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Abstract. In this paper, we propose a formal framework for specifying rule replacements in non-
monotonic logic programs within the answer-set programming paradigm. Of particular interest are
replacement schemas retaining specific notions of equivalence, among them the prominent notions of
strong and uniform equivalence, which have been introduced as theoretical tools for program optimiza-
tion and verification. We derive some general properties of the replacement framework with respect
to these notions of equivalence. Moreover, we generalize results about particular replacement schemas
which have been established for ground programs to the non-ground case. Finally, we report a number
of complexity results which address the problem of deciding how hard it is to apply a replacement to
a given program. Our results provide an important step towards the development of effective optimiza-
tion methods for non-ground answer-set programming, an issue which has not been addressed much so
far.

1 Introduction

Answer-set programming (ASP) has emerged as an important paradigm for declarative problem solving,
and provides a host for many different application domains on the basis of nonmonotonic logic pro-
grams [13]. The increasing interest in ASP has raised also the interest in semantic comparisons of programs
in ASP, such as program equivalence [8, 4, 3] and correspondences [5, 11]. Comparisons of this kind are
a basis for program optimization, where equivalence-preserving modifications are of primary interest; in
particular, rewriting rules which allow to perform a local change in a program are important. Many such
rules have been proposed in a propositional setting for different notions of equivalence (cf., e.g., [1, 10]).

Noticeably, except for the recent work by Lin and Chen [9], rewriting rules in the context of ASP
have been considered more ad hoc rather than systematically, and were aimed at propositional programs.
However, from a practical point of view, almost all programs use variables, and thus rewriting rules for this
setting are essential.

In this paper, we address this issue and consider replacements for non-ground programs, according to
which a subset of rules in a given program p may be exchanged with some other rules, possibly depending
on a condition on p. For a simple example, consider an encoding of the three-coloring problem for graphs,
which represents graphs using predicates node and edge and contains (among others) the two rules

r(X) ∨ b(X)← edge(X, a),node(a),node(X),not g(X), (1)

r(Y ) ∨ b(Y ) ∨ g(Y )← node(Y ). (2)

As our results show, Rule (1) is redundant in any program p which also contains Rule (2), i.e., we can
replace (1) and (2) simply by (2). Similarly, we can replace (2) in p by its possible three “head-to-body”
shifts, where all atoms in the head except one are moved to the body and negated, providing Rule (2) is
head-cycle free in p.

Our contributions are briefly summarized as follows.

– We study replacements and replacement schemas in a general framework, paying attention to different
natural types of replacements.

– We lift in this framework well-known replacement rules from the propositional case to the setting with
variables. In particular, we focus on rules given by Brass and Dix [1] as well as by Eiter et al. [2], and
generalize some of the results by Lin and Chen [9]. However, we also discuss some novel replacement
rules.
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– We describe conditions under which replacements necessarily preserve strong equivalence [8]. We
obtain interesting results which, to some extent, subsume recent results by Ferraris [6], who showed
that strong equivalence is implicit with modular rewritings of ASP programs that preserve equivalence.

– Finally, we consider the computational complexity of applying specific replacement schemas, where
we obtain bounds ranging from LOGSPACE up to PSPACE-completeness. These results provide a
handle for deciding about efficient replacements in online and offline program optimization.

Our results extend and complement recent results about program equivalence to the relevant application
setting. Furthermore, they provide a theoretical foundation for optimization techniques which in part are
used ad hoc in ASP solvers.

2 Preliminaries

Logic programs are formulated in a language L containing a set A of predicate symbols, a set V of vari-
ables, and a set C of constants (also called the domain of L). Each predicate symbol has an associated arity
n ≥ 0. An atom (over L) is an expression of form p(t1, . . .,tn), where p ∈ A is a predicate symbol of arity
n and ti ∈ C ∪ V , for 1 ≤ i ≤ n. An atom is ground if no variable occurs in it.

A (disjunctive) rule (over L), r, is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm, (3)

where a1, . . . , an, b1, . . . , bm are atoms, with n ≥ 0, m ≥ k ≥ 0, and n + m > 0, and “not” de-
notes default negation. The head of r is the set H(r) = {a1, . . . , an}, and the body of r is B(r) =
{b1, . . . , bk, not bk+1, . . . , not bm}. We also define B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}.

