
Stream Reasoning-Based Control of Caching
Strategies in CCN Routers

Harald Beck∗, Bruno Bierbaumer†, Minh Dao-Tran∗, Thomas Eiter∗,
Hermann Hellwagner† and Konstantin Schekotihin†

∗ TU Wien, Vienna, Austria, Email: {beck,dao,eiter}@kr.tuwien.ac.at
†Alpen-Adria-Universität Klagenfurt, Austria, Email: bruno@itec.aau.at, firstname.lastname@aau.at

Abstract—Routers in Content-Centric Networking (CCN) may
locally cache frequently requested content in order to speed
up delivery to end users. Thus, the issue of caching strategies
arises, i.e., which content shall be stored and when it should
be replaced. In this work, we employ, and study the feasibility
of, novel techniques towards intelligent control of CCN routers
that autonomously switch between existing caching strategies in
response to changing content request patterns. In particular, we
present a router architecture for CCN networks that is controlled
by rule-based stream reasoning, following the recent formal
framework LARS which extends Answer Set Programming for
streams. The obtained possibility for flexible router configuration
at runtime allows for versatile network control schemes and
may help advance the further development of CCN. Moreover,
the empirical evaluation of our feasibility study shows that the
resulting caching agent may give significant performance gains.

I. INTRODUCTION

The Internet evolved from a small research network that
focused on sending text messages, to a global network of
content distribution; Cisco estimates that by 2019, 80% of the
Internet traffic will be video content [1]. Commercial Content
Distribution Networks (CDNs), built as overlays on the tradi-
tional Internet architecture, have been developed to cope with
today’s content delivery demands. In general, though, today’s
Internet architecture does not fit content-heavy applications
well that have evolved over the decades [2].

In response to this, various Future Internet research efforts
are being pursued, among them Information-Centric Network-
ing (ICN) [3], and in particular Content-Centric Networking
(CCN) [4] whose concepts are being taken further by the
Named Data Networking (NDN) project [5]. As we are con-
cerned with the basic CCN router functionality only, we will
subsequently just refer to the CCN approach.

CCN attempts to replace the current location-based address-
ing with a name/content-based approach. That is, data packets
shall be routed and retrieved based on what the user wants,
not from where it is retrieved. In a sense, CDNs do provide
this, yet CCN supports this at the network level by making
content identifiable.

An important element of the CCN architecture is that
every CCN router has a cache (content store) which holds

This work was partly funded by the Austrian Science Fund (FWF) under
Project “Distributed Heterogeneous Stream Reasoning” (P26471), Doctoral
Programme (DK) “Logical Methods in Computer Science” (W1255-N23),
and CHIST-ERA Project “A Context-Adaptive Content Ecosystem Under
Uncertainty” (I1402).

content items that were recently transmitted via the router.
A request for a content item may be satisfied by a router
rather than routed to the original content source; thus data
is delivered to end users faster. A caching strategy defines
which content is stored, on which routers, and for how long
before being replaced. There is a rich literature of strategies
and mechanisms for ICN/CCN [6], [7], [8], [9], with a variety
of parameters influencing the overall behavior of a network.

The caching strategies can be roughly classified into adap-
tive and reactive ones. The adaptive strategies use information
about interests of users saved by a network logging system.
This information is then used to estimate popularity of content
in the future and push it to the caches of routers. Therefore,
adaptive strategies are mostly used in CDNs which, by their
nature, are tightly integrated with the networks of content
providers. Strategies used in CCNs are essentially reactive,
i.e., they use a kind of heuristic to predict whether a forwarded
content chunk might be interesting for other users. If so, the
chunk is added to the router’s cache. Some of the reactive
strategies go even further and allow for synchronization of
caching decisions between multiple routers. For instance, the
most popular content must be cached by routers of the lowest
levels in the network topology. Such strategies, however, often
work only for specific topologies, like trees.

Recent evaluations of CCN caching strategies, like [6],
indicate that no strategy is superior in all tested scenarios.
Furthermore, selecting a good caching strategy and fine-tuning
its parameters is difficult, as the distribution of the interests of
consumers in content may vary greatly over time [10], [11].

Example 1 Consider a scenario in which some music clips
get very popular over a short period of time. In this case, net-
work managers may manually configure the routers to cache
the highly popular content for some time period, and then to
switch back to the usual caching strategy when the interests
get more evenly distributed. Since this time period is hard to
predict, it would be desirable that routers autonomously switch
their caching strategies to ensure high quality of service. �

As real CCNs are not deployed yet, there is currently no real-
world experience to rely on, and developing control methods
for caching strategies is not well supported.

