Declarative Web data extraction and annotation

Carlo Bernardoni', Giacomo Fiumara?, Massimo Marchi!, and Alessandro Provetti?

! Dip. di Scienze dell’Informazione, Universita degli Studi di Milano
Via Comelico 39, 1-20135 Milano, Italy
{ carlo.bernardoni,marchi} @dsi.unims.it
2 Dip. di Fisica, Universita degli Studi di Messina.
Sal. Sperone 31. S. Agata di Messina, 1-98166 Italy
{fiumara,ale} Qunime.it

Abstract. We propose a software architecture for semantics-based annotation of data ex-
tracted from Web sources. Starting from the LiXto suite, which enables semi-automated
extraction of XML data from regular documents, we present a solution for attaching back-
ground information to individual tags by means of so-called decorations. Decoration is car-
ried out as an inferential activity in the formal context of Answer Set Programming. We
discuss a motivating example that will serve as a validation to our approach.

1 Introduction

This article illustrates the architecture for Web data gathering and annotation that we have
developed by combining novel and existing modules. The key functionalities of our application, i.e.,
data extraction from HTML pages and annotation of XML tags with new data, are defined in terms
of logic programs. Summarizing, our architecture works as follows. Web sources, i.e., Web sites
posting dynamic data (news, webcasts, blogs etc.) are routinely consulted and relevant information
is selected, downloaded and saved into XML tags. The resulting tags are then translated into sets
of Datalog-syntax facts; such facts are then added to logic programming rules, and deduction can
start. Applying the rules can give these effects: i) some element of the tag is dropped, e.g., because
it is deemed incorrect, uninteresting or superseded by other tags or ii) new tags are added. The
idea is that the new tag brings out some semantical consideration that would not be found by
simply accessing the text of the Web source. As a result, the Web data will be transformed into
a marked-up XML version that mirrors the available data as well as the particular interpretation
that has been applied. It should be noticed that there is no assumption on the shape of the original
Web data, i.e., both the XML encapsulation and the subsequent transformation can be applied to
arbitrary XML sources. Finally, the resulting XML tags are made available to Web services (WS)
through standard channeling methods.

1.1 The role of Logic Programming

It is important to notice that in the project presented here each relevant component of the proposed
architecture, including the LiXto suite, is related to Logic Programming. Indeed, the project
presented here is part of our long-term research program (see, e.g., [10,3]) of studying declarative
policies in the context of [Semantic] Web services.

In fact, even the wrapping of Web sources is done using the tools developed by the LiXto
project [9] which in turn is based on Elog, an extension of DATALOG. The same can be said
for the Transformation Server module. A formal account of the logical interpretation of XML
transformations is given by Gottlob and Koch in [6]. However, it must be stressed that for this
project a novel bijective mapping from XML tags to Datalog-syntax facts has been defined, whose
details are in [4].

The automated reasoning and tag manipulation task is carried out in Answer Set Programming
(ASP), which can be seen as an extension to DATALOG that deals with default reasoning. For

138 Carlo Bernardoni et al.

lack of space, we refer the reader to the original work of Gelfond and Lifschitz [5] or to the excellent
survey in [11] for a detailed introduction to ASP.

Although our work does not address the Semantic Web (SW) as it is commonly understood,
i.e., in terms of managing/publishing data annotated with a SW language such as RDF or OWL,
our understanding, supported by some preliminary experiments, is that the inferential part can
be used to apply annotation policies that transformed the Web data into RDF/OWL tags.

This article is structured as follows. Section 2 gives an overview of the LiXto project and
explains the main features of the LiXto suite that were used in our project. Our architecture is
introduced in Section 3, where the adopted zml2asp transformation will be described. Section 4
describes the application example we have worked on to test and validate our blueprint. Finally,
Section 5 summarizes the work done so far and discusses the lines along which this project is now
being developed.

2 The LiXto architecture

The LiXto Suite[9] is a data extraction and transformation software kit for retrieving and con-
verting information from regular documents, usually found on the World Wide Web. It is mainly
composed of two applications:

1. the Visual Wrapper (VW), and
2. Transformation Server (TS).

that we are going to describe in more detail next. It should be remarked that the Transformation
Server is indeed an application that treats arbitrary XML data and thus it is interesting in its
own, i.e., for managing sources of native XML data.