A rule r of form (3) is a fact if m = 0 and n = 1 (in which case “←” is usually omitted). Moreover,
r is safe if each variable occurring in H(r) ∪ B−(r) also occurs in B+(r), and r is ground if all atoms
occurring in it are ground.

By a program (over L) we understand a finite set of rules (over L). We assume in what follows that
rules are always safe. The set of variables occurring in an atom a (resp., a rule r, a program p) is denoted
by Va (resp., Vr, Vp). Furthermore, the set of all constants occurring in p is called the Herbrand universe
of p, symbolically Cp. If no constant appears in p, then Cp = {c}, for an arbitrary constant c. Moreover,
Cr denotes all constants occurring in a rule r. The set of all predicates occurring in p is denoted by Ap. As
usual, the Herbrand base, Bp, of a program p is the set of all ground atoms constructed from Ap and Cp.

Given a rule r and a set of constants C ⊆ C, we define grd(r, C) as the set of all rules rϑ obtained from
r by all possible substitutions ϑ : Vr → C. Moreover, for any program p, the grounding of p with respect
to C is given by grd(p, C) =

⋃
r∈p grd(r, C). In particular, grd(p, Cp) is referred to as the grounding of p

simpliciter, written grd(p).
By an interpretation we understand a set of ground atoms. A ground rule r is satisfied by an interpre-

tation I iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies a ground program p iff
each r ∈ p is satisfied by I . The Gelfond-Lifschitz reduct [7] of a ground program p with respect to an
interpretation I is given by

pI = {H(r)← B+(r) | r ∈ p, I ∩B−(r) = ∅}.

A set I ⊆ Bp is an answer set of p iff I is a subset-minimal set satisfying grd(p)I . The set of all answer
sets of p is denoted by AS(p).

In order to compare programs, we shall make use of different equivalence relations. In particular, for
a class S of programs such that ∅ ∈ S, we define, for every program p, p′ over L, p ≡S p′ iff, for each
p′′ ∈ S, AS(p ∪ p′′) = AS(p′ ∪ p′′) holds. By instantiating the parameter set S, we obtain the following
well-known notions:

– ordinary equivalence, symbolically ≡o, by setting S = {∅};
– uniform equivalence, symbolically ≡u, by setting S as the class of all finite sets of ground facts in

language L;
– strong equivalence, symbolically ≡s, by setting S as the set of all programs over L.
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Note that p ≡o p′ iff AS(p) = AS(p′).
We say that a binary relation R implies a binary relation R′ iff R ⊆ R′. Obviously, we have that ≡s

implies ≡u, and ≡u implies ≡o.
For further details about strong and uniform equivalence between non-ground programs, we refer to [3].

3 Replacements

Definition 1. A replacement is a triple % = (φ, i, o), where φ is a unary predicate ranging over programs,
called the proviso of %, and i, o are sets of rules.

We say that % is applicable to a program p, or p is %-eligible, if i ⊆ p and φ(p) holds. The result of p

under % is defined as
%[p] = (p \ i) ∪ o, if % is applicable to p, .

Definition 2. Let ≡ be an equivalence relation. A replacement % is ≡-preserving if p ≡ %[p], for any
%-eligible program p.

Clearly, any ≡s-preserving replacement is also ≡u-preserving, and any ≡u-preserving replacement is
also ≡o-preserving.

Definition 3. Let % = (φ, i, o) be a replacement. Then, % is called

– independent, if for every program p, φ(p) holds,
– monotone, if for all programs p, p′, φ(p) and p ⊆ p′ implies φ(p′),
– closed under intersection, if for all programs p, p′, φ(p) and φ(p′) implies φ(p ∩ p′).

We sometimes identify the proviso of an independent replacement by the designated predicate>(p), which
is true for every program p. As well, an independent replacement (φ, i, o) may also be identified with the
pair (i, o). Note that any independent replacement is also monotone and closed under intersection.

For illustration, consider a replacement % = (φ, {t}, ∅), with t denoting a concrete rule, say, e.g.,
q(x1, x2, x3)← q(x1, x2, x3), and φ(p) holds for any program p. Then, % is applicable to each program p

with t ∈ p, and, in these cases, we get %[p] = p \ {t}. Indeed, % is an independent replacement. As we will
see later on, % is also ≡s-preserving.