Motivated by this, we suggest and investigate a router archi-
tecture allowing for dynamic switching of caching strategies
in reaction to the current network traffic, based on stream rea-

soning, i.e., reasoning over recent snapshots of data streams.

Contributions. Our contributions are summarized as follows.
(1) We present an Intelligent Caching Agent (ICA) for the
control of caching strategies in CCN routers using stream
reasoning, with the following features:

• ICA extends a typical CCN architecture with a decision unit,
resulting in the first implementation of a local and dynamic
selection of an appropriate caching strategy.

• The main component of the decision unit is based on the
rule-based stream reasoning framework LARS [12], which
is an extension of Answer Set Programming (ASP) for
streams (see Section III for details). LARS enables network
managers to control caching strategy selection in a concise
and purely declarative way. Furthermore, the selection con-
trol can be modified without taking a router offline, which
is another important criterion for such systems.

(2) To support the research and testing of dynamic cache
strategy selection, we suggest an extension of ndnSIM [13] – a
popular CCN simulator – for iterative empirical assessment of
proposed solutions for intelligent administration. In particular,
the resulting toolset is designed to: (i) simulate various CCN
application scenarios, (ii) implement different architectures of
CCN routers, (iii) apply rule-based stream reasoning to make
decisions about the caching strategy configuration for every
router in the network, (iv) react quickly to inferred information
from continuously streaming data, and (v) be expressible in an
understandable and flexible way for fast experimentation.
(3) We provide a detailed evaluation of our methods on two
sample scenarios in which content consumers unexpectedly
change their interests, as in Example 1. Our results indicate
a clear performance gain when basic caching strategies are
dynamically switched by routers in reaction to the observed
stream of requested data packets.

In summary, we provide a feasibility study for using
logic-based stream reasoning techniques to guide selection
of caching strategies in CCNs. Moreover, we also provide a
detailed showcase of analytical, declarative stream reasoning
tools for Artificial Intelligence-supported network control. To
the best of our knowledge, no similar work exists to date.
We envision that this approach could prove beneficial beyond
CCN, e.g., for today’s SDN controllers.

It must be emphasized that our approach (the ICA) op-
erates as a high-level controller/manager (of given caching
strategies in routers). Such high-level control schemes can be
expressed declaratively as rules and reasoned about, as shown
in the course of the feasibility study throughout the paper
(Examples 2–4 and Program P in Fig. 1). Low-level control
such as fine-tuning or dynamically learning parameters of the
individual caching strategies, or even developing and analyzing
new ones, is clearly beyond the scope of the approach. This
situation is akin to the robot control discussed in [14]: high-
level control, exerted by a knowledge-based system, represents
the robotic domain and environment, and reasons about and
plans the general actions of the robot, while low-level control,

realized by probabilistic graphical models, senses the environ-
ment and implements the robot’s actuation in the real world.

The specific parameters of the feasibility study were chosen
as to evoke interesting behavior in our synthetic test scenarios,
while being realistic according to the literature on caching in
CCN (cf. Sect. IV).

II. PRELIMINARIES

Content-Centric Networking. The operation of a CCN
network relies on two packet types, Interest and Data packets.
Clients issue Interest packets containing the content name they
want to retrieve. CCN routers forward the Interest packets until
they reach a content provider that can satisfy them with the
content addressed by the content name. The content provider
answers with a Data packet which travels back to the original
content consumer following the previous Interest packets. In
addition to delivering the Data packets back to the consumer,
the CCN routers have the possibility to cache these packets
in their Content Stores. Thus, the Interest packets of another
consumer can be directly satisfied out of a Content Store
without the need of going all the way to the original content
provider. These caches make it possible to keep popular
content near the consumer, satisfy content requests directly
out of caches and reduce the network load [4].
Content Popularity Distribution. Not all content is equally
popular. Usually, there is a small number of very popular
content items and lots of unpopular ones, which is described in
the literature with a Zipf distribution [15]. Let C be a number
of items in the content catalog, α be a value of the exponent
characterizing the distribution and i be a rank of an item in
the catalog. Then, a Zipf distribution predicts the frequency
of Interest packets for item i as [16]:

P (X = i) =
1/iα∑C
j=1 1/j

α
(1)

The variation of the exponent α allows to characterize different
popularity models for contents requested by consumers: (i) if
α is high, the popular content is limited to a small number of
items; (ii) if α is low, every content is almost equally popular.

