)-(50) is called diagnostic model
for the meeting scheduling problem M. In contrast to [7], we define only the error set and the
explanation set, since the problem set is needed in [7] to detect transitive relationships, which have
no effect here.

Definition 2. Let M = (D, X, NA,k) be a meeting scheduling problem and H/I\),l be the corre-
sponding diagnostic model. A diagnosis is a triple D = (X, Ex, Rx), where

1. X is an answer set of II,
2. Ex 1is the error set

Ex = {nodate € X} U {smallgroup(G) € X} U {incomplete € X}

Voting Theory in Answer Set Programming 51

3. Rx is the explanation set
Rx = {person_unavailable(P,G, D) € X} U {unpresent(G,D) € X}

The error set gives the reason why no meeting is schedulable. More precisely, it distinguishes the
cases that no date time exists (nodate € Ex), one subgroup is smaller than the required number
of persons (smallgroup(G) € Ex), or due to unavailabilities one subgroup is underrepresented
(incomplete € Ex). The explanation set contains information why no meeting is schedulable.
Whenever nodate € Ex or smallgroup(G) € Ex, we need no further explanations since these er-
rors are self-explanatory. Whenever incomplete € Ex, we add to the explanation set all subgroups
G which are not present for each date time D, and corresponding to that all persons which are
unavailable from these subgroups. Whenever a meeting is schedulable, there exists an answer set
X, where the error set E'x and the explanation set Ry are empty. Otherwise, IT f,l has exactly one
answer set, where the error set and the explanation sets are non-empty and are explaining why
no meeting is schedulable

Theorem 3. Let (D, X,NA, k) be a meeting scheduling problem and H/T\’A be the corresponding
diagnostic model. Then,

1. m € D is a meeting iﬁﬂﬂ has an answer set X, where Ex =, Rx =) and meeting(m) € X,
2. there exists no meeting iff H/?/t has an answer set X such that Ex # ().

Ezample 2. Let us reconsider Example 1. In the last case, where person p3 became unavailable on
Monday, no meeting was schedulable. Accordingly, our diagnostic model has one answer set X with
a nonempty error set Fx and explanation set Rx. Our error set Ex contains incomplete, denoting
the case that at least one subgroup can not attend to the meeting due to unavailabilities. Our
explanations set Rx contains unpresent(g3,D) for all possible times D € {di,ds,ds,ds,ds,ds}.
That is, no meeting was schedulable since group ¢3 is not present for each possible time. Fur-
thermore, the explanation set Rx contains person_unavailable(p3,g3,D) for D = dy,ds,ds and
person_unavailable(p3,93,D) for D = dy,ds, ds. That is, group g3 cannot attend to a meeting since

p3 is unavailable on Monday and p3 is unavailable on Tuesday.

4.3 Selecting preferred meetings

In the case where multiple meetings are schedulable, we have to choose exactly one meeting out of
the set of possible meeting times. In order to do so, every person expresses preferences for meeting
times. Often, one can express preferences only as a partial order, e.g. one prefers a meeting in
the morning over a meeting in the afternoon, instead of total orders. Hence, we use the voting
procedures from Section 3 to determine upper and lower bounds for preferred meetings wrt different
voting strategies.

Each person of our research group provides his preferred dates. That is, each voter p has a
partial order <% among the set of dates. Since in general not all dates are schedulable as meetings,
we have to restrict the partial orders to the set of schedulable meetings. Furthermore, we assume
that each person expresses only preference relations on dates, where the person is available.

Let M = (D,X,NA,k) be a meeting scheduling problem. For each person pé-, 1 <5<k
from subgroup X; (i = 1,...,n), we have given a partial preference relation <;-§ D x D for the
set of all dates D = dy,...,d,,. Note that each voter expresses only preference relations on the
set of for him available dates. That is, <}C D, x D, where D, = {d € D | na(p},d) ¢ NA}.
We call M< = (D, X,NAk,<) a preferred meeting scheduling problem, where < comprises the
preference relations given above. We have to restrict the partial orders to the set of all schedulable
meetings. So, let M C D be the set of all schedulable meetings according to the requirements
given in Section 4.1. Then, we let <§Q M x M such that d <§- d’ holds if d <§- d’ holds.

We combine the logic programs from the basic meeting scheduling problem in Figure 1 and the
encoding of voting procedures within ASP (Rules (1)- (26)) from Section 3 as follows: We define

52 Kathrin Konczak

IT5, as the union of the rules (27)-(37), rules (4)-(26), and the following rules, which replace rules

(D)-(3):

(M) — meeting(M),d(M) (51)
v(P) «— p(P,GQ), not na(P, M), meeting(M), g(G) (52)
pref(P},X,Y) « where Y <} X holds for X,Y being meetings (53)

With this logic program, we can compute possible and necessary meetings.

