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Abstract. This tutorial shows how to use the object-oriented Java constraint programming
library firstcs to solve constraint problems. Beyond the architecture of the system and the
supported constraints, this presentation focuses on the implementation of new constraints,
the modeling of problems and their solutions using constraint propagation and search. The
presentation is completed a practical application realized with this constraint library.

1 Introduction

The object-oriented Java constraint programming library firstcs [1] differs from constraint logic
programming (CLP) systems like CHIP, ECLiPSe or SICStus Prolog in some major topics:

– imperative versus rule-based programming,
– stateful typed variables and objects versus logic variables and terms,
– no pre-defined search versus built-in depth-first search.

Additionally, due to object-orientation in firstcs we have classes of objects and inheritance of
concepts. Furthermore, in CLP systems choice-points and their maintenance is opaque, only their
abdication has to be stated explicitly using the “cut”. In firstcs the situation is reversed: choice-
points has to be established an maintained explicitly. There are methods for setting, resetting,
backtracking and committing, where the last has similar functionality like the “cut” in CLP.

Another difference is the explicit activation of constraint propagation. In CLP each time a
constraint is established it is propagated, too. However, in firstcs we have the possibility to
gather the constraints and propagate them ”en bloc”. This may result in reduced runtime, because
the whole information about the modeled CSP is available during the first propagation.

The tutorial is organized as follows: First, we give an overview of firstcs’ architecture, the
available constraints as well as search and optimization methods. Then we show its extension by
a new constraint. Further, we show how to model a constraint problem using the Golomb ruler
problem as an example. Finally, we show the usage of choice-points within the implementation of
a simple depth-first search.

2 An Overview on firstcs

The kernel of our Java constraint programming library firstcs is formed by a Java class called
CS which is an acronym for the term Constraint System. Each object of this class is indeed a
constraint system managing finite domain variables and constraints over these variables. Due to
the object-oriented design, it is possible to generate and manipulate several constraint systems in
a single application. In the current version these systems are independent.

There are the Java classes Domain, Variable, Constraint and the subclasses of Constraint
around the kernel providing the tool box to model and solve constraint problems.

The class Domain implements the finite domains (fd) of the variables, i.e. finite integer sets
represented by lists of integer intervals. There are several methods to manipulate these sets, i.e.
the usual set operations. All these methods return a boolean value which is false if and only if the
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manipulated set becomes the empty set. This information is used to detect inconsistencies during
constraint propagation.

The class Variable implements the fd-variables representing the unknowns of a constraint
problem. Their admissible values are restricted by their finite domains and their constraints.
Thus, they are implemented as attributed variables [2]: Together with the domains, the constraints
are attached to their variables. This construct is commonly used in constraint logic programming
systems, e.g. like SICStus Prolog1, too.

2.1 Built-In Constraints

The abstract class Constraint samples all the concrete constraint classes. Beyond other
application-specialized constraints, these are:

– AllDifferent constrains an array of n variables to have pairwise different values, i.e xi 6= xj

for 1 ≤ i < j ≤ n.
– Before constrains an activity to be finished before another one starts, i.e. a.start +

a.duration ≤ b.start.
– Cumulative constrains some activities to be scheduled on a common resource such that the

sum of their capacity requirements never exceeds the capacity of the resource.
– Disjoint2 constrains some rectangles to be placed non-overlapping in a 2-dimensional area.
– Equal, Greater, GreaterEqual, Less, LessEqual, and NotEqual relate two variables with

respect to the corresponding arithmetic relation, i.e. s < t.
– Kronecker states that a variable has a given integer value if another boolean value is true (1)

or false (0), i.e. δv,i = 1 if v = i and 0 otherwise.
– SingleResource and AlternativeResource state that some activities are processed either

on an exclusively available resource or on alternatively available resources.
– SetUpTime and SetUpCost state sequence-dependent setup times or cost for activities that are

processed successively on some resources.
– Product, Sum and WeightedSum establish arithmetic relations between variables, especially

cost functions for optimization problems.