The content popularity distribution and its exponent α can
be estimated by counting the Interest packets arriving at a
router. The estimated values α̂ of the α parameter can be used
to form rules like: “If a small number of content items has been
very popular (α̂ ≥ 1.8) for the last 5 minutes, then action C
should be applied.”
Caching Strategies. In our feasibility study, a caching
strategy decides which item gets replaced in the full cache
storage if a new item should be added; in other words, we are
concerned with cache replacement strategies. We consider the
following strategies [13]:
• Least Recently Used. The LRU strategy keeps the cached
items in a list sorted by their access time stamps and replaces
the oldest item.
• First-In-First-Out. For the FIFO strategy, the cache is
implemented as a simple queue and replaces the earliest
inserted item.

• Least Frequently Used. The LFU strategy counts how often
an item in the cache is accessed. When caching a new item,
the item with the smallest access count is replaced.
• Random. The Random strategy replaces a random item in
the cache with a new one.

III. INTELLIGENT CACHING AGENT

In this section we present the Intelligent Caching Agent
(ICA), which is an extension of a typical CCN router with
a rule-based stream reasoning decision unit. Stream reason-
ing [17] emerged from stream processing for real-time reason-
ing about data streams. Initially, the focus was on continuous
queries similar to SQL [18], [19]. Later works also dealt with
advanced logic-oriented reasoning [20], [21], [22], [23], [12]
on streaming data.

To the best of our knowledge, stream reasoning techniques
have not yet been considered in CCN. Research on CCN so far
addressed various challenges involving hardware, architecture,
data formats, protocols, and security, among others. We argue
that, from an information-oriented point of view, CCN is to
a large degree a task of stream processing. In particular, the
intelligent cache control of routers that we concentrate on in
this work, adds the need to logically reason over the streaming
data in real-time.

Example 2 Consider the following rules to select a caching
strategy. If in the last 30 sec. there was always a high α̂ value
(some content is very popular), use LFU, and for a medium
value, take LRU. Furthermore, use FIFO if the value is low
and at least once in the last 20 sec. 50% of traffic was real-time
content. Otherwise, use Random. �

Example 2 illustrates that caching strategy control can greatly
be simplified by a fully declarative, rule-based language. Sim-
ilar languages are widely used, for instance, in administration
of firewalls, routing, audit, etc. [24].

Notably, envisaged real-world deployments of CCNs will
involve much more complex rules, where advanced reasoning
features will be beneficial. This includes declarative exception
handling, reasoning with multiple models, defaults, and the
possibility to adjust the involved logic in a flexible and
modular way that allows for easy refinements.
LARS. LARS [12] is a recently suggested language based
on Answer Set Programming (ASP) [25], which provides
operators to deal with stream-specific information; i.e., access
to temporal information and the possibility to limit reasoning
to recent windows of data. Such recent snapshots of data
can also be processed using query languages like CQL [19],
but complex queries quickly become unreadable and are less
modular than rule-based approaches. For instance, selection
of a strategy in Example 2 would require either to write
nested queries or to include another layer in the architecture
where separated query results are compared. In contrast, the
LARS language allows to use simple exchangeable rules
to implement strategy selection criteria. Therefore, stating
decision-making processes as small “if-then” statements is
more natural than encoding them in (often complex) SQL

queries. Furthermore, LARS supports updates at runtime thus
allowing for manual interventions in novel network situations.
The essence of new situations, as understood by human
network managers, can be added to the existing set of rules
without the need for restarting the system. Furthermore, LARS
as such provides a high degree of expressivity and is suitable
for more involved setups which may build on the feasibility
study presented in this paper.

Syntax. A LARS program is a set of rules of the form

α← β1, . . . , βj ,notβj+1, . . . ,notβn (n ≥ 0)

where α, β1, . . . , βn are formulas as described below and not
denotes negation-as-failure. That is, notβi is true if it cannot
be shown that βi is true, i.e., there is no justification for βi.

