DEBS Grand Challenge: RDF Stream Processing with
CQELS Framework for Real-time Analysis

Danh Le Phuoc
Insight Centre for Data
Analytics

National University of Ireland

Galway

Minh Dao-Tran
Institute of Information
Systems
Vienna University of
Technology

danh.lephuoc@nuigalway.ie dao@kr.tuwien.ac.at

Anh Le Tuan Manh Nguyen Duc Manfred Hauswirth
Insight Centre for Data Insight Centre for Data Institut flr
Analytics Analytics Telekommunikationssysteme
National University of Ireland National University of Ireland Technische Universitat Berlin
Galway Galway Berlin, Germany
anh.le@insight- ducmanh.nguyen@insight- manfred.hauswirth@tu-
centre.org centre.org berlin.de

ABSTRACT

This paper presents a solution to the Grand Challenge using
CQELS (Continuous Query Evaluation over Linked Stream),
a general execution framework to build RDF Stream Pro-
cessing engines to answer continuous analytical queries. It
provides an efficient execution architecture whereby incre-
mental computing algorithms can be implemented to boost
the performance.

Our experimental results show strong effects of the imple-
mented approach as CQELS outperforms a base-line imple-
mentation which recomputes on every incoming input.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content

Analysis and Indexing— Dictionaries, Indexing methods; D.1.0

[Programming Techniques|: General

General Terms

Algorithms, Experimentation, Performance

Keywords
RDF Stream Processing, Real-time Analysis

1. INTRODUCTION

The DEBS Grand Challenge 2015 [12] is based on an open
data set on taxi trip reports from New York City. The goal

(© 2015 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

DEBS’15, June 29 - July 3, 2015, Oslo, Norway

(© ACM ISBN 978-1-4503-3286-6/15/06...$15.00

DOL: http://dx.doi.org/10.1145/2675743.2772586.

of the challenge is to develop stream-processing systems to
support real-time analytics over this high volume geospatial
data stream. In particular, two queries to challenge the
participants are: (Q1) identify the most frequent routes
during the last 30 minutes, and (Q2) identify areas that are
currently most profitable for taxi drivers.

Although implementing the problem from the scratch is
not too complicated, there are many event data models and
technologies that could serve as the basis for a solution:
Complex Event Processing (CEP), Data Stream Process-
ing, Rule-based systems, etc. In previous DEBS challenges,
many of those models have been adopted to solve similar
challenges. e.g. Rabl et al. [21] and Jerzak et al. [11] used
custom solutions, Geesen and Grawunder [9], Fernandez et
al. [8] used stream processing, Aders et al. [1] used both
rules and stream processing, Koliousis and Sventek [13] in-
troduced a new automata in a custom solution, and Perera
et al. [17] used CEP.

To embrace the adoption of Semantic Web technology into
event and stream processing, the RDF Stream Processing
(RSP) Community Group' has been an emerging commu-
nity which aims at defining a common model for produc-
ing, transmitting, and continuously querying RDF Streams.
Members in the group have developed RSP engines to sup-
port continuous query processing using RDF data model
such as C-SPARQL [4], EP-SPARQL [2], SPARQLg,, cam (6]
and CQELS [19]. RDF-based event processing engines en-
able the interoperability for the environment which requires
the integration of heterogeneous and distributed event sources
and background databases. For example, by using an RSP
engine, provided taxi data can be easily integrated with live
and historical streams (live traffic speed data, bicycle park-
ing, map of subway/ferry) of transport provided by New
York city via NYC Open Data.? On top of that, if such
data is represented in RDF, the open linked data sets such

"https://www.w3.org/community/rsp/
“https://nycopendata.socrata.com/

as Wikipedia, Open street map come as an “effort-less inte-
gration offer” for application builder.

Theoretically, queries in the Challenge can be modeled
and processed by RSP engines; practically, gaining real-time
performance under high throughput data is not trivial. The
reason is that the RDF data presentation is verbose which
introduces a lot overhead in processing it [19]. Moreover, the
schema-less property of RDF, on the one hand, enables the
flexibility of schema change; one the other hand, often (but
not always) implies hard work in enabling strict low response
and high throughput capability for an RSP processing. In
particular, the hard-to-predict structure of RDF graphs has
proved challenging for traditional DBMSs, and they have
not been able to scale effectively to large quantities of RDF
data [16]. This unpredictability also applies to RDF-based
data streams, as a consequence, makes it difficult for query
optimizers to handle.

Coping with these challenges, CQELS has been developed
based on a native and adaptive approach, that is, to treat
RDF as first class citizens and to dynamically switch be-
tween query plans at run time to adapt to the fluctuate and
bursty nature of input streams. Furthermore, it employs so-
phisticated stream processing techniques to boost for perfor-
mance, including, but not limited to, efficient mechanisms
for indexing the input buffers, namely one-way index and
ring index, and incremental computing algorithms on con-
tinuous query operators. CQELS has been proved to be the
fastest engine in the RSP community [20], and is seeking
its position in comparison to stream processing engines in
other communities. The DEBS Grand Challenge is a great
opportunity for CQELS to look outside its comfort zone.