In what follows, we show some general properties for replacements. In particular, the next property is
central.

Theorem 1. Let ≡ be any equivalence relation implying ≡o. Then, any monotone replacement % is ≡s-
preserving, whenever % is ≡-preserving.

Proof. Towards a contradiction, let % = (φ, i, o) be a monotone ≡-preserving replacement which is not
≡s-preserving. From the latter, we get that there exists some %-eligible program p such that p 6≡s %[p].
Hence, there exists a program p′ such that AS(p ∪ p′) 6= AS(%[p] ∪ p′). Without loss of generality, we
can assume that (p ∩ p′) = ∅. Now, since % is monotone and p is %-eligible, p ∪ p′ is %-eligible as well. By
hypothesis, % is ≡-preserving, and thus p ∪ p′ ≡ %[p ∪ p′] holds. This implies ordinary equivalence, i.e.,
AS(p ∪ p′) = AS(%[p ∪ p′]). Since i ⊆ p and (p ∩ p′) = ∅, we obtain

%[p ∪ p′] = ((p ∪ p′) \ i) ∪ o = (p \ i) ∪ p′ ∪ o = ((p \ i) ∪ o) ∪ p′ = %[p] ∪ p′.

Thus, AS(p ∪ p′) = AS(%[p] ∪ p′), a contradiction to AS(p ∪ p′) 6= AS(%[p] ∪ p′). ut

Theorem 2. An independent replacement (i, o) is ≡s-preserving iff i ≡s o.

Proof. Let % = (i, o) be independent. The only-if direction is by definition when applying % to i itself.
For the if-direction, suppose that % is not ≡s-preserving, i.e., there exists a program p with i ⊆ p such that
p 6≡s p′, where p′ = (p \ i)∪ o. Hence, for some program r, AS(p∪ r) 6= AS(p′ ∪ r). In other words, for
p′′ = (p \ i) ∪ r, we get AS(i ∪ p′′) 6= AS(o ∪ p′′). Consequently, i 6≡s o. ut

We note that Ferraris [6] shows that in a propositional setting, for any function f which maps single
rules r to sets R of rules such that AR ⊆ A{r} the following holds: for all programs p, p ≡o

⋃
r∈p f(r)

iff, for each r, r ≡s f(r). This can be concluded from Theorems 1 and 2 as follows: Each function fr

that maps r to f(r) and any other rule r′ to itself can be viewed as an independent replacement. Thus, by
Theorems 1 and 2, r ≡s f(r) must hold if p ≡o

⋃
r∈p f(r) holds for all p (take p = {r}). The converse is

obvious.
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4 Replacement Schemas

So far, we only considered concrete replacements guided by fixed sets of rules i, o. However, in general,
one wants to collect sets of replacements into a single replacement schema. This can be realized as follows:

Definition 4. A replacement schema,R, is a partial function mapping pairs (i, o) of programs into a unary
predicateR(i, o). The domain ofR is denoted by dom(R).

A replacement (φ, i, o) is an instance ofR if (i, o) ∈ dom(R) and φ = R(i, o). The set of all instances
ofR is denoted by inst(R).

We say that R is applicable to a program p, or p is R-eligible, if there exists some % ∈ inst(R) which
is applicable to p. We refer to the result %[p] of p under an instance % ∈ inst(R) as a result of p under R.
ByR?[p] we denote the set of all results of p underR, i.e.,

R?[p] = {%[p] | % ∈ inst(R)}.

With an abuse of notation, we also writeR[p] to refer to a result of p underR.
The operatorR?[·] is used to compare replacement schemas as follows.

Definition 5. Two replacement schemas, R1 and R2, are equipollent iff, for each program p, R?
1[p] =

R?
2[p].

Properties for replacements are easily generalized to schemas as follows:

Definition 6. A replacement schema R is said to be ≡-preserving (resp., independent, monotone, inter-
section-closed) if each instance ofR is ≡-preserving (resp., independent, monotone, intersection-closed).

Note that for an independent replacement schemaR, we may identify dom(R) with inst(R). Further-
more, the results about replacements, as given by Theorems 1 and 2, carry over in a straightforward way to
replacement schemas as well.

We are now prepared to give particular replacement schemas. We start with a generalization of a concept
considered by Brass and Dix [1] for the propositional case.