LARS formulas are defined as follows: Let a be an atom,
i.e., an elementary propositional statement that can be either
true or false, and t ∈ N. The set F of formulas is defined by
the grammar ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | �wϕ |
3ϕ | 2ϕ | @tϕ. Besides negation, conjunction, disjunction
and implication, LARS formulas may comprise the following
operators:
• window operator �w limits evaluation of a formula ϕ to

the temporal range [t−w, t], where t is the current time;
• temporal quantification, denoted 3 and 2, is used to

query whether a formula ϕ holds at some time point in
a selected window, or at all time points, respectively;

• temporal specification operator @t′ allows to ‘jump’ to a
specific time point t′ and to evaluate a formula ϕ at t′.

Example 3 The implication ϕ = �302high → use(lfu) in-
formally specifies the following: if in the last 30 sec. (�30)
the predicate high always (2) holds, use lfu . �

Example 4 Fig. 1 formalizes the rules given in Example 2. In
this LARS program, the atom α̂(V) is used to retrieve from
the router an estimation of the α value V . Similarly, rtm50
is true if at least 50% of the content forwarded by the router
was real-time. Rules (r1), (r2) and (r3) are used to derive
high,mid and low for each time T , measured in sec., in the
selected interval of the last 30 sec., if the estimated value of
the parameter α is above 1.8, between 1.2 and 1.8 and below
1.2, respectively. Note, we use integers to represent real values
as required by our LARS implementation and expressions like
“V ≥ 18” is familiar infix notation for predefined atoms of the
form ≥ (V, 18).

Next, rules (r4), (r5) and (r6) are used to derive commands
to the router and are already discussed in Example 3. Finally,
the default application of the random strategy is decided by
the rules (r7) and (r8). Thus, (r7) derives done if one of the
strategies is selected. use(random) is derived in case when
done cannot be derived, i.e., none of the strategies is selected.�

System Description. As shown in Fig. 2, an Intelligent
Caching Agent (ICA) extends the architecture of a common
CCN router comprising a networking unit with a number of
communication interfaces. This unit is responsible for the basic

r1 : @T high ← �30@T α̂(V), V ≥ 18. r5 : use(lru)← �302mid .

r2 : @Tmid ← �30@T α̂(V), 12 ≤ V < 18. r6 : use(fifo)← �302low , �203rtm50.

r3 : @T low ← �30@T α̂(V), V < 12. r7 : done ← use(lfu) ∨ use(lru) ∨ use(fifo).

r4 : use(lfu)← �302high. r8 : use(random)← not done.

Fig. 1: Program P deciding which caching strategy to use

Reasoner

Networking

UnitEvent

Database

KB

parameters

state

snapshot

commands

configuration

C
O
N
T
R
O
L
L
E
R

Output

Input

Cache

chunks

Standard CCN RouterDecision unit

Fig. 2: Architecture of an Intelligent Caching Agent (ICA)

functionality of the router such as processing, forwarding of
packets, etc. The networking unit is monitored by a controller,
which implements various supervising functions including a
number of caching strategies. The decision unit of an ICA
consists of three main components: (1) an event database (DB)
storing snapshots of parameters observed by the controller,
(2) a knowledge base (KB) containing the ICA logic and
(3) a reasoner that decides about configuration of the controller
given the KB and a series of events in the DB. The components
(2) and (3) are based on the LARS framework described above.
Simulation Environment. We implemented our ICA ap-
proach by extending the CCN simulator ndnSIM 2.0 [13].
Thus, we added a Content Store Tracer component to observe
states of the router components of the simulator and push this
data to the event database. Similarly to [26], our extension of
ndnSIM periodically triggers the LARS-based solving process
for a decision about the controller configuration based on the
events stored in the database as well as functions estimating
values of α and rtm50.

IV. EVALUATION

We now present the evaluation of the resulting simulation
system presented in Fig. 2. We show the applicability of our
architecture for dynamic caching strategy control and demon-
strate the potential performance gains over static caching
approaches. For a more detailed version see [27].

A. Setup

We selected the Abilene network from the Rocketfuel
project [28], which has plausible properties of a future CCN
network [29]. For every simulation run (see below), we con-
nected each of the 1000 consumers uniformly at random to
one of the 11 routers. All content providers were connected
to exactly one router.
Scenarios. We used two scenarios to test reaction to content
popularity changes:

• LHL starts with a low α value, then changes to a high value,
and then back to low.
• HLH conversely starts with a high α value, changes then
to low and back to high.

Although the parameter α content popularity is central to the
caching performance, there is no consent in the CCN literature
about the exact value. We take the extremal values found
in [29], [16], [7], i.e., α = 0.4 (Low) and α = 2.5 (High) .