This paper presents our solution for the Challenge using
CQELS. It is organized as follows: Section 2 gives prelimi-
naries on RDF, SPARQL, RSP, and provides the encoding of
Q1 and Q2 using the CQELS query language. Section 3 de-
scribes the novel aspects in the design and implementation
of CQELS engine that contribute to the efficiency of our
solution. Instructions on how to deploy our solution and
evaluation results are shown in Section 4. Finally, Section 5
concludes the paper.

2. RDF STREAM PROCESSING

RDF Stream Processing can be intuitively seen as extend-
ing querying RDF datasets® with SPARQL to querying RDF
streams with “continuous SPARQL.” We briefly review RDF,
SPARQL, and the above extension.

RDF stands for Resource Description Framework, a stan-
dardized model model for representing information in the
web. Let I, B, and L be RDF nodes which are pair-wise dis-
joint infinite sets of Information Resource Identifiers (IRIs),
blank nodes and literals respectively, and V is a set of vari-
ables. A triple (s,p,0) € JUB)x I x (IUBUL)is an
RDF triple where s is the subject, p the predicate, and o the
object. An RDF graph (also referred as an RDF dataset, or
simply dataset) is a set of RDF triples. A triple pattern is
a triple (sp, pp, op)€(IUBUV)x(IUV)x(IUBULUV).
A basic graph pattern is a set of triple patterns.

Example 1 Take an input line of the Challenge’s scenario:

07290D3599E7A0D62097A346EFCC1FB5,
E7750A37CABO7DODFFOAF7TE3573AC141,

3http://www.w3.org/RDF/

o B R N A

e =
Gk W N R O ©

2013-01-01 00:00:00, 2013-01-01 00:02:00,
120,0.44,-73.956528,40.716976,-73.962440,
40.715008,CsH,3.50,0.50,0.50,0.00,0.00,4.50

Its data used for Q1 and Q2 can be represented as the fol-
lowing RDF graph:

:taxi "07290D3599E7A0D62097A346EFCC1FB5".
: pickup_datetime "2013-01-01 00:00:00".

: dropoff _datetime "2013-01-01 00:02:00".
:pickLon -73.956528.

:pickLat 40.716976.

:dropLon -73.962440.

:dropLat 40.715008.

:fare 3.5.

:tip 0.0.

(tripy
(tripy
(tripy
(tripy
1tripr
(tripy
(tripy
(tripy
(tripy

SPARQL is essentially a graph-matching query language
for querying RDF graphs. A SPARQL query is of the form
H < B, where B, the body of the query, is a complex RDF
graph pattern composed by combining basic graph patterns
with different algebraic operators such as UNION, OPTIONAL,
and FILTER; and H, the head of the query, is an expression
that indicates how to construct the answer to the query [18].

Example 2 Assume that information regarding a snapshot
of taxi trips in the last 30 minutes is collected in an RDF
store identified by the IRI <http://example/taxi.rdf>, un-
der the format shown in Example 1. The following SPARQL
query computes the answer of Q1 at a single time point.

SELECT (ROUND ((41.474937-7pLat)/0.005986) AS 7pE)
(ROUND ((74.913585+7pLon)/0.004491556) AS ?pS)
(ROUND ((41.474937-7dLat)/0.005986) AS 7dE)

(ROUND ((74.913585+7dLon) /0.
(COUNT (?trip) AS 7freq)

004491556) AS 7dS)

FROM <http://example/taxi.rdf>

WHERE {
?trip :pickLon ?pLon. ?trip :pickLat ?pLat.
?trip :dropLon ?dLon. ?trip :dropLat 7dLat.

}

GROUP BY 7?pE ?pS 7dE 7dS

HAVING (?pE>0 && 7pE<301 && 7pS>0 && ?pS<301 &&

?7dE>0 && 7dE<301 && 7dS>0 && ?7dS<301)
ORDER BY 7?freq
LIMIT 10

One-shot @1 in SPARQL

Lines 1-4 compute the pick up and drop off cells from the
coordinates as follows. Let long and lat be the longitude
and latitude of a coordinate, the corresponding cell (i,) is
identified by:

. 41.474937 — lat ond i — 74.913585 + long
o 0.005986 J = TT0.004491556

The graph pattern in the WHERE clause (lines 8-9) extracts
the pick up and drop off coordinates from the RDF graph
loaded by the FROM clause. The trip frequency is calculated
by the COUNT operator (line 5), grouped by cells (line 11).
The conditions stated in the HAVING clause (lines 12-13)
makes sure that we only consider trips in the 300 x 300 grid.
Finally, LIMIT 10 cuts the answers to the top 10, ordered
by the trip frequency (line 14).

The semantics of SPARQL is defined via mappings. A
mapping p is a partial function from V to I U BU L. The
result of a SELECT SPARQL query is a set of mappings that
match the body of the query. For example, evaluating the

© W N U AW N

11
12
13
14
15

SPARQL query in Example 2 under the RDF graph in Ex-
ample 1 returns a set of a single mapping:

{{?pE—127, 7pS > 213, 7dE — 127, 7dS > 212, ?freq—1}}.