Definition 7. The replacement schema TAUT is given as follows:

– dom(TAUT)= {({s}, ∅) | s is a rule with H(s) ∩B+(s) 6= ∅};
– TAUT(i, o) = >, for every (i, o) ∈ dom(TAUT).

The instances of TAUT are then all replacements of the form (>, {s}, ∅), where H(s) ∩ B+(s) 6= ∅. For
instance, let p = {s(X)← s(X), q(Y ); q(X)← q(X), s(X); s(a)}. Then, TAUT[p] refers either to p′ =
{s(X)← s(X), q(Y ); s(a)} or to p′′ = {q(X)← q(X), s(X); s(a)}. Hence, TAUT?[p] = {p′, p′′}.

As an example of a non-monotone replacement schema, we define local shifting, LSH, extending a
similar schema introduced in the propositional case by Eiter et al. [2]. The idea underlying local shifting
has already been sketched in the introduction. Formally, we need the following concepts.

The (positive) dependency graph, Gp, of a ground program p is given by the pair (Bp, Ep), where
(a, b) ∈ Ep iff there exists a rule r ∈ p such that a ∈ H(r) and b ∈ B+(r). An atom a positively depends
on b in p iff there exists a path from a to b in Gp. A ground rule r is head-cycle free (HCF) in p iff no
distinct atoms a, b ∈ H(r) mutually positively depend on each other in p.

For an arbitrary program p (not necessarily ground), r ∈ p is HCF in p iff, for each finite C ⊆ C and
each r′ ∈ grd(r, C), r′ is HCF in grd(p, C).

Definition 8. The replacement schema LSH is given as follows:

– dom(LSH) consists of all pairs ({r}, or), where
1. r is a rule such that, for each ϑ : Vr → C, |H(rϑ)| > 1, and
2. or = {h← B(r),not (H(r) \ h) | h ∈ H(r)};1

– for every (i, o) ∈ dom(LSH), LSH(i, o) = φ, where φ(p) holds iff r is HCF in p and i = {r}.

Note that LSH is, for instance, not applicable to the program q(X1) ∨ q(X2) ← r(X1, X2), since ϑ

mapping X1 and X2 to the same constant c yields H(rϑ) = {q(c)} with cardinality = 1.
We mention that LSH is intersection-closed, but neither monotone nor independent. Equivalence-

preserving properties for TAUT and LSH will be provided in the next section.
1 For a set S = {a1, . . . , an} of atoms, not S denotes the expression not a1, . . . , not an.
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5 Equivalence Preserving Replacement Schemas

This section collects a number of concrete replacement schemas. In particular, we generalize ideas from
propositional ASP, where such replacements have been stipulated by Brass and Dix [1] and further investi-
gated and developed by several authors [10, 9, 12, 2].

The section is organized as follows. First, we consider ≡s-preserving replacement schemas. Then, we
deal with monotone replacement schemas—in particular, we relate our framework to the one discussed
by Lin and Chen [9]. Finally, we consider replacement schemas which are not ≡s-preserving but ≡u- or
≡o-preserving.

5.1 Independent Replacement Schemas

We already gave an independent replacement schema above, namely TAUT. A very similar schema is
CONTRA, defined below. Like TAUT, CONTRA has been introduced in the propositional setting by
Brass and Dix [1], and, with respect to equivalence notions, studied further by Eiter et al. [2] and Osorio et
al. [10].

Definition 9. The replacement schema CONTRA is given as follows:

– dom(CONTRA) = {({s}, ∅) | s is a rule with B+(s) ∩B−(s) 6= ∅};
– CONTRA(i, o) = >, for every (i, o) ∈ dom(CONTRA).

However, an alternative way to capture the nature of TAUT and CONTRA is the following:

Definition 10. Schemas ϑ-TAUT and ϑ-CONTRA are given as follows:

– dom(ϑ-TAUT) = {({s}, ∅) | s is a rule such that, for each ϑ : Vs → C, H(sϑ) ∩B+(sϑ) 6= ∅};
– dom(ϑ-CONTRA) = {({s}, ∅) | s is a rule such that, for each ϑ : Vs → C, B+(sϑ)∩B−(sϑ) 6= ∅};
– R(i, o) = >, for every (i, o) ∈ dom(R), withR ∈ {ϑ-TAUT, ϑ-CONTRA}.