These constraint classes are extensions of the class Constraint; they inherit the basic concepts of
a constraint implementation in firstcs.

2.2 Built-In Search and Optimization

For users that are not familiar with the implementation of search strategies, especially with the
supported concept of choice-points, firstcs offers some pre-defined search strategies, i.e. sub-
classes of the class AbstractLabel. All these classes offer a method nextSolution() that al-
lows an iteration over all solutions of a given constraint problem. Additionally, they inherit the
methods nextMinimalSolution(Variable objective) and nextMaximalSolution(Variable

objective), allowing an iteration over all minimal and maximal solutions with respect to a given
objective function. Therefore, the variable objective has to be constrained to the function’s
result. Beyond others firstcs comes with the following subclasses of AbstractLabel:

– BtLabel implements the labeling known from CLP systems and supports some well-known
heuristics like first-fail or random variable order.

– ResourceLabel implements a specialized search for task scheduling problems. Before any la-
beling of the tasks’ start times the search looks for a linear order of the tasks on the considered
resource.

– OrderLabel implements the Reduce-To-The-Max search algorithm presented in [3,7] for con-
tiguous task scheduling and optimization problems.

1 See http://www.sics.se/sicstus.html.
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The usage of any of these classes is quite simple (cf. Listing 1.1): Let a constraint system cs with
constraints be given (cf. line 1) that restrict the values of the variables, given in an array vars (cf.
line 2). Finding all solutions of this CSP by the use of the system-integrated labeling requires the
creation of a BtLabel object with these arguments (cf. line 3). Then we define a search strategy:
a combination of a random variable permutation (cf. line 4) and the first-fail principle (cf. line 5).
Before performing an iteration in the loop over nextSolution() (cf. lines 7–11) that finds and
prints all solutions, we have to initialize the search process, i.e. to set a choice-point (cf. line 6).
Finally, we use this choice-point to reset the constraint system to the state that was valid before the
search started (cf. line 12). It should be noted that the solutions are defined by the unary-valued
domains of the variables (printed together with the variables in line 9).

Listing 1.1. Finding All Solutions of a CSP

1CS cs = . . .
2Var iab le [ ] vars = . . .
3BtLabel label = new BtLabel ( cs , vars ) ;
4label . useRandomVariables ( ) ;
5label . u s eF i r s tF a i l ( ) ;
6label . s e t ( ) ;
7while ( label . nextSo lut i on ( ) ) {
8for ( int i =0; i <= vars . l ength ; i ++) {
9System . out . p r i n t l n ( vars [ i ] ) ;
10}
11}
12label . r e s e t ( ) ;

For optimization purposes, i.e. finding minimal or maximal solutions of a CSP with re-
spect to an objective function we have to constrain a variable, say objective, to that func-
tion. Then we only have to replace nextSolution() in Listing 1.1 (cf. line 7) either by
nextMinimalSolution(objective) or nextMaximalSolution(objective). This also holds not
only for BtLabel but also for all other search algorithm classes extending AbstractLabel. Further,
there are generic implementations of some branch-and-bound principles in AbstractLabel using
the specific implementations of nextSolution() in its subclasses. The implemented optimization
algorithms

– are incremental, if the following two methods are implemented (cf. [6]):

• storeLastSolution() for storing a solution and

• restoreLastSolution() for partially restoring a solution,

– perform either monotonic or even dichotomic bounding,

– compute potentially all optimal solutions,

– are symmetric because a minimal solution with respect to an objective function f is maximal
with respect to −f .

Incremental search uses the fact, that branches that were considered to find a first (improved)
solution never contains an even better solution — otherwise we would have found it. Without loss
of any better solution we can continue the search on the branch where we found the last solution.