The domain of a mapping u, dom(u), is the subset of V
where p is defined. Two mappings p1 and ps are compatible,
denoted by p1 2 po, if

Vo € dom(p1) N dom(pz2): pi(z) = pa(x).

However, one-shot queries by themselves are not able to an-
swer queries under dynamic input as in the scenario of the
Challenge. For this purpose, we need continuous queries
over RDF streams and Instantaneous RDF datasets.

RDF Streams and Instantaneous RDF datasets. In
continuous query processing over dynamic data, the tempo-
ral nature of the data is crucial and needs to be captured in
the data representation. This applies to both Linked Stream
Data and Linked Data, as updates in Linked Data collections
are also possible. We define RDF streams to represent the
former, and model the latter by generalizing the standard
definition of RDF datasets to include the temporal aspect.
Thereby:

1. An RDF dataset at timestamp t, denoted by G(t), is
a set of RDF triples valid at time ¢ and called instan-

taneous RDF dataset. An RDF dataset is a sequence
G =[G(t)],t € N, ordered by t.

2. An RDF stream S is a bag of elements (g :
g is an RDF graph and ¢ is a timestamp.

[t]), where

Example 3 The input stream S,z of the scenario used in
the Challenge is a bag of elements (g; : [t;]), where g; is of
the form in Example 1 and ¢; is the drop-off time in g;.

Continuous Queries. Continuous queries in CQELS
are inspired by the Continuous Query Language (CQL) [3],
where a continuous query is composed from three classes
of operators, namely stream-to-relation (S2R), relation-to-
relation (R2R), and relation-to-stream (R2S) operators. S2R
and R2R operators are relevant in the context of the Chal-
lenge. Intuitively, the former are captured by extending
SPARQL 1.1 grammar* with a “stream graph” pattern, while
the latter are taken care of by SPARQL’s operators. The
next two examples give the encoding of @1 and Q2 in the
CQELS query language. For more details on the query syn-
tax, we refer the reader to [19].

Example 4 @1 can be encoded in CQELS as follows.

SELECT (ROUND((41.474937-7?pLat)/0.005986) AS ?pE)
(ROUND ((74.913585+7pLon)/0.004491556) AS 7pS)
(ROUND ((41.474937-7dLat)/0.005986) AS ?dE)
(ROUND ((74.913585+7dLon)/0.004491556) AS 7dS)
(COUNT(?trip) AS ?freq)
WHERE {
STREAM <Taxi> [RANGE 30 minutes] {
?trip :pickLon ?pLon. ?trip :pickLat “?plLat.
?trip :droplon ?dLon. ?7trip :droplLat ?dLat. }
¥
GROUP BY <7pE ?pS ?dE 7dS
HAVING (?pE>0 && ?pE<301 && 7?7pS>0 && ?pS<301 &&
?dE>0 && ?7dE<301 && ?dS>0 && 7dS<301)
ORDER BY “?freq
LIMIT 10

Q1 in CQELS

“http://www.w3.org/TR/sparqlli-query/#grammar

Bw N =

o e
N H O © o]

=
W

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Compared to its one-shot counterpart in Example 2, we
can see the change of the FROM clause (line 6, Example 2)
to the STREAM graph pattern (line 7), which represents a
window extracting the triples arriving at the engine within
the last 30 minutes. Other parts of the two queries stay
identical.

Example 5 Q)2 can be encoded by the following nested
CQELS query.

SELECT ?pE ?pS ?noEmptyTaxis
?prof (?prof/?noEmptyTaxis AS ?profitability)
WHERE {
{SELECT
(ROUND ((41.474937-7pLat1)*2/0.005986) AS 7?7pE)
(ROUND ((74.913585+7pLonl)*2/0.004491556) AS ?pS)
(MEDIAN (?fare+?tip) AS ?prof)
WHERE {
STREAM <Taxi> [RANGE 15 minutes] {
?trip :fare ?fare.
?trip :tip ?tip.
?trip :pickLat ?pLatl.
?trip :pickLon ?pLonl.
}
}
GROUP BY ?pE ?pS
HAVING (?pE>0 && 7pE<601 && ?pE>0 && 7pS<601)
}
{SELECT
(ROUND ((41.474937-7?pLat2)*2/0.005986) AS ?7pE)
(ROUND ((74.913585+7pLon2)*2/0.004491556) AS 7pS)
(COUNT (?taxi) AS ?noEmptyTaxis)
WHERE {
STREAM <Taxi> [RANGE 30 minutes] {
?trip2 :pickLat ?pLat2.
?trip2 :pickLon 7?pLon2.
?trip2 :taxi ?taxi.
?trip2 :dropoffTime “?dropoff.
}
FILTER NOT EXISTS {
STREAM <Taxi> [RANGE 30 minutes] {
?trip3 :taxi ?7taxi.
?trip3 :pickupTime ?pickup.
}
FILTER (?pickup>?dropoff)
}
}
GROUP BY ?pE 7?7pS
HAVING (7pE>0 && 7pE<601 && ?pS>0 && ?pS<601 &&
?noEmptyTaxis >0)
}
}
ORDER BY ?profitability
LIMIT 10

Q2 in CQELS

The first subquery (lines 4-18) calculates the profit of the
areas. The stream graph pattern from lines 9 to 14 extracts
information regarding trips reported within the last 15 min-
utes, including the trip’s pickup coordinates, fare and tip.
Then, the coordinates are converted into cell id stored in
?pE and 7pS using the same equations as in Example 2
(lines 5, 6). The outputs are grouped by these values, i.e., by
cells (line 16). The median function (line 7) on the sum of
fares and tips is carried out to calculate the profit on every
cell with reported trips in the (600 x 600) grid (lines 16, 17).