Theorem 3. The following properties hold:

1. TAUT and CONTRA are ≡s-preserving;
2. TAUT and ϑ-TAUT are equipollent; and
3. CONTRA and ϑ-CONTRA are equipollent.

We finally give four more replacement schemas which generalize corresponding replacement rules
given in the literature for ground programs. In particular, the ground pendants of schemas RED− and
NONMIN have been introduced by Brass and Dix [1], the ground version of S-IMPL is due to Wang and
Zhou [12], and that of SUB is discussed by Lin and Chen [9].

Definition 11. The schemasR ∈ {RED−,NONMIN, S-IMPL, SUB} are given as follows:

– dom(R) consists of all pairs ({r, s}, {s}), where r, s are rules, such that

• forR = RED−, H(s) ⊆ B−(r) and B(s) = ∅, and
• forR ∈ {NONMIN,S-IMPL,SUB}, there exists ϑ : Vs → Vr ∪ Cr such that B+(sϑ) ⊆ B+(r)

and
∗ forR = NONMIN, H(sϑ) ⊆ H(r) and B−(sϑ) ⊆ B−(r),
∗ for R = S-IMPL, there is some A ⊆ B−(r) with H(sϑ) ⊆ H(r) ∪ A and B−(sϑ) ⊆

B−(r) \A, and
∗ forR = SUB, H(sϑ) ⊆ H(r) ∪B−(r) and B−(sϑ) ⊆ B−(r); and

– R(i, o) = >, for every (i, o) ∈ dom(R).

Observe that the safety condition of rules implies that RED− is only applicable in case s is a ground
disjunctive fact. This is the reason why, in contrast to the other three schemas, there is no need for ϑ in the
definition for RED−.

The four schemas introduced above stand in the following relationships to each other:
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– if RED− or NONMIN is applicable to a program p, then S-IMPL is applicable to p, and
– if S-IMPL is applicable to a program p, then SUB is applicable to p.

Hence, the schema SUB the most unconstrained among the four, being applicable whenever any of the
other three is.

Theorem 4. The replacement schemas RED−, NONMIN, S-IMPL, and SUB are all ≡s-preserving.

Like for TAUT and CONTRA, also the above replacement schemas can be defined in an alternative
way, explicitly referring to all groundings of the rules involved. We leave a further discussion of this point
to a full version of this paper.

5.2 Monotone Replacement Schemas

For monotone replacement schemas, there is an interesting relation to independent replacement schemas
as follows:

Theorem 5. Any replacement schema which is monotone, closed under intersection, and ≡s-preserving is
equipollent to an independent replacement schema.

Proof. Let R be a replacement schema which is monotone, closed under intersection, and ≡s-preserving.
Consider some % ∈ inst(R) with % = (φ, i, o). Since % is monotone and closed under intersection, there
exists a unique program, p0, such that φ(p) holds for each p ⊇ p0 but φ(p′) does not hold for any p′ ⊂ p0.
Obviously, %′ = (>, i ∪ p0, o ∪ (p0 \ i)) then satisfies %[s] = %′[s] for every program s. It follows that the
replacement schema R′, defined by setting dom(R′) = {(i ∪ p0, o ∪ (p0 \ i)) | (i, o) ∈ dom(R)} and
R′(i, o) = >, for every (i, o) ∈ dom(R′), is equipollent toR. Moreover,R′ is clearly independent. ut

In recent work, Lin and Chen [9] captured certain classes of strongly equivalent propositional programs
by considering problems of the following form:

Given rules r1, . . . , rk, u1, . . . , um, v1, . . . , vn, is {r1, . . . , rk, u1, . . . , um} strongly equivalent to
{r1, . . . , rk, v1, . . . , vn}?

Such a problem is referred to as a k-m-n-problem. The main focus of Lin and Chen’s work is to find
computationally effective, necessary and sufficient conditions, for small k,m, n, making a k-m-n-problem
true. In general, any condition that guarantees a positive answer to a k-m-n-problem, for fixed k, m, and n,
obviously yields a monotone replacement schema. Moreover, the conditions given by Lin and Chen [9] for
particular problem classes additionally enforce that the corresponding schema is closed under intersection.
In fact, Theorem 5 constitutes a generalization of observations made Lin and Chen [9].