The differences between monotonic and dichotomic bounding are shown for minimization in
Figure 1 and Figure 2 and will be explained in more detail:

Monotonic bounding for minimization improves the upper bound upb of the objective function f
monotonically: If there is a solution having an objective value obj then this is a new upper bound
upb′ := obj. It is tried to find an even better solution by adding the constraint f < upb′ that
bounds the objective function f and cuts some branches in the search tree. This procedure is
repeated until no (better) solution is found. Then, it follows that the last upper bound, say upb′′

is also a lower bound of the minimal objective value, i.e. lwb := upb′′. The most recently found
solution (if any) and any other solution satisfying the additional constraint f = lwb are then
optimal solutions.
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Fig. 1. Monotonic bounding.

Dichotomic bounding for minimization requires a (trivial) lower bound lwb and a (trivial) upper
bound upb of the objective function f . The improvement of the bounds performs dichotomic. It is
tried to find a solution having an objective value within the interval

[lwb, b
lwb + upb

2
c]

by adding the constraints

lwb ≤ f ∧ f ≤ b
lwb + upb

2
c .

If this trail fails the lower bound is updated to be

lwb′ := b
lwb + upb

2
c + 1 .

Otherwise, if there is a solution, the upper bound is updated to be the objective value obj of this
solution: upb := obj and the search continues recursively until the lower bound is greater than the
upper bound, say lwb′′′ > upb′′′′, holds. The most recently found solution (if any) and any other
solution satisfying the additional constraint f = upb′′′′ are then optimal solutions.

Time
lwb upb

lwb upb′

lwb′ upb′′

lwb′ upb′′′

lwb′′

upb′′′′

Fig. 2. Dichotomic bounding.

For example, dichotomic bounding for BtLabel is applied in Listing 1.1 if we add the method
call label.setBoundingScheme(DICHOTOMIC) between line 3 and line 6.
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3 Constraint Implementation

Any constraint in firstcs must be implemented as a subclass of the class Constraint. This
common superclass defines some basic data-structures of any constraints and guides the imple-
mentation of any constraint-specific pruning algorithm.

The core of any constraint system is an iterative process that realizes constraint propagation.
It schedules and activates the pruning algorithms of those constraints whose variable domains are
changing. Thus it is important to know the variables that are constrained by an object of the class
Constraint and how to react on any change of their domains. Therefore the class Constraint

maintains a vector of each constraint’s variables linkedVars (cf. Listing 1.2, line 6) and a method
to add (or link) a variable to each constraint via this vector (cf. Listing 1.2, lines 11–13). These
linked variables are used when a generated constraint is added to a constraint system cs, i.e. an
instance of the class CS (cf. line 4). Then within this constraint system the constraint is registered
under its variables and on how to react on any changes of their domains calling the method
register() (cf. Listing 1.2, lines 19–24). By default, any change will trigger an activation of
the registered constraints (cf. Listing 1.2, line 22). As will see later, it is possible to restrict the
activation on specific changes, e.g. changes either of the lower or the upper bound of the domain.

Listing 1.2. Variable management of any constraint

1. . .
2public abstract class Constra int {
3. . .
4protected CS cs = null ;
5

6protected Vector l inkedVars = new Vector ( ) ;
7

8/∗∗
9∗ adds the g iven v a r i a b l e to t h i s c on s t r a i n t ’ s v a r i a b l e s .
10∗/
11public void addVar ( Var iab le var ) {
12l inkedVars . add ( var ) ;
13}
14

15/∗∗
16∗ r e g i s t e r s t h i s c on s t r a i n t to i t s v a r i a b l e s .
17∗ − may be s p e c i a l i z e d
18∗/
19public void r e g i s t e r ( ) {
20I t e r a t o r i = l inkedVars . i t e r a t o r ( ) ;
21while ( i . hasNext ( ) ) {
22cs . l i n k ( ( Var iab le ) i . next ( ) , this ) ;
23}
24}
25. . .