Theorem 4. Let M< = (D, X, NA,k,<) be a preferred meeting scheduling problem, H/f/l the
corresponding logic program, and let VP € {Borda, plurality, Condorcet} be a voting procedure.
Then, one of the following holds

1. Hf/l has either no answer set, expressing that no meetings are schedulable, or
2. H/f,l has exactly one answer set Y, where
(a) the set {X : possible(VP,X) € Y} is the set of all possible meetings wrt voting procedure
VP, and
(b) the set {X : necessary(VP,X) € Y} is the set of all necessary meetings wrt voting proce-
dure V P.

Example 3. Let us reconsider Example 1. Assume that no person of the research group has unavail-
abilities. That is, all dates are schedulable as meetings. Consider the following preference relations:
group g; prefers Monday morning over all other dates (dy > d;,i = 2, ...,6); g2 prefers Monday over
Tuesday and the afternoon and evening over the morning (dgy > dy > ds > dg,d3 > di > dg > dy);
and g3 prefers Monday morning over Monday afternoon and Monday evening and Monday over
Tuesday (dq > do,d1 > d3 and d; > d; for i = 2,3 and j =4,5,6).

For the Borda voting procedure, we get d1, d2, d3 as possible winners and no necessary winners.
For the plurality and for the Condorcet procedure, we get d; as possible and as necessary winner.
Hence, a meeting should be scheduled on Monday morning.

5 Conclusions and Further Work

We have linked voting theory to answer set programming for the first time. We have considered
the voting procedures for incomplete preference profiles defined in [5] and have presented in Sec-
tion 3 an embedding in answer set programming. Furthermore, we have presented the meeting
scheduling problem for a research group, where we have integrated these voting procedures for
computing preferred meetings. First, we have defined the basic problem (Section 4.1), then we
have included diagnostic reasoning in Section 4.2. Whenever no meetings are schedulable, the di-
agnostic model determines why no solution to a problem exists. In Section 4.3, we have integrated
voting procedures into our meeting scheduling problem. Voters, members of the research group,
can express their preferences among a set of dates, and the voting procedures provide possible
and necessary preferred meetings. Hence, we have shown the usefulness of voting procedures for
incomplete preference profiles within an application. The example presented in Section 4.1 is in
polynomial time solvable. Although ASP is able to handle complexer problems (e.g. NP-complete
ones), we have taken a polynomial problem to demonstrate how efficient voting procedures can be
integrated into logic programming. In further work, we want to integrate voting procedures within
more complex, NP-complete, timetabling problems. The voting procedure for incomplete prefer-
ence relations are used as a “filter” for determing preferred solutions. Since they are computable
in polynomial time [5], the complexity of the underlying problem does not increase.

Acknowledgements

The author was supported by the German Science Foundation (DFG) under grant SCHA 550/6-
4, TP C and by the EC under project IST-2001-37004 WASP.

Voting Theory in Answer Set Programming 53

References

1. S. Brams and P. Fishburn. Handbook of Social Choice and Welfare, volume 1, chapter Voting procedures.
Elsevier, 2003.

2. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate functions in disjunctive logic
programming: Semantics, complexity, and implementation in dlv. In G. Gottlob and T. Walsh, editors,
1JCAI-03, pages 847-852. Morgan Kaufmann, 2003.

3. DLV. http://www.dbai.tuwien.ac.at/proj/dlv/.

4. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proceedings of the
International Conference on Logic Programming, pages 1070-1080. The MIT Press, 1988.

5. K. Konczak and J. Lang. Voting procedures with incomplete preferences. In R. Brafman and U. Junker,
editors, IJCAI-05 Workshop on Advances in Preference Handling, pages 124-129, 2005.

6. J. Lang. Logical preference representation and combinatorial vote. Annals of Mathematics and Artificial
Intelligence, 42(1):37-71, 2004.

7. T. Syrjanen. Including diagnostic information in configuration models. In J. Lloyd, V. Dahl, U. Furbach,
M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagiv, and P. Stuckey, editors, First International
Conference on Computational Logic (CL 2000), volume 1861 of Lecture Notes in Computer Science,
pages 837—851. Springer, 2000.

8. Tommi Syrjanen. A rule-based formal model for software configuration. Research Report A55, Helsinki

University of Technology, Laboratory for Theoretical Computer Science, 1999.