2.1 The LiXto Visual Wrapper

The Visual Wrapper (VW) is a visual, interactive tool for generating wrappers. A wrapper is
understood as a program that allows for automatic and flexible extraction of information from
regular documents such as Web pages. Wrappers are designed to continually extract relevant
information from dynamic Web pages and organize it into XML trees.

According to Gottlob et al. [8]:

The VW allows a user to create wrappers by visually selecting relevant patterns di-
rectly on browser-displayed pages. It allows for extraction of target patterns based on
surrounding landmarks, on the contents itself, on HTML attributes, on the order of ap-
pearance and on ontological or syntactic concepts. Extraction is not limited to tokens of
some document object model, but also possible from flat strings. The VW also allows for
more advanced features such as disjunctive pattern definitions, following links to other
pages during extraction and recursive wrapping.

Therefore, LiXto can implement data manipulation tasks that are beyond pattern recognition, i.e.,
are data-driven and can adapt to the input. For further details on how the information extraction
works and on its computational complexity, please refer to the presentations in [7] and [8].

2.2 The LiXto Transformation Server

The Transformation Server (TS) is a software that supports the design and execution of applica-
tions —called pipes— for processing XML data flows. The TS extracts data from Web sources and
organizes them into XML trees, by mean of wrappers, designed with the Visual Wrapper described
above.

Subsequently, LiXto TS allows the application designer to format, transform, merge and deliver
XML data to various devices (e.g. HTML pages, XML pages, email, SMS). XML data manipulation

Declarative Web data extraction and annotation 139

is done by specialized and interacting modules (components) that the TS user creates, configures
and connects (following a pipeline paradigm) in a completely visual environment. There exist
several specialized components e.g. those for wrapping, standardization, integration or delivery
purposes. In particular, it is worth mentioning the so-called Shell component which allows for
executing external programs on XML data. We have exploited the shell component as a gateway
to the inferential engine described next.

3 The proposed architecture
In this section we describe the core activity of our architecture: the inference-based manipulation

of XML tags. The internal schema of our architecture is shown in Figure 3.

WS Interface LiXto

r online query
- www
—=

I enriched
answer

answer ASP wrapper | <—
. _— _—
client —= i
Engme L wrapper | <=—
,
,
,

cached /w\

|
answer

K
update
cache

Fig. 1. The internal schema.

First, a simple Web Service collects data requests from its clients. Second, the needed data
are routinely (e.g., once a day) extracted from the relative Web sources, (by LiXto wrapper), and
encoded as an XML tag (by LiXto TS). Next, the decoration phase starts.

Decoration takes place in several steps. First, a Perl program called zml2asp 3 translates XML
data into Datalog facts. Second, both the obtained facts and the so-called policy, i.e., the rules
that guide the process, are fed to the ASP inferential engine. In our case, the ASP engine consists
of the Iparse grounder and smodels solver [12]. The smodels output, i.e., the answer set, is then
filtered to retrieve the relevant facts describing the decorated XML tag. Another Perl program,
called asp2zxml will then re-create and actual tag, which finally will be served to the clients by
some more-or-less standard Web service.

4 An Application example

We are implementing a service that allows a user to monitor hotels availability in Milan on certain
dates. International travelers are accustomed to the stars rating system, where stars are propor-
tional to the level of services and comforts available at the hotel. When the stars rating is absent,
our service tentatively classifies the hotel facilities on the basis of the price range w.r.t. the Milan
market or even w.r.t. the particular location.

4.1 The kelkoo.it on-line booking service

The kelkoo.it Website allows users to search for available hotels, in a given resort and for a given
period, by querying many (in this case, more than a dozen) hotel websites. Searching is based on
the following parameters:

3 Both amiZ2asp and asp2xml are available from http://mag.dsi.unimi.it/ ~carlo/#projects

140 Carlo Bernardoni et al.

— resort;

— arrival date;

— departure date;

— room type;

— number of adults, and
— number of children.

The result page displays available hotels as an HTML table, one hotel per row.