Concrete constraint classes must have constraint-specific implementations of the abstract
method activate() defined in the class Constraint (cf. Listing 1.3). Its specific implementa-
tion has to perform local constraint propagation, i.e. the domains of the constraints’ variables
are pruned until a local fix-point is reached. Whenever any variable’s domain becomes empty,
an inconsistency is detected and an InconsistencyException has to be thrown. We use excep-
tions instead of returning a value, e.g. false, over several method calls to force an explicit and
efficient handling of inconsistencies at any appropriate place in the program code. Especially, it
is impossible to ignore inconsistencies avoiding senseless deductions, i.e. when ex falso quod libet

holds.

Listing 1.3. Activation schema of any constraint’s pruning algorithms.
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1. . .
2/∗∗
3∗ a c t i v a t e s t h i s c on s t r a i n t to e s t a b l i s h cons i s t ency
4∗ − must be implemented
5∗/
6public abstract void a c t i v a t e ( )
7throws Incons i s t encyExcept i on ;
8. . .
9}

The implementation of binary Less constraints that constrains one variable to be smaller than
another variable, say LHS < RHS, is an extension of the class Constraint (cf. Listing 1.4,
line 5). Each Less constraint consists of two variables representing the left- and right-hand-side
of the binary relation ”<” (cf. Listing 1.4, line 8 and 11). The creation of an instance of a Less

constraint is straightforward: An object for two variables to be constrained is generated, the
variables are stored locally and are added to the recently generated instance (cf. Listing 1.4,
lines 16–24).

Listing 1.4. The basics of the binary Less constraint.

1package de . fhg . f i r s t . c s . c on s t r a i n t ;
2

3import . . .
4. . .
5public class Less extends Constra int {
6

7// the l e f t −hand−s i d e va r i a b l e , i . e . LHS:
8protected Var iab le l h s = null ;
9

10// the r i gh t−hand−s i d e va r i a b l e , i . e . RHS:
11protected Var iab le rhs = null ;
12

13/∗∗
14∗ c r ea t e s a new LHS < RHS con s t r a i n t .
15∗/
16public Less ( f ina l Var iab le l e f t , f ina l Var iab le r i g h t ) {
17// i n i t i a l i z e the c on s t r a i n t ’ s v a r i a b l e s :
18l h s = l e f t ;
19rhs = r i gh t ;
20// connect the c on s t r a i n t ’ s v a r i a b l e s
21// wi th the c on s t r a i n t i t s e l f :
22addVar ( l h s ) ;
23addVar ( rhs ) ;
24}

We know that bounds consistency for the binary constraint LHS < RHS is equivalent to its
local consistency. Thus, we only have to consider and update the bounds of the variables’ domains
to establish these consistencies. This pruning will be performed by the implementation of the
pre-defined method activate() (cf. Listing 1.5). Therefore we have to perform two operations:

– the values of the right-hand-side variable must be greater than the smallest value of the left-
hand-side variable and

– the values of the left-hand-side variable must be less than the greatest value of the right-hand-
side variable.

The first adjustment is performed by calling a Variable’s method greater() that uses the
method min() which returns the smallest value of its domain (cf. Listing 1.5, line 8). The method
greater() prunes all values in its variable’s domain not greater than the given value. It returns
true if the domain is changed and throws an InconsistencyException if the reduced domain



Object-Oriented Constraint Programming in Java Using the Library firstcs 27

becomes empty. The second adjustment is symmetric. There, the method less() prunes all values
in its variable’s domain not less than given value which is the greatest value of the right-hand-side
variable (cf. Listing 1.5, line 11). The method call returns true if the domain is changed and throws
an InconsistencyException if the reduced domain becomes empty.

Listing 1.5. The pruning performed by Less constraints.