The second subquery (lines 19-41) counts the number of
empty taxis. The stream graph pattern from lines 24 to 29
extracts information regarding trips reported within the last
half an hour, including the trip’s pickup coordinates, the
taxi id, and the drop-off time. However, only trips having
no next trips reported within the same window are kept.
This is accomplished by using FILTER NOT EXISTS on the
stream graph pattern from lines 31 to 34 together with the

[P1i] MEDIAN
IEAPs 4
S’l‘uu qugj’ s -
% range 30m

[z & &

AN (MinUsy»{coUNT)

[Ps]
Figure 1: A query plan for Q2

condition on line 35. The counting is done by lines 22 on
cells (line 38) in the (600 x 600) grid (line 39). Only positive
number of empty taxis are taken into account (line 40).

The results of the two subqueries are joined on the cells’
ids, and the profitability is calculated on line 2. Further-
more, only top 10 results are reported due to the ordering
and limiting on lines 43, 44.

3. CQELS SOLUTIONS FOR THE GRAND
CHALLENGE

Our solution is based on CQELS, an native and adap-
tive execution framework for Linked Stream Data and Lined
Data. The CQELS engines accepts RDF streams and RDF
datasets as inputs and returns RDF streams or relational
streams in the SPARQL Result format® as output. The
output RDF streams can be fed into any CQELS engine,
and the relational streams can be used by other relational
stream processing systems.

Internally, a query is translated into different physical
query plans consisting of operators that can process con-
tinuous input streams. A query plan composes of operators
in a tree-shape where leaf nodes are pattern matching oper-
ators and intermediate nodes are relational operators. The
former get as input RDF graphs from window buffers and
produce bags of mappings that match the pattern. The lat-
ter consume a set of bags of mappings and returns a bag of
mappings which can be used as input for other operators in
the query plan. The root of the query plan might convert the
final mappings into RDF graphs before sending the results
to the receiver. A query plan of Q2 in Example 5 is depicted
in Figure 1. Here, [P;] denotes the pattern matching opera-
tor with the pattern P;, where P;, P», P3 are patterns taken
from lines 9-13, 25-28, and 32-33 of)2, respectively. At run
time, based on online statistics, the most efficient on-the-fly
query plan is chosen for execution.

To gain efficiency, we pursue an incremental evaluation
approach. That is, instead of recomputing on every new
incoming input triple, only the difference between the new
output and that of the previous step is evaluated. This
strategy requires to maintain suitable data structures and
algorithms to keep track of the changes in the structures,
which introduces a trade-off with computing from scratch.
This section highlights the novel aspects in our design and
implementation to minimize the trade-off and boost the per-
formance.

3.1 Tree-Based Data Structure

Based on tree-shape query plans, we introduce a tree-
based data structure which contains leaf mappings and in-

Shttp://www.w3.org/TR/rdf-sparql-XMLres/

termediate mappings. The former are similar to the row-
based data structure in relational tables, and are generated
by pattern matching operators. The latter are generated by
relational operators during the execution of a query plan.
The benefits of this data structure are:

e Save memory space: an intermediate mapping does not
need to store the binding values but only one or two pointers
to reference to the mapping that generated it. Furthermore,
we only need to store timestamps of leaf mappings to be
able to generate the timestamps of the final results and to
detect expiration of intermediate results.

o Allow for an efficient strategy to handle expiration of map-
pings: when a leaf mapping p expires (which can be trig-
gered by source input or clock ticks), we just need to send a
negative version of u to the final operator in the query plan.
Based on the pointers linking intermediate/final mappings
and the ones used to generated them, we can travel back-
wards and recognize final/intermediate mappings that were
created due to p, and expire them.

3.2 Indexed Buffers

CQELS’ operators store their input mappings in input
buffers and continuously carry out operations such as prob-
ing, inserting, or evicting on them. Therefore, data struc-
tures and physical storages for input buffers have a signifi-
cant impact on the performance of these operators.

3.2.1 Bags of mappings implementation

A bag of mappings is stored as a list of pointers referencing
the mappings stored in the tree-based data structure. The
list could be implemented as a linked list or an expandable
array, depending on how predictable its size can be [14].