The total time span of each simulation is 1800 secs, and
we switch the value of α after 600 and 1200 secs. In each of
these 600-secs intervals, each consumer starts downloading a
video at a time point selected uniformly at random.

Caching Strategies. Recall that our goal is here neither a
study of given caching mechanisms as such, nor the develop-
ment of a new static caching strategy. Instead, we are interested
in evaluating (i) our architecture for flexible configuration
based on stream reasoning techniques, and (ii) our hypothesis
that switching between strategies locally depending on the
situation may lead to better performance.

To this end, we employ the (static) strategies Random
and LFU for experimentation [7] in two dynamic settings,
where different strategies switch between them flexibly. The
hypothetical Admin strategy is manually configured, in line
with the experimentation setup. Here, all routers change their
caching strategy exactly at a phase change from L to H or vice
versa. When α is low (L phase), Random is used on all routers,
else LFU. The Intelligent Caching Agent (ICA) strategy does
not enforce the same strategy for all routers and switches the
caching mechanism based on locally observed data streams.

Simulation System Parameters. We have analyzed the
typical setups in the literature [29], [4], [30], [31] and selected
the following parameters: in each session of 1800 sec., 1000
users might query 50 videos, where every video is split into
1000 chunks of 10 kB each. Since the literature disagrees on
the sizes of router caches, we executed every experiment with
different sizes including caches for 50, 250, 500, 2000 and
5000 chunks. That is, every router could store 0.1, 0.5, 1, 4
or 10% of all available chunks.

Performance Metrics. We use two metrics that are typically
used in the CCN community for evaluating caching mech-
anisms [6]. First, the cache hit ratio is the number of cache
hits per total number of requests. A cache hit is counted when
an Interest packet can be satisfied by some router’s Content
Store. Second, the cache hit distance is the average number of
hops for a Data packet, i.e., the number of routers travelled
between the router answering a request and the consumer that

0

20

40

60

80

100

120

140

0

200

400

600

800

1000

1200

1400

1600

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

Nu
m

be
r o

f a
ct

iv
e

us
er

s

Ca
ch

e
hi

ts

Time [s]

ICA Admin LFU Random Number of active users

Fig. 3: Cache hits in simulation run for LHL

had issued it. We aim for a high cache hit ratio and a low
cache hit distance.

B. Results

Due to space constraints, we omit the first part of the
evaluation in which we determined 1% to be a reasonable
cache percentage that is large enough to measure benefits
by intelligent caching, yet small enough to be realistic,
given the hardware constraints of potential future real-world
deployments (cf. [27]). We focus here on the performance
analysis, for which we ran 30 tests for every combination of
the 4 caching strategies (Random, LFU, Admin, ICA) and 2
scenarios (LHL and HLH), i.e., a total of 240 runs.

Reacting to Changing Content Popularity. Fig. 3 shows
the development of the cache hits over time during a single
simulation run for Scenario LHL. The number of active users
(right y-axis) initially increases rapidly and it then varies
slightly at about 95.

The cache hit increase after 600 sec. is observed for all
caching strategies. Conversely, one can see the reverse effect
after switching back to a more equal content interest distribu-
tion after 1200 sec. The Random strategy is in general slowly
responding to the new situation and shows a steady increase in
the middle H phase compared to the rapid increase of hits seen
with the other strategies. Note that the Random strategy stores
and replaces arbitrary chunks. If requested content becomes
less equally distributed, the stored chunks tend to be more
often those that are more popular. This explains why cache
hits are increasing also under Random and why its reaction is
slower.

LFU reacts well to the change from L to H but still has
to deal with the recent history of cache items gathered in the
phase with low α. Thus, it does not achieve as high hit rates
as the alternating cache strategies Admin and ICA.

It is no surprise that the hypothetical, manual Admin
strategy shows very fast adaptation in both situations where
the value α changes. Notably, the reactive ICA strategy shows
about the same performance as Admin.

Interestingly, up to 5 routers used the Random strategy in
the H phase under the ICA strategy. At this point, the benefit of
dynamic and local caching strategy control becomes evident:
while the global content popularity is configured to be high
(α = 2.5), the local estimates α̂ of some routers might be

different. Here, intelligent control by ICA can account for
differences arising from topological effects.

Performance Comparison. Fig. 4 presents an overview
of our performance comparisons, indicating the performance
of caching strategies LFU, Admin and ICA in relation to
Random, which is used as baseline (100%). All box plots
visualize the aggregated results over 30 individual runs with
the respective caching strategy.