1/∗∗
2∗ a c t i v a t e t h i s c on s t r a i n t w. r . t the r e g i s t r a t i o n
3∗ and prune i t s v a r i a b l e s ’ domains .
4∗/
5public void a c t i v a t e ( ) throws Incons i s t encyExcept i on {
6// ad j u s t the va l u e s o f the rhs to be g r ea t e r
7// than the minimum va lue o f the l h s :
8rhs . g r e a t e r ( l h s . min ( ) ) ;
9// ad j u s t the va l u e s o f the l h s to be l e s s
10// than the maximum va lue o f the rhs :
11l h s . l e s s ( rhs .max ( ) ) ;
12}

It should be noted that any further adjustment of the right-hand-side’s domain is only necessary
if the smallest value of the left-hand-side’s domain increases and vice-versa: the left-hand-side’s
domain must be only updated if the greatest value of the right-hand-side’s domain decreases. We
are able to reflect this situation in a specific implementation of register() shown in Listing 1.6.
There, it is stated in line 8 and line 11 that pruning must only be re-activated if the minimum of
the left-hand-side’s domain and or the maximum of the right-hand-side’s domain changes.

Listing 1.6. The specific registration of Less constraints.

1/∗∗
2∗ l i n k t h i s c on s t r a i n t v ia i t s v a r i a b l e s
3∗ to the c on s t r a i n t s o l v e r / system .
4∗/
5public f ina l void r e g i s t e r ( ) {
6// ac t i v a t e , i f the minimum of the
7// l e f t v a r i a b l e ’ s domain changes :
8cs . l i n k ( lhs , this , AbstractPropagator .ACT ON MIN) ;
9// ac t i v a t e , i f the maximum of the
10// r i g h t v a r i a b l e ’ s domain changes :
11cs . l i n k ( rhs , this , AbstractPropagator .ACT ON MAX) ;
12}

Further, we observe that both adjustments of the left- and the right-hand-side’s domain (cf.
Listing 1.5, line 8 and 11) are independent from each other such that any further call of them will
not change the adjusted domains, i.e. a local fix-point is reached. In general, if this is not valid
we have to iterate over the pruning operations (e.g. lessEqual(), cf. line 5) until all variables’
domains stay unchanged. Listing 1.7 shows our general approach to calculate a local fix-point and
to force idempotency of the method activate(): We iterate over the pruning operations as long
as at least one variable’s domain has changed. This is signaled by a boolean variable hasChanged.

Listing 1.7. Forcing idempotency of the method activate().

1public void a c t i v a t e ( ) throws Incons i s t encyExcept i on {
2boolean hasChanged = true ;
3while ( hasChanged ) {
4hasChanged = fa l se ;
5hasChanged |= var . l e s sEqua l ( . . . ) ;
6hasChanged | = . . . ;
7}
8}
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4 Customizing Constraint Processing

In contrast to other constraint programming systems, especially to constraint logic programming
systems, the addition of a constraint does not automatically perform its activation, i.e. the propa-
gation of its consequences. In firstcs any possible pruning of the variables’ domains with respect
to this constraint is delayed by default. It must be performed either via a general constraint propa-
gation or explicitly by the call of the constraint’s method activate(). Thus, it is possible to model
a constraint problem to be solved completely before propagating the constraints’ consequences.
This may improve the overall performance of the constraint processing as the following example
shows:

Example 1. Considering the constraint problem vari−1 < vari for i = 1, . . . , n − 1 any incre-
mental constraint propagation is O(n2): Any extension of var0 < · · · < varj to var0 < · · · <
varj < varj+1 will adopt the domains of all considered variables. However, a delayed propagation
triggered after adding all constraints might be O(n). The Java program in Listing 1.8 realizes
both: incremental propagations immediately after adding constraint by constraint and a delayed
propagation after adding all constraints – the boolean variable IS INCREMENTAL triggers either
case.

Listing 1.8. Incremental and delayed constraint propagation.