The wrapper for kelkoo.it Using the LiXto Visual Wrapper, we implemented a wrapper to
extract, for each hotel, the following information:

name;
address;

— brief facility description;
— room type, and

— price.

The following is a fragment of an XML output of the wrapper:

<?xml version="1.0" encoding="UTF-8"7>
<document>
<rootPattern>
<Hotel>
<Name>HOTEL ANTARES ACCADEMIA</Name>
<Address>Periferia VIALE CERTOSA 68 - 20155 MILAN</Address>
<Room>
<Description>Doppia</Description>
<Price>92</Price>
</Room>
<HotelDescription>
L’hotel e’ situato a pochi passi dalla fiera e dal Castello
Sforzesco, e’ ben collegato al centro della citta’ dalla
metropolitana.
</HotelDescription>
</Hotel>

</rootPattern>
</document>

4.2 Annotating kelkoo.it

The LiXto transformation server provides a visual tool for creating pipelines of activities. The
pipe meant to “enrich” the information fetched by the wrapper (Section 4.1) is depicted in Figure
4.2 below.

The Source component runs the wrapper described in Section 4.1 on a kelkoo.it result page,
triggered by a proper querying URL whose parameters’ values (see Section 4.1) are user-definable.

Next, the Shell component is configured to invoke, through the Operating System, the xml2asp
translator, the inferential engine and then the asp2xml translator.

The ASP program used to annotate these data is in charge of adding the <Stars> tags which
we infer from the hotel room fares. This is an example rule:

Declarative Web data extraction and annotation 141

e B .
» Lo L

Hotels on Hotels HML HML
kelkoo.it Beautifier Composer Deliverer
- Source

Fig. 2. A smart pipe for on-line hotels booking on kelkoo.it.

newNode (Hotel,"Stars",5) : -
tag(Hotel, "Hotel"),
node (Hotel),
tag(Room, "Room") ,
node (Room) ,
parent_of (Hotel,Room),
tag(Price, "Price"),
node (Price),
parent_of (Room,Price),
isNumber (Price,Qty),
Qty > 250.

The auxiliary predicates needed to reason about the tag structure are defined as follows:

parent_of (X,Y) :- node(X),
node (Y),
firstchild(X,Y).

parent_of (X,Y) :- node(X),
node(Z),
firstchild(X,2),
node (Y),
has_brother(Z,Y).

has_brother(X,Y) :- node(X),
node(Y),
nextsibling(X,Y).
has_brother(X,Y) :- node(X),
node(Y),
node(Z),
nextsibling(X,Z),
has_brother(Z,Y).

Applying the rules above leads to the derivation of some newnode atoms which will be included
in the answer set returned by smodels. The shell component will take the answer set and pass it,
modulo dropping some irrelevant atom, to the asp2xml back-translator. As a result, a the output
tag will show an additional <Stars> tag, whose value, between 1 and 5, expresses the inferred
class for a hotel, as in the following fragment:

142 Carlo Bernardoni et al.

<?7xml version="1.0" encoding="UTF-8"7>
<document>
<rootPattern>
<Hotel>
<Name>HOTEL ANTARES ACCADEMIA</Name>
<Address>Periferia VIALE CERTOSA 68 - 20155 MILAN</Address>
<Room>
<Description>Doppia</Description>
<Price>92</Price>
</Room>
<HotelDescription>
L’hotel e’ situato a pochi passi dalla fiera e dal Castello
Sforzesco, e’ ben collegato al centro della citta’ dalla
metropolitana.
</HotelDescription>
<Stars>3</Stars>
</Hotel>

</rootPattern>
</document>

After the decoration phase, it is possible to use LiXto TS again to program, by the Composer
component, some re-arrangement of the XML tag. In any case Composer has to handle the resulting
tag over to the LiXto Deliverer component which, in our case, will simply save it in a file.

5 Conclusions

We have described an architecture that allows logic-based analysis and manipulation of Web data.
Thanks to LiXto suite, the input data can be extracted practically from any Web source. Again
thanks to LiXto, it remains easy to set up a Web service that supplies the result information
over the Web. The core of the application, however, is the execution of sophisticated non-textual
filtering operations, based on inferences about the source, the text or other issues. Our approach
makes possible three kinds of tag manipulation:

1. a tag, obtained from LiXto, is filtered, i.e. left out of the final result whenever it is deemed
irrelevant;

2. an XML tree, obtained from LiXto, gets annotated with extra tags, which would not be
otherwise available by text analysis, however sophisticated and

3. filtering and decorations are carried out as a (default) reasoning activity, in the framework of
Answer Set Programming with the smodels inferential engine.