We next deal with properties for 0-1-0-problems. To this end, we introduce the following replacement
schemas.

Definition 12. Schemas LC0-1-0 and ϑ-LC0-1-0 are given as follows:

– dom(LC0-1-0) = {({s}, ∅) | s is a rule with B+(s) ∩ (H(s) ∪B−(s)) 6= ∅};
– dom(ϑ-LC0-1-0) = {({s}, ∅) | s is a rule such that, for each ϑ : Vs → C, B+(sϑ) ∩ (H(sϑ) ∪

B−(sϑ)) 6= ∅};
– R(i, o) = >, for every (i, o) ∈ dom(R), withR ∈ {LC0-1-0, ϑ-LC0-1-0}.

Obviously, the syntactic criterion of LC0-1-0 combines, in a sense, the conditions for TAUT and
CONTRA. This is made precise as follows:

Theorem 6. LC0-1-0
?[p] = TAUT?[p] ∪ CONTRA?[p], for any program p.

In view of this and previous results, the next theorem comes at no surprise:

Theorem 7. LC0-1-0 is ≡s-preserving. Furthermore, LC0-1-0 is equipollent to ϑ-LC0-1-0.

As mentioned above, Lin and Chen [9] are concerned with conditions making k-m-n problems true,
for small k,m, n. The following proposition rephrases a result of that endeavour:
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Proposition 1 ([9]). For any ground rule r, {r} ≡s ∅ iff LC0-1-0 is applicable to {r}.

This result can be lifted to the non-ground case, yielding a syntactic criterion when a single rule is
redundant in a program.

Theorem 8. For any rule r, {r} ≡s ∅ iff LC0-1-0 is applicable to {r}.

Finally, we remark that the replacement schema SUB, introduced in the previous section, is the gener-
alization of another condition given by Lin and Chen [9] for propositional programs.

5.3 Non-Monotone Replacement Schemas

Theorem 9. LSH is ≡u-preserving, but not ≡s-preserving.

Indeed, the fact that LSH is not≡s-preserving already follows from an analogous result in the proposi-
tional case [2]. However, to illustrate this property, consider the following example in the non-ground set-
ting: Take p as consisting of the single rule r = q(X)∨ r(X)← s(X,Y ). Clearly, r is HCF in p, and thus
LSH is applicable to p. However, for p′ = LSH[p], we have p 6≡s p′, which can be seen by considering, e.g.,
p′′ = {q(Y ) ← r(Y ); r(X) ← q(X); s(a, b)}, for which we get that AS(p ∪ p′′) = {s(a, b), q(a), r(a)}
while AS(p′ ∪ p′′) = ∅.

We next introduce a ≡u-preserving replacement schema, which, to the best of our knowledge, has not
been considered before, even in a propositional setting. Note that in the definition below, δ is required to
be a (bijective) renaming rather than a substitution.

Definition 13. The replacement schema FOLD is given as follows:

– dom(FOLD) is the set of all pairs ({r, s}, {t}), where r, s, t are rules and there exists a renaming
δ and an atom a ∈ B−(rδ) ∩ B+(s) such that H(rδ) = H(s) = H(t) and (B(rδ) \ {not a}) =
(B(s) \ {a}) = B(t);

– for every (i, o) ∈ dom(FOLD), FOLD(i, o) = φ, where φ(p) holds iff, for each head atom b in p and
each ϑa : Va → C and ϑb : Vb → C, aϑa 6= bϑb, with a as above.

Theorem 10. FOLD is ≡u-preserving, but not ≡s-preserving.

For illustration, consider p = {q(X,X) ← r(X),not s(X); q(Y, Y ) ← r(Y ), s(Y )}. We can apply
FOLD to p since no atom s(·) occurs in a head of p. The result of the replacement is p′ = FOLD[p] =
{q(Y, Y ) ← r(Y )}. By the theorem above, p ≡u p′. For instance, adding t = {r(a)} yields AS(p ∪
t) = AS(p′ ∪ t) = {r(a), q(a, a)}. On the other hand, adding t′ = {r(a), s(X) ← q(X,Y )} results in
AS(p∪ t′) = ∅, whileAS(p′ ∪ t′) = {r(a), s(a), q(a, a)}. This shows that FOLD is not ≡s-preserving; a
corresponding counterexample can also be constructed for the propositional setting as well. Furthermore,
FOLD is applicable to the program p∪ t as well, but it is not applicable to p∪ t′. Since t′ ⊃ t, we observe
that FOLD is not monotone.