1boolean IS INCREMENTAL = . . .
2. . .
3CS cs = new CS ( ) ;
4Var iab le [ ] var = new Var iab le [ n ] ;
5for ( int i =0; i<n ; i ++) {
6var [ i ] = new Var iab le ( i , n ) ;
7i f ( i > 0) {
8cs . add (new Less ( var [ i −1 ] , var [ i ] ) ) ;
9i f ( IS INCREMENTAL) cs . a c t i v a t e ( ) ;
10}
11}
12i f ( ! IS INCREMENTAL) cs . a c t i v a t e ( ) ;

In line 12 cs.activate() activates all constraints that were added to the constraint system cs

but not yet activated, i.e. delayed. In the incremental case only the most recently added con-
straint is activated (cf. line 9) which will activate those constraints whose variables’ domain were
changed until a new fix-point is calculated. Runtime experiments have shown that the delayed
non-incremental propagation is in fact linear if the constraints are activated in a last-in-first-out
order. ut

5 Modeling and Solving a Constraint Problem

The Golomb ruler problem is a good example to show the modeling purposes of firstcs. Global
constraints are combined with simple constraints and the basic model is extendible by symmetry-
breaking and implicit constraints. Furthermore, the problem is known to be a hard constraint

optimization problem (COP).
Golomb rulers are named after the mathematician Solomon W. Golomb. They are important

in physics, radio-astronomy, crystallography where we are interested in rulers of minimal length.
The difference between Golomb rulers and ordinary rulers is significant: all distances between its
marks are different. Figure 3 shows a Golomb ruler with 5 marks and of minimal length 11.

The in the following presented modeling of the Golomb ruler (optimization) problem in firstcs

is according to the considerations in [4,5]. The main program of our Golomb ruler problem solver
is shown in Listing 1.9. In the header the constraint system (cf. line 2), the number of marks n
and a heuristic upper bound for the length of minimal rulers nn (cf. line 3) as well as the marks
and their differences (cf. line 4) are declared.
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Fig. 3. A Golomb ruler with 5 marks and of minimal length 11.

The main method parses the number of marks from the command line input (cf. lines 6–
8), creates a new corresponding Golomb ruler instance (cf. line 9), establishes the base constraint
model (cf. line 10) as well as the extended model (cf. line 11) and finally finds all minimal solutions
(cf. line 12).

Listing 1.9. The main program of the Golomb ruler problem solver.

1public f ina l class GolombRuler {
2CS cs ;
3int n , nn ;
4Var iab le [ ] marks , d i f f s ;
5. . .
6public stat ic void main ( f ina l St r ing [ ] a rgs ) {
7// the Golomb ru l e r ’ s number o f marks :
8f ina l int num = Int eg e r . pa r s e In t ( args [ 0 ] ) ;
9GolombRuler go lombruler = new GolombRuler (num) ;
10golombruler . e s tab l i shBaseMode l ( ) ;
11golombruler . establ i shExtendedModel ( ) ;
12golombruler . f i ndAl lMin ima lSo lu t i ons ( ) ;
13}
14}

The creator method for Golomb rulers having num marks is shown in Listing 1.10. It creates
a new constraint system for this ruler (cf. line 2) and a heuristic upper bound for its length
which is the square of its number of marks (cf. line 4). Additionally, variables for the marks and
the quadratic number of differences between them are created, too (cf. lines 5–6). They will be
constrained by the corresponding models.

Listing 1.10. The class of Golomb rulers.

1public GolombRuler ( int num) {
2cs = new CS ( ) ;
3n = num;
4nn = n ∗ n ; // a h e u r i s t i c upper bound f o r i t s l e n g t h
5marks = new Var iab le [ n ] ;
6d i f f s = new Var iab le [ ( n ∗ ( n − 1 ) ) / 2 ] ;
7}

The base constraint model is shown in Listing 1.11. It states that the first mark is determined
to be 0 (cf. line 3) and that all other marks have values between 1 and the heuristic upper bound nn

(cf. line 5). Furthermore, it is stated that the i−1th mark is less than the ith mark (cf. line 6) and
that for 0 ≤ j < i ≤ n each variable diff[ i*(i-1)/2 + j] is equal to the difference between
the jth and the ith mark (cf. lines 8–11). Finally, all differences are constrained to be pairwise
different using one global AllDifferent constraint (cf. line 15).