Cache Hit Ratios. Figure 4a compares the cache hit ratios of
all strategies in scenario LHL. We see that LFU has a higher
variance than Random and is slightly worse on average. Both
dynamic strategies outperform the static ones.

Figure 4b depicts the converse scenario HLH. In the two
H phases, which comprise two thirds of the overall runtime,
LFU works well and thus the ratios are closer to each other
than in LHL. Still, ICA is performing better than the other
strategies, even compared to Admin. Here, the benefit of
separate strategies for routers becomes visible.

Cache Hit Distances. Similarly as for cache hit ratios, Fig-
ures 4c and 4d show the aggregated cache hit distances for
for scenarios LHL and HLH, respectively.

Also according to this metric, Admin and ICA deliver better
performance than the static approaches. Figure 4c again shows
a clear difference between static and alternating strategies, in
terms of mean values and of variance. Figure 4d confirms
the better performance of LFU compared to Random for the
Scenario HLH. As for cache hit ratio, LFU is also close to
the Admin strategy in terms of cache hit distance. Finally, as
above, ICA is even better than Admin due to its flexibility.

In summary, dynamic switching is advantageous in both
settings. ICA is at least as good as Admin in LHL, and proves
to be the best strategy for HLH. Note, both dynamic strategies
lead to a decreased cache hit distance relative to the Random
strategy, eventually resulting in lower content access delays.

V. CONCLUSION

We presented a feasibility study of how rule-based reasoning
techniques can be used for adaptive network control tasks that
depend on streaming data. More specifically, we provided an
architecture for the dynamic selection of caching strategies in
future CCN routers. For the proof of concept in this study,
we focused on selecting the cache replacement strategies
in the CCN routers. Our empirical evaluations indicate that
dynamic switching of caching (cache replacement) strategies
in reaction to changing user (content access) behavior may
yield performance gains.

We focused on a principled approach of automated decision
making by means of high-level reasoning on stream data and
provided a purely declarative control unit. We developed and
presented a toolset that combines the CCN simulator ndnSIM
2.0 with a control and decision unit based on the formal
framework LARS that extends Answer Set Programming for
stream reasoning. Depending on parameters and events moni-
tored from the CCN network simulator, our Intelligent Caching

(a) LHL cache hit ratio (b) HLH cache hit ratio (c) LHL cache hit distance (d) HLH cache hit distance

Fig. 4: Aggregated evaluation results over 30 runs for each caching strategy

Agent periodically triggers the LARS-based reasoning process
to dynamically control the local router’s caching strategy.

Full-scale industrial solutions will involve much more com-
plex decision rules and processes, and it remains to be studied
how well the architecture and in particular stream reasoning
tools will work in complex routers and traffic situations, and
how the approach can be exploited for protocol design.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Forecast and Methodology,
2014-2019,” White Paper, 2016.

[2] M. Handley, “Why the Internet Only Just Works,” BT Technology
Journal, vol. 24, no. 3, pp. 119–129, Jul. 2006.

[3] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A Survey
of Information-Centric Networking Research,” IEEE Communications
Surveys and Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. Braynard, “Networking Named Content,” in Proc. CoNEXT,
2009, pp. 1–12.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM SIGCOMM Comp. Comm. Rev., vol. 44, no. 3, pp. 66–73, 2014.

[6] M. Zhang, H. Luo, and H. Zhang, “A Survey of Caching Mechanisms
in Information-Centric Networking,” IEEE Communications Surveys and
Tutorials, vol. 17, no. 3, pp. 1473–1499, 2015.

[7] S. Tarnoi, K. Suksomboon, W. Kumwilaisak, and Y. Ji, “Performance
of Probabilistic Caching and Cache Replacement Policies for Content-
Centric Networks,” in Proc. IEEE LCN, 2014, pp. 99–106.

[8] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “WAVE:
Popularity-based and Collaborative In-network Caching for Content-
oriented Networks,” in IEEE INFOCOM Workshops, 2012, pp. 316–321.

[9] C. Bernardini, T. Silverston, and O. Festor, “MPC: Popularity-based
Caching Strategy for Content Centric Networks,” in Proc. IEEE ICC,
2013, pp. 3619–3623.

[10] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding User
Behavior in Large-scale Video-on-Demand Systems,” in Proc. EuroSys,
2006, pp. 333–344.