When the maximum size of the list is known, e.g., a count-
based window with a fixed number of items, a circular array
implementation is useful. When the maximum size is un-
known, this option faces the overhead of reallocating data
items when the size of the list exceeds the size of the array.
In this case, a linked-list implementation is an alternative.
In practice, if the size of the list does not change dramati-
cally, the circular array-based implementation is faster than
the one based on linked lists. In particular, for lists used
in window buffers, they only needs to remove items from
the tail and to insert into the head; therefore, the circular
array can be used to save pointers to the next items. In
other cases, where data items might be removed randomly,
the “next” pointer has its advantage over the circular array.

3.2.2 Indexing on bags of mappings

Inspired by [5, 10, 7], we propose indices on keys con-
structed from a subset of value bindings of mappings stored
in a list. The index provides an interface to look up a key
for a lookup condition over a set of value bindings. Each key
is associated with an entry that stores the number of items
(called counter) in the list with the corresponding key. The
key and entry pair are stored in data structures such as B-
trees or hash tables. Due to different uses of the indices, the
index entries and the list data structures are implemented as
a one-way index or a ring index described in the following.

One-way Index. Figure 2a illustrates the idea of one-way
index. This index can be used to efficiently check if there is
an item with a certain key in the list. Therefore, it is useful
for operators such as duplication elimination and aggrega-

Start of the list ——

(a) One-way index

Start of the list ——!

start-of-ring

|
(b) Ring Index

Figure 2: Indices for bags of mappings.

tion. For inserting a new mapping into the list, the index
needs one lookup to find the entry corresponding to the key
of the new mapping, then updates its counter. If the key has
not been in the index, then a new entry will be created. The
delete operation also needs a lookup to find the correspond-
ing entry in the index to decrease is counter. Such lookups
can be avoided by adding a pointer to every mapping in
the list for each index. The mappings would have point-
ers to point back to their index entries. When a mapping
is deleted, we just need to follow the pointer to the entry
to decrease its counter. If the number of keys is large and
the deletion rate is high, adding one more pointer to each
mapping might improve the throughput, provided that ex-
tra memory consumption is not critical. On the other hand,
if the number of keys is small and there is a large number
of items in the buffer, not having such pointers might be a
better solution. Hence, the instantiation of the mappings
for the one-way index is dynamically switched at runtime
based on the size of the list and the number of keys.

Ring Index. For operations that need to retrieve the list
of items that match a certain key, we extend one-way index
to ring index [5, 10] as depicted in Figure 2b. Ring index
links all mappings with the same index key in a ring. The
index entry of this key contains the start-of-ring pointer to
the first (newest) mapping of the ring. When inserting a new
mapping to the end of the list with a ring index, if the key
of the new mapping is already in the index, the ring pointer
is reassigned to the new first mapping of the ring, and the
counter of the corresponding ring index entry is increased.
Otherwise, a new ring index entry is created. The start-of-
ring pointer then points to the inserted mapping.

To retrieve a list of mappings that have a particular key,
we first get the ring index entry corresponding to the key. If
it is not null, an iterator is created for iterating over all the
mappings that have the key by following the ring pointers.
Note that the counter in the index entry is used as the stop
condition for the iterator.

When the frequency count of a key in an index reaches
zero, this means the key is not being referred to by any map-
ping anymore. However, immediate deleting of such keys
in the index might not be efficient. For instance, if a self-
balancing tree is used for the index, a lazy-deletion approach

could avoid a number of re-balancing operations [10]. To en-
able lazy-deletion, we delay the deletion by still maintaining
the keys with zero frequency count. A simple condition to
check if a frequency count > 0 must be added in the search
function of the index implementation. A list of keys with
zero frequency count is maintained until its size reaches a
certain threshold; then, a batch deletion operation will be
carried out. There might be the case that by the time the
batch deletion is started, some of the keys in the list have
a frequency count greater zero. By just ignoring these keys
after delaying the delete operation, we can save unnecessary
insert/delete operations on them.

We can use balanced trees or hash tables for indexing keys
for both one-way and ring indices. Hash tables can only be
used for the equality predicates while balanced trees also
support range scans.

3.3 Incremental Algorithms

The above indexing techniques allow efficient implementa-
tion of incremental algorithms for CQELS’ operators. This
section gives an overview on the algorithms of four opera-
tors that are heavily used in evaluating the queries of the
Challenge, namely Aggregation, Minus, Join, and Top-K. In
stead of going into technical details [14], we illustrate the
algorithms on the queries of the Challenge.

Aggregation. An aggregate operator is of the form
Gi,..., GmAggfl(Xl)a“-vfk(Xk)’

where G1, ..., Gy, are variables, X1, ... X} are vector of vari-
ables, and fi,... fr are aggregate functions. For example,
lines 7 and 12 in Q2 form the operator

7PE, ?pSAGG MEDIAN (2tares7tip)

which computes the profit of trips that originates from cell
(?PE, 7pS). Given a set of mappings, this operator divides
the mappings into groups of mappings having common val-
ues on (?pE, 7pS). Each group is associated with an output of
the form (g, m), where g is the group identifier, computed as
the composite key of the value bindings on 7pE, 7pS, and m
is the median of the sum of ?fare and ?tip provided by the
mappings belonging to g. This value is updated whenever

the set of mappings identified by g changes in the case of
new or expired mappings.