Listing 1.11. The basic model of the Golomb ruler problem.

1public void estab l i shBaseMode l ( ) {
2int i d i f f = 0 ;
3marks [ 0 ] = new Var iab le ( 0 ) ;
4for ( int i = 1 ; i < n ; i ++) {
5marks [ i ] = new Var iab le ( 1 , nn ) ;
6cs . add (new Less (marks [ i − 1 ] , marks [ i ] ) ) ;
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7for ( int j = 0 ; j < i ; j ++) {
8// here i t ho l d s : i d i f f == i ∗( i −1)/2 + j
9d i f f s [ i d i f f ] = new Var iab le ( 1 , nn ) ;
10cs . add (new Sum(marks [ j ] , d i f f s [ i d i f f ] ,
11marks [ i ] ) ) ;
12i d i f f ++;
13}
14}
15cs . add (new A l lD i f f e r e n t ( d i f f s ) ) ;
16}

The additional constraints in the extended constraint model is shown in Listing 1.12. The first
constraint forces that the differences between the first and the second mark is less than the one
between the last and the next to last avoiding symmetric solutions: pairs of rulers that results from
each other by turning them 180 degrees (cf. line 2). Additional constraints state how the differences
between the jth and ith marks are bound by the constant value (n− 1− i + j) · (n− i + j)/2 and
the last mark (cf. lines 7–9 and [4]).

Listing 1.12. The extended model of the Golomb ruler problem.

1public void establ i shExtendedModel ( ) {
2cs . add (new Less ( d i f f s [ 0 ] , d i f f s [ d i f f s . l ength − 1 ] ) ) ;
3int i d i f f = 0 ;
4for ( int i = 1 ; i < n ; i ++) {
5for ( int j = 0 ; j < i ; j ++) {
6// here i t ho l d s : i d i f f == i ∗( i −1)/2 + j
7cs . add (new Before ( d i f f s [ i d i f f ] ,
8(n−1− i+j ) ∗ ( n−i+j )/2 ,
9marks [ n − 1 ] ) ) ;
10i d i f f ++;
11}
12}
13}

Last but not least all solutions of an optimal Golomb ruler are found by the method presented in
Listing 1.13. It uses ”standard” labeling with the dichotomic bounding scheme (cf. lines 2–3) shown
in Figure 2. The iteration over all optimal solutions has the same structure as the general search
presented in Listing 1.1. The only difference is that we call the method nextMinimalSolution()

with the last mark as its argument because it defines the objective to be minimized (cf. line 5).

Listing 1.13. Finding all Golomb rulers of minimal length.

1public void f i ndAl lMin ima lSo lu t i ons ( ) {
2BtLabel l a b e l e r = new BtLabel ( cs , marks ) ;
3l a b e l e r . setBoundingScheme ( BtLabel .DICHOTOMIC) ;
4l a b e l e r . s e t ( ) ;
5while ( l a b e l e r . nextMinimalSolut ion (marks [ n − 1 ] ) ) {
6System . out . p r i n t ( ” optimal marks : ” ) ;
7for ( int i =0; i < n ; i ++) {
8System . out . p r i n t ( ” ” + marks [ i ] ) ;
9}
10System . out . p r i n t l n ( ) ;
11}
12l a b e l e r . r e s e t ( ) ;
13}

It should be noted that the runtime of our Java implementation is comparable to an equivalent
SICStus Prolog implementation. However, SICStus Prolog offers only system predicates that finds
one optimal solution.
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6 Realizing Search