[11] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. B. Moon, “Analyzing the
Video Popularity Characteristics of Large-scale User Generated Content
Systems,” IEEE/ACM Trans. Netw., vol. 17, no. 5, pp. 1357–1370, 2009.

[12] H. Beck, M. Dao-Tran, T. Eiter, and M. Fink, “LARS: A Logic-based
Framework for Analyzing Reasoning over Streams,” in Proc. AAAI-15,
2015, pp. 1431–1438.

[13] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM
2.0: A New Version of the NDN Simulator for NS-3,” NDN, Technical
Report NDN-0028, 2015.

[14] S. Zhang, M. Sridharan, M. Gelfond, and J. Wyatt, “KR3: An Archi-
tecture for Knowledge Representation and Reasoning in Robotics,” in
Proc. NMR, 2014.

[15] D. Rossi and G. Rossini, “On Sizing CCN Content Stores by Exploiting
Topological Information,” in Proc. IEEE INFOCOM Workshops, 2012,
pp. 280–285.

[16] G. Rossini and D. Rossi, “A Dive into the Caching Performance of
Content Centric Networking,” in Proc. IEEE CAMAD, 2012, pp. 105–
109.

[17] E. Della Valle, S. Ceri, F. van Harmelen, and D. Fensel, “It’s a
Streaming World! Reasoning upon Rapidly Changing Information,”
IEEE Intelligent Systems, vol. 24, no. 6, pp. 83–89, 2009.

[18] S. Babu and J. Widom, “Continuous Queries over Data Streams,” ACM
SIGMOD Record, vol. 3, no. 30, pp. 109–120, 2001.

[19] A. Arasu, S. Babu, and J. Widom, “The CQL Continuous Query Lan-
guage: Semantic Foundations and Query Execution,” VLDB J., vol. 15,
no. 2, pp. 121–142, 2006.

[20] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele, “Engineering an Incremental ASP Solver,” in Proc. ICLP,
2008, pp. 190–205.

[21] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and
T. Schaub, “Stream Reasoning with Answer Set Programming. Prelim-
inary Report.” in Proc. KR, 2012, pp. 613–617.

[22] C. Zaniolo, “Logical Foundations of Continuous Query Languages for
Data Streams,” in Proc. Datalog 2.0, 2012, pp. 177–189.

[23] A. Mileo, A. Abdelrahman, S. Policarpio, and M. Hauswirth, “Stream-
Rule: A Nonmonotonic Stream Reasoning System for the Semantic
Web,” in Proc. RR, 2013, pp. 247–252.

[24] E. Nemeth, G. Snyder, T. R. Hein, and B. Whaley, UNIX and Linux
System Administration Handbook, 4th ed. Prentice Hall, 2010.

[25] G. Brewka, T. Eiter, and M. Truszczyński, “Answer Set Programming
at a Glance,” Comm. of the ACM, vol. 54, no. 12, pp. 92–103, 2011.

[26] T. M. Do, S. W. Loke, and F. Liu, “Answer Set Programming for Stream
Reasoning,” in Proc. Canadian AI, 2011, pp. 104–109.

[27] H. Beck, B. Bierbaumer, M. Dao-Tran, T. Eiter, H. Hellwagner,
and K. Schekotihin, “Stream Reasoning-Based Control of Caching
Strategies in CCN Routers,” Tech. Rep., 2016. [Online]. Available: https:
//drive.google.com/file/d/0B1USOxZtZtSFME96MVRDT2FXVUE

[28] N. T. Spring, R. Mahajan, D. Wetherall, and T. E. Anderson, “Measuring
ISP Topologies with Rocketfuel,” IEEE/ACM Trans. Netw., vol. 12,
no. 1, pp. 2–16, 2004.

[29] D. Rossi and G. Rossini, “Caching Performance of Content Centric
Networks under Multi-path Routing (and More),” Relatório técnico,
Telecom ParisTech, 2011.

[30] R. B. Mansilha, L. Saino, M. P. Barcellos, M. Gallo, E. Leonardi,
D. Perino, and D. Rossi, “Hierarchical Content Stores in High-Speed
ICN Routers: Emulation and Prototype Implementation,” in Proc. ACM
ICN, 2015, pp. 59–68.

[31] G. Rossini, D. Rossi, M. Garetto, and E. Leonardi, “Multi-Terabyte and
Multi-Gbps Information Centric Routers,” in Proc. IEEE INFOCOM,
2014, pp. 181–189.