Our aggregate algorithm maintains a one-way indexed
buffer EXP to store the input mappings that contribute to
the aggregate value. Here, the group identifiers g are the
keys of EXP. When a mapping

w = {7pE — pe, 7pS — ps, ?fare > fare, 7tip — tip}

is processed, pe and ps are used to identify the group g that u
belongs to. We then find in EXP an index entry £ with g
and create such an entry if g has not yet existed (in case of
new mappings). Then, fare and tip are used to update the
median value. Depending on whether p is a new or expired
mapping, £ is updated accordingly.

Minus. A minus operator (R; \ R2) between two input
buffers R; and Rs produces mappings in R; which are not
compatible with any mapping in R2. This operator is asym-
metric because handling new or expired mappings depends
on whether the mapping is from R; or R2. Its incremental
evaluation is divided into four cases, corresponding to four
incremental Equations (1)-(4). Here, u = R iff there exists
some p’ € R such that p =y, where the notion of compat-
ibility between mappings was introduced in Section 2.

(Riwp)\ Re = { Egi _ gzg o ioftﬁergwliqsi @
(B —p)\ Re = { Egi s gz% " i)ftﬁergwli%sz)

Ri\(Rowp) = (Ri\R)\{p |4 €eRinp=p'} (3)

Ri\(Re—p) =R\ R)U{p [p eRAnp=p} (4)
Consider the subquery from line 24 to line 36 of Q2 (Ex-
ample 5) which finds empty taxis. The FILTER NOT EXISTS
keyword issues a MINUS operator on two input buffers R
and Rz of the following forms:

7taxi — tz,
?pLon2 — plon,, ,,

Ttrip2 > trip,,
?pLat2 — plat,,
?dropoff — dropoff

R

Ry = {?trip3 > trip,, 7taxi — tz, ?pickup — pu}.

Our implementation of the minus operator is tree-based.
For a new mapping u, we first check if it comes from the
left (R1) or the right side (R2). Depending on the case, the
mapping is then evaluated using either Equation (1) or (3).
Similarly, expired mappings are handled case-wise by either
Equation (2) or (4). This algorithm uses one-way indices
for the input and output buffers. The indexing keys are
generated as composite keys from shared binding values be-
tween the two input buffers, which are values of 7taxi in
this case. These keys are used to check the existence of
compatible mappings from each input buffer.

Join. The join operator works on two input buffers and
exploits ring indices to retrieve compatible mappings. Con-
sider @2 from Example 5 and the join between the results
of the two subqueries: the first one from line 4 to 18 and
the second one from line 19 to 41. The two input buffers for
this join operator are of the form:

R1 = {{?pE — pe,, 7pS > ps,, 7prof — p1},...}
Ry = {{?pE — pe,, 7pS > ps,, TnoEmptyTaxis — e2},...}

Y ATV VI YV

1IA5500040050008005900 c9.4

A AR A
Y A A
Y R A A
Y A A I

CINr s s 700V 0077 T
7

i i = (/7772724777227 7V 27777
line|defiped by f|(k1¢) =|p/e TN eRE] cos
V1N 222774777777V 77277 ’ 1"
CIN LI LI 7 A7 77770V 77 A~ A — M
G e
/ VINV 222774277777V 77777
o A
0] 10000000080000000 00 Al
Y AT o)
|4 10000000042000000880600 c9.6
100022222320000080052
b2 w H

(a) Index grid (b) Cell visiting order
Figure 3: A top-k computation example

Our join algorithm maintains two ring-indices B and B-
for Ry and Rq, respectively. When R; gets a new mapping
w1 = {7pE — pe, ?pS — ps, 7prof — p}, the two values pe
and ps will be used to compute a key to probe all mappings
in Ry which are compatible with w1, that is, mappings of
the form ps = {?pE — pe, ?pS — ps, TnoEmptyTaxi +— e}}.
From these inputs, results of the following form are created:
u={?pE — pe, 7pS — ps, 7prof — p, TnoEmptyTaxi — e}}.

Top-K. A top-k operator gets as input a buffer of mappings.
As new mappings are fed into the buffer or old mappings
get expired, the operator continuously reports a set of k
mappings that have highest scores according to a preference
function f. The top-10 operator in Q2 consumes the output
of the Join operator (Fig. 1) which are mappings of the form

u = {?pE — pe, 7pS — ps, 7prof — p, 7noEmptyTaxi — e}

and computes 10 mappings with highest scores computed by
the preference function

f(?prof, TnoEmptyTaxi) = ?prof/?noEmptyTaxi = p/e.

The continuous top-k operator in CQELS is implemented
according to the Top-k Monitoring Algorithm (TMA) [15].
Follow this approach, for @2, we use a regular grid to index
the valid mappings. The extent of each cell on each dimen-
sion is 0 so that cell ¢;; contains all mappings with p €
[t-0,(i+1)-d) and e€ [j-6,(j+1)-0). Conversely, given
a mapping u of the above form, its covering cell can be de-
termined as c¢; ; where i=|p/d] and j=|e/J]. A cell stores a
linked list of pointers to its mappings to support fast insert-
ing and evicting of mappings in a first-in-first-out manner.