After the addition of all constraints defining a problem to be solved and their propagation a
search process is used to find a solution of the considered problem. The constraint library firstcs

supports search based on different pre-defined strategies but also the necessary basics for any
user-defined search based on backtracking. These basics are choice-points, i.e. objects of the class
ChoicePoint. For a given constraint system, we are able to generate several choice-points to store
the system’s state at a specific program state. Therefore, a choice-point is set with its method
set(), signaling the system that the current state of the constraint system has to be stored for
any future backtracking. The call of the method backtrack() for a previously set choice-point
will restore the stored state at the program state where the choice-point was set. For any re-use
of a choice-point at another program state it might be reset with its method reset().

For simplicity, the usage of choice-points is illustrated for simple depth-first search that finds
one solution. The Java code of the recursively implemented labeling() method is presented in
Listing 1.14. The input of this static method which does not belong to any object consists of

– a constraint system cs defining a CSP,
– an array of fd variables vars which have to be labeled.

The output of the method is

– true, if a solution was found,
– false, otherwise.

In case of a solution its values are determined by the single-valued variables’ domains. Otherwise
the CSP, especially its variables’ domains are unchanged. The method uses the globally defined
integer variable level which is initialized with the value 0 (cf. line 1). Its value reflects the
considered level within the search tree. Its depth is equal to the number of variables. If all variables
are labeled its value is equal the search tree’s depth. In this case, the recursive labeling() stops
and returns true signaling that the variables are labeled with the values in their domains (cf.
lines 3–5). Otherwise, a new choice-point is created and set (cf. lines 6–7) preparing the labeling
of the variable at the current level in the search tree. Therefore it is iterated over all values in the
domain of this variable2 (cf. lines 8–25). During this iteration the actual variable is labeled with
the current value (cf. line 11) and this additional constraint is explicitly propagated (cf. line 12). If
this results in an inconsistency it will be caught. This catch causes backtracking, i.e. the labeling
of the actual variable is annihilated and the next value – if any – is tried (cf. lines 21–24). If
there is no inconsistency the level is increased and the labeling procedure is called recursively. If
it succeeds the choice-point is reset and true is returned (cf. lines 14–16). If it fails, backtracking
annihilates the labeling of the actual value and the level is decreased to its correct values (cf.
lines 17–20).

Listing 1.14. A recursive depth-first search to find a solution of a CSP.

1private stat ic int l e v e l = 0 ;
2public stat ic boolean l a b e l i n g (CS cs , Var iab le [ ] vars ) {
3i f ( l e v e l == vars . l ength ) {
4return true ;
5} // e l s e :
6ChoicePoint cp = new ChoicePoint ( cs ) ;
7cp . s e t ( ) ;
8for ( int va l=vars [ l e v e l ] . min ( ) ;
9val<=vars [ l e v e l ] . max ( ) ; va l++) {
10try {
11vars [ l e v e l ] . equal ( va l ) ;
12cs . a c t i v a t e ( ) ;
13l e v e l++;

2 and possibly over some more value if the domain is not an integer interval.
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14i f ( l a b e l i n g ( cs , vars ) ) {
15cp . r e s e t ( ) ;
16return true ;
17} else {
18cp . backtrack ( ) ;
19}
20l e v e l −−;
21} catch ( Incons i s t encyExcept i on e ) {
22cp . backtrack ( ) ;
23}
24}
25cp . r e s e t ( ) ;
26return fa l se ;
27}

It should be noted that this labeling is rather rudimental: If a solution of the CSP is found,
then it is impossible to find further solutions because it is impossible to access the locally defined
and used choice-points. Even another call of labeling() returns with an unchanged solution.

7 Conclusion

As we have seen, the constraint library firstcs offers as an open toolbox a variety of functionalities
for constraint programming. It supports the realization of new constraints, the modeling of CSPs
or even COPs as well as their solution either by the use of built-in or user-implemented search or
branch-and-bound algorithms.
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