Finally, we briefly discuss a replacement schema which is ≡o-preserving but not ≡u-preserving. For
the propositional case, this replacement schema was first considered by Brass and Dix [1].

Definition 14. The replacement schema RED+ is given as follows:

– dom(RED+) is the set of all pairs ({r}, {t}), where r, t are rules such that H(r) = H(t) and
B(r) = B(t) ∪ {not a};

– for every (i, o) ∈ dom(RED+), RED+(i, o) = φ, where φ(p) holds iff, for each head atom b in p and
each ϑa : Va → C and ϑb : Vb → C, aϑa 6= bϑb, where a is an atom such that B(i) = B(o)∪{not a}.

Note that RED+ is, to some extent, a simplification of FOLD, where the second rule, s, of i having
a positive in its body is not mandatory anymore. As a consequence, the equivalence notion preserved by
RED+ is weaker.

Theorem 11. RED+ is ≡o-preserving, but not ≡u-preserving.

As in the case of LSH, the fact that RED+ is not ≡u-preserving follows immediately from a corre-
sponding result in the propositional case [2].
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6 Complexity of Applicability

In this section, we deal with the computational complexity of the applicability problem for a given replace-
ment schemaR, which is the task of determining whetherR is applicable to a given program.

Our first result concerns the schemas TAUT, CONTRA, and RED−.

Theorem 12. The applicability problem forR ∈ {TAUT,CONTRA,RED−} is in LOGSPACE.

The independent replacement schemas involving two rules, which we considered, are more complex,
however.

Theorem 13. The applicability problem forR ∈ {NONMIN,S-IMPL,SUB} is NP-complete. NP-hard-
ness holds even if the arities of the predicates in the given program are bounded by a constant.

We now turn to non-monotone replacements.

Theorem 14. The applicability problem for LSH is PSPACE-complete. If each predicate in the given
program has its arity bounded by a constant, the problem is NLOGSPACE-complete.

Informally, the difficult part is solving the HCF test, which amounts to test reachability in an implicitly
represented graph, which is PSPACE-complete. Note that, in the practical relevant setting of programs hav-
ing bounded predicate arities, LSH-applicability can be tested in NLOGSPACE, and thus in polynomial
time. Here, the implicit graph can be effectively constructed using logarithmic workspace.

While LSH is computationally involving in the general case, the other two non-monotone replacement
schemas turn out to be easier.

Theorem 15. The applicability problem for FOLD is polynomially equivalent (under Turing-reductions)
to the graph isomorphism problem.

Here, computational hardness is located in the check whether two rules in the given program yield an
instance of FOLD, rather than the test involving the proviso. Indeed, the problem of finding a bijective
renaming δ allows for a representation of graph isomorphism already if we restrict ourselves to programs
over binary atoms. In turn, we can show that FOLD-applicability can be decided by a polynomial number
of tests for graph isomorphism. Graph isomorphism is in NP but it is not known to be NP-complete or
belonging to P.

Our final result provides a tractable case.

Theorem 16. The applicability problem for RED+is LOGSPACE-complete.

7 Conclusion

Our results on replacements provide a basis for program optimization by rewriting in the practicably im-
portant setting of non-ground programs. While many rewriting rules have been proposed for propositional
programs, generalizations to the non-ground case have not yet been considered in an answer-set program-
ming setting. We have addressed this issue considering safe programs. However, safety is not necessarily
required and, in many cases, unsafe rules can be taken into account if their replacement does not change
the active domain of the program. We leave further details on these issues for future work.

Applying replacements for program optimization requires the program to be scanned for applicable
replacements. Depending on the considered replacement schema, this test requires different computational
effort, ranging from tractable cases up to PSPACE.

An implementation of the applicability tests for some of the most general replacement schemas which
we have presented is currently under development, using the ASP solver DLV and Perl. Note that for all
schemas considered in this paper, these tests are cheaper than the complexity of computing an answer set
(which is NEXPNP-hard in general for disjunctive programs)—in fact, with the exception of LSH, these
tests are drastically cheaper. Thus, the schemas might be considered also for online optimization and not
only for static offline optimization.
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