Let u;={?pE—>pe,, 7pS>ps,, 7prof—p;, 7TnoEmptyTaxi>e; }
be the mapping with i-th highest score, denoted by score(u;),
on function f. The influence region of Q2 is the set of cells
containing some values p,e such that p/e > pig/eo. In
Figure 3, the line defined by p/e = f(u10) divides the grid
into two parts, the lower part contains points (p’, ¢’) having
p’ /e’ > f(u10) while the upper part contains points (p”,e’)
having p”’/e” < f(u10). Note that (0,0) is excluded from
this line. The influence region contains the shaded cells.

Observe that f is increasing monotone on p and decreasing
monotone on e, meaning that

V(p',e), (" e): p' = p" = f(pe) = f(p",€)
V(p,e), (p,e”): e > e” = f(p,e’) < f(p,€”).

This property guarantees that the bottom right corner of
each cell has the highest score on f compared to other points
in the cell. We say this point holds the mazscore of the cell.

To find the initial top & mappings, we start with an empty
toplist and a barscore initialized to —oo. This value is used
to store the score of the score of the k-th mapping in toplist.

Feeder
A
CSV Input
query registration ------ > RDF stream ————>
read CSV lines === > write CSV output =~~~y

Figure 4: Evaluation Deployment

Then, we travel the grid in a descending order on the cell’s
mazxscore, starting from the bottom right cell like ¢g ¢ in Fig-
ure 3b. To determine the second cell to visit, we just need
to compare the mazscore of the two neighboring cells cg 5
and cs g, that is, score(u') and score(y”). The former dom-
inates the score of the stripped area while the latter dom-
inates that of the shaded area. Suppose that score(u”) >
score(u'), then ¢y 5 is visited next. For the third cell, follow-
ing the same strategy, we pick the one with highest mazxscore
between cs ¢, cs,5, and cg 4.

In each cell, all mappings belong to the cell are examined
whether they give score higher than barscore. If yes, toplist
is updated and barscore might be updated, depending on
the current length of toplist. The travel only visits cells with
mazxscore > barscore, thus only visits cells in the influence
region of the k-th mapping.

To deal with updates of input buffer, the operator check
if the new mapping falls into the influence region of the k-th
mapping. If yes, toplist and barscore are updated; otherwise,
no computation is needed. Similarly, an expired mapping
only triggers recomputation if it belongs to the influence
region of the k-th mapping. Besides, the mapping is removed
from the cell it belongs to.

4. DEPLOYMENT AND TEST

Figure 4 describes our setup to evaluate Q1 and Q2 using
CQELS. Each query is registered with CQELS via a Lis-
tener. A Feeder reads CSV input lines from the input data
file, converts the lines into RDF triples, and feeds them into
CQELS. CQELS outputs RDF streams to respective listen-
ers. The Listeners then convert these outputs to the CSV
format defined by the Challenge and write them to respec-
tive output files. Under this setup, the delay and execution
times in our solution are as follows:

e The delay time for each output with respect to a query
is calculated as the duration between right after read-
ing the input (by Feeder) that triggers the output and
the time right before writing the output to the respec-
tive output file (by the respective Listener).

e The execution time is calculated as duration between
the time when the first input line is read by Feeder
until the time when the final output is streamed out.
This means the time used to write output to files is
also included.

To guarantee correctness, we also implemented a base-line
system which simply recomputes the queries every time a
new input arrives. We have checked that CQELS and this

Avg. delay time (ms) | Exe. time (s)
Indv. | Mixed | Indv. | Mixed
Q1 Q2 Q1 Q| Q2 Q1 & Qo
C | 0.022 0.068 0.023 0.075 | 65.77 69.02 76.64
B 5 194 174 220 | 5000 22000 28000

Table 1: Compare CQELS and the base-line system

system agree on the outputs. Furthermore, we compare their
performance to see the effect of the optimization techniques
implemented in CQELS.

Our evaluation was done on a host system using dual-
core Intel(R) Xeon(R) CPU 2.50GHz processor with 8GB,
running Ubuntu Linux 3.8.0-29-generic.

Table 1 reports the average delay time and execution time
when running @1 and Q2 individually (Indv. mode) and si-
multaneously (Mixed mode), on CQELS (denoted as C) the
base-line system (denoted as B). The test was conducted on
the data file comprising the first 20 days of data. Based on
execution time, we observe that with respect to @1, CQELS
is about 76 times faster than simple recomputation, while
for the more complicated Q2 (resp. the mixed case), the
improvement factor is about 320 (resp., 360) times.

The queries of the Grand Challenge are designed on win-
dows of 30 minutes on the input streams, and a window of 15
minutes for computing the profit (Q2). In our experiment,
we tried another step by varying the window sizes to 60, 120,
and 240 minutes to see how CQELS handles heavy loads of
input buffers.