Even though more test cases are needed for a careful assessment, we believe that the architec-
ture proposed here can become a useful platform for the development of tools that act as bridges
between the Web as we know it and more sophisticated forms of interactions. We believe that this
is the case for the Semantic Web, since our system permits to program and execute the OWL (or
RDF) marking up of data.

Hence, our approach could greatly simplify the process of importing Web data into the semantic
Web. However, it should be stressed that in any case the import would remain a semi-automatic
activity, where human judgment will remain essential in two phases. Let us discuss them now.

The first phase consists in the selection of the Web source and the finding of the required data
on the page (document). This phase is assisted and made easier by the LiXto visual wrapper, but

Declarative Web data extraction and annotation 143

cannot be automated in full. The second phase of human intervention consists in the writing of
the beautifier rules. The rules associated to a given Web source in effect represent the semantics
of the source itself, and can embed its data inside the Semantic Web. In the follow up of this work
we intend to join this research effort with that, reported in [2,3], aiming at a representation of
default assumptions directly as a signature over RDF tags. In such a way, the RDF statements
produced by our system would carry along an indication of the type of default assumption that,
possibly, supports them.

Server

1| HrmL
Activation < - - > WEB
..................................... > e Source

SOAP N
Source
Iparse

wa=w»
Hwu =" O®n

+
smodels

Fig. 3. Our architecture as a Web service.

Acknowledgments

Thanks to R. Baumgartner, E. Bertino, G. Gottlob, A. Mileo and M. Ornaghi. We are grateful to
LiXto GmbH for giving us an free academic license of LiXto suite.

References

1.

10.

R. Baumgartner et al. 2005. Web Data Ezxtraction for Business Intelligence: the LiXto Approach.
Proc. of BTW Workshop.

E. Bertino, A. Provetti and F. Salvetti, 2003. Answer Set Programming for the Semantic Web In F.
Buccafurri (editor) Proc. of Joint Conference On Declarative Programming. Univ. of Reggio Calabria
Press, pp. 314-323.

E. Bertino, A. Provetti and F. Salvetti, 2005. Reasoning about RDF statements with default rules.
W3C Workshop on Rule Languages for Interoperability. http://www.w3.org/2004/12/rules-ws/

. C. Bernardoni, 2005. Beyond LiXto: Automated Reasoning for the Annotation of Web Data Sources.

(in Italian) Graduation project in Computer Science, Univ. of Milan.

M. Gelfond and V. Lifschitz, 1998. The stable model semantics for logic programming. Proc. of the
8th International Workshop on Non-Monotonic Reasoning.

G. Gottlob and C. Koch, 2004. Monadic Datalog and the Expressive Power of Languages for Web
Information Eztraction. Journal of the ACM 51, 2004.

G. Gottlob et al. 2004. The LiXto Data Extraction Project — Back and Forth between Theory and
Practice. Proc. of PODS 2004.

G. Gottlob, R. Baumgartner, S. Flesca, 2001. Visual Web Information Extraction with LiXto. Proc.
of VLDB 2001.

LiXto GmbH Website.

Web Site: http://www.lizto.com.

M. Marchi, A. Mileo and A. Provetti, 2004. Specification and Ezecution of Policies for Grid
Service Selection. In Proc. of ECOWS’04. Springer LNCS 3250, pp 102-115. Available from
http://mag.dsi.unimi.it/PPDL/

144 Carlo Bernardoni et al.

11. Marek, W., Truszczynski, M. 1999: Stable models and an alternative logic programming paradigm.
The Logic Programming Paradigm: a 25-Year Perspective Springer-Verlag, pp. 375-398

12. I. Niemeld, P. Simons, and T. Syrjanen, 2000. Smodels: a system for answer set programming. Proc.
of 5th ILPS Conference, pp. 1070-1080.