We were a little surprised that the delay time stays almost
identical when the window size varies. This can be explained
as follows: with real taxi trips data, the different window
sizes of 30, 60, 120, or 240 minutes do not introduce drastic
change in the set of trips grouped by pickup (and drop-off)
cells. Therefore, a lookup in the indexed buffer does not take
longer with bigger window size. Thus, it makes almost no
difference in processing one new incoming input event with
such varying window sizes. In other words, the window size
of 30 minutes is ideal to analyze the scenario on real-life data
on taxi trips.

Our solution installed in a VirtualBox image® is available at

http://graphofthings.org/debs2015/cqels.zip.

S. CONCLUSIONS

This paper describes our solution for the DEBS 2015 Grand
Challenge using CQELS, the leading engine in the RDF
Stream Processing community. We presented novel tech-
niques implemented in CQELS that are relevant for gaining
performance in evaluating the queries of the Challenge. Our
experimental results confirm the effect of the techniques by
a comparison to a base-line system built with recomputa-
tion approach. Furthermore, our experiment on varying the
window sizes shows an interesting property of real-life taxi
trip data, which suggests that the window size of 30 minutes
is perfect to analyze the scenario.

5The instruction how to run the evaluation is given in the
README file at current folder when the image starts.

Acknowledgement

This work has emanated from research supported in part by
research grants from Irish Research Council under Grants
No. GOIPD/2013/104 and No. GOIPG/2014/917, European
Commission under Grant No. FP7-ICT-608662 (VITAL),
and by the Austrian Science Fund (FWF) project P26471.

6.
1]

[10]

11

[12]

[13]

[15]

[16]

REFERENCES

L. Aders, R. Buffat, Z. Chothia, M. Wetter,

C. Balkesen, P. M. Fischer, and N. Tatbu. DEBS’11
Grand Challenge: Streams, Rules, or a Custom
Solution? Technical report, ETH, Department of
Computer Science, 2011.

D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic.
EP-SPARQL: a unified language for event processing
and stream reasoning. In WWW, pages 635-644, 2011.
A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: semantic foundations and
query execution. VLDB J., 15(2):121-142, 2006.

D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and
M. Grossniklaus. C-SPARQL: a continuous query
language for rdf data streams. Int. J. Semantic
Computing, 4(1):3-25, 2010.

C. Bobineau, L. Bouganim, P. Pucheral, and

P. Valduriez. PicoDMBS: Scaling Down Database
Techniques for the Smartcard. In VLDB, pages 11-20,
2000.

J.-P. Calbimonte, 0. Corcho, and A. J. G. Gray.
Enabling ontology-based access to streaming data
sources. In ISWC (1), pages 96-111, 2010.

L. Ding and E. A. Rundensteiner. Evaluating window
joins over punctuated streams. In CIKM, pages
98-107, 2004.

R. C. Fernandez, M. Weidlich, P. Pietzuch, and

A. Gal. Scalable stateful stream processing for smart
grids. In DEBS, pages 276-281, 2014.

D. Geesen and M. Grawunder. Odysseus as platform
to solve grand challenges: DEBS grand challenge. In
DEBS, pages 359-364, 2012.

L. Golab, S. Garg, and M. T. Ozsu. On indexing
sliding windows over online data streams. In EDBT,
pages 712-729, 2004.

Z. Jerzak, T. Heinze, M. Fehr, D. Grober, R. Hartung,
and N. Stojanovic. The DEBS 2012 grand challenge.
In DEBS, pages 393-398, 2012.

Z. Jerzak and H. Ziekow. The DEBS 2015 Grand
Challenge. In DEBS, June 2015.

A. Koliousis and J. S. Sventek. Glasgow automata
illustrated: DEBS grand challenge. In DEBS, pages
353-358, 2014.

D. Le-Phuoc. A Native and Adaptive Approach for
Linked Stream Data Processing. PhD thesis, Digital
Enterprise Research Institute, National University of
Ireland, Galway, 2013.

K. Mouratidis, S. Bakiras, and D. Papadias.
Continuous monitoring of top-k queries over sliding
windows. In SIGMOD, pages 635-646, 2006.

A. Owens. An Investigation Into Improving RDF Store
Performance. PhD thesis, University of Southampton,
April 2011.

(17]

(18]

(19]

[20]

(21]

S. Perera, S. Suhothayan, M. Vivekanandalingam,

P. Fremantle, and S. Weerawarana. Solving the grand
challenge using an opensource CEP engine. In DEBS,
pages 288-293, 2014.

J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of sparql. ACM Trans. Database Syst.,
34:16:1-16:45, September 2009.

D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and

M. Hauswirth. A native and adaptive approach for
unified processing of linked streams and linked data.
In ISWC (1), pages 370-388, 2011.

D. L. Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz,
T. Eiter, and M. Fink. Linked stream data processing
engines: Facts and figures. In ISWC - ET, pages
300-312, 2012.

T. Rabl, K. Zhang, M. Sadoghi, N. K. Pandey,

A. Nigam, C. Wang, and H. Jacobsen. Solving
manufacturing equipment monitoring through efficient
complex event processing: DEBS grand challenge. In
DEBS, pages 335-340, 2012.

