
Contrasting RDF Stream Processing Semantics?

Minh Dao-Tran, Harald Beck, and Thomas Eiter

Institute of Information Systems, Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria
{dao,beck,eiter}@kr.tuwien.ac.at

Abstract. The increasing popularity of RDF Stream Processing (RSP) has led
to developments of data models and processing engines which diverge in several
aspects, ranging from the representation of RDF streams to semantics. Bench-
marking systems such as LSBench, SRBench, CSRBench, and YABench were
introduced as attempts to compare different approaches, focusing mainly on the
operational aspects. The recent logic-based LARS framework provides a theo-
retical underpinning to analyze stream processing/reasoning semantics. In this
work, we use LARS to compare the semantics of two typical RSP engines, namely
C-SPARQL and CQELS, identify conditions when they agree on the output, and
discuss situations where they disagree. The findings give insights that might prove
to be useful for the RSP community in developing a common core for RSP.

1 Introduction

In interconnected information technologies such as Internet of Things and Cyber-Physical
Systems it is crucial to have simple access to data irrespective of their sources. The
Semantic Web’s RDF data model was designed to integrate such distributed and het-
erogeneous data. Recently, RDF Stream Processing (RSP) has been emerging to tackle
novel problems arising from streaming data: to integrate querying and processing of
static and dynamic data, e.g., information continuously arriving from sensors.

This has led to the development of data models, query languages and processing en-
gines, which diverge in several aspects, ranging from the representation of RDF streams,
execution modes [17], to semantics [2, 16, 5, 4, 12]. To deal with this heterogeneity, the
RSP community1 was formed to establish a standard towards a W3C recommendation.

A standardization must start from seeing the differences between existing approaches
and thus comparing RSP engines is an important topic. Initial empirical comparisons
were carried out in two benchmarking systems, namely SRBench [19] and LSBench [17].
The former defined functional tests to verify the query languages features by the engines,
while the latter measured mismatch between the output of different engines, assuming
they are sound, i.e., all output produced by them are correct. Later on, CSRBench [8]
introduced an oracle that pregenerates the correct answers wrt. each engine’s semantics,
which are then used to check the output returned by the engine. YABench [14] follows
the approach by CSRBench with the main purpose of facilitating joint evaluation of
? This research has been supported by the Austrian Science Fund (FWF) projects P24090, P26471,

and W1255-N23.
1
https://www.w3.org/community/rsp/

functional, correctness, and performance testing. However, this approach allows only
partial comparison between engines by referring to their ideal counterparts.

Due to the lack of a common language to express divergent RSP approaches, the
three works above could just look at the output of the engines and did not have further
means to explain beyond the output what caused the difference semantically.

Recently, [9] proposed a unifying query model to explain the heterogeneity of RSP
systems. It shows the difference between two approaches as represented by represen-
tative engines in the RSP community, namely C-SPARQL [2], SPARQLStream [5] and
CQELS [16]. This work identified types of datasets that C-SPARQL/SPARQLStream can
handle while CQELS cannot, and vice versa. However, it does not point out systemati-
cally when and how the engines agree on the output.

In the stream processing community, SECRET [10] was proposed to characterize
and analyze the behavior of stream processing engines, but at the operational level.

Latterly, a Logic-based framework for Analyzing Reasoning over Stream (LARS)
was introduced [3]. LARS can be used as a unifying language which stream process-
ing/reasoning languages can be translated to. It may serve as a formal host language to
express semantics and thus allows a deeper comparison that goes beyond mere looking at
the output of the respective engines. Furthermore, the model-based semantics of LARS
is a means to formalize the intuition of agreement between not only RSP engines but
also engines from other fields, and to identify conditions where this holds.

In this paper, we exploit the capability of LARS to analyze the difference between the
semantics of C-SPARQL and CQELS by: (a) providing translations that capture the push-
and pull- execution modes for general LARS programs, (b) providing translations from
C-SPARQL, CQELS to LARS, (c) introducing a notion of push-pull-agreement between
LARS programs, and (d) identifying conditions where C-SPARQL and CQELS agree on
their output, by checking whether the translated LARS programs push-pull-agree.

Due to space reasons, (a) and (b) will briefly mentioned while (c) and (d) will be
presented in detail. For an extended version of this paper, we refer the reader to [7].

Our findings show that C-SPARQL and CQELS agree on a very limited setting,
and give insights on their difference. This result might prove to be useful for the RSP
community in developing a common core for RSP.

For the purpose of a theoretical comparison, we adopt (as in [9]) the assumption that
execution time of RSP engines is neglectable compared to the rate of the input streams.

2 Preliminaries

From RDF to RDF Stream Processing. RDF [6] is a W3C recommendation for data
interchange on the Web. RDF models data as directed labeled graphs whose nodes are
resources and edges represent relations among them. SPARQL [13], a W3C recommen-
dation for querying RDF graphs, is essentially a graph-matching query language. As
the underlying RDF graphs are static, SPARQL’s one-shot queries are not able to give
answers under dynamic input. RSP was thus introduced to express queries on streaming
RDF data.

Two representative RSP engines are C-SPARQL and CQELS. Their query languages
and semantics are inspired by the Continuous Query Language (CQL) [1] in which

C-SPARQL CQELS
Execution mode Pull-based Push-based
Snapshot creation Merge patterns on input streams Apply patterns on input streams

into the default graph

Table 1: C-SPARQL vs. CQELS

queries are composed of three classes of operators, namely stream-to-relation (S2R),
relation-to-relation (R2R), and relation-to-stream (R2S) operators (RStream, IStream,
and DStream). The main adaptation for RSP is that R2R operators are SPARQL opera-
tors. However, C-SPARQL and CQELS diverge in two crucial aspects as presented in
Table 1. This makes it non-trivial to compare the two engines semantically.

To make the comparison possible, we propose a unified model of RSP queries that
covers all of the differences above. Extending the work in [18] for SPARQL queries, we
model an RSP query as a quadruple Q = (V, P,D,S), where V is a result form, P is a
graph pattern, D is a dataset, and S is a set of input stream patterns. Notably, S is a set
of tuples of the form (s, ω, g), where s is a stream identifier, ω is a window expression
(e.g., [RANGE 10] for time-based windows and [COUNT 5] for count-based windows),
and g is a basic RDF graph pattern. An RSP query Q in this model corresponds to a
C-SPARQL query, denoted by cs(Q) and to a set cq(Q) of 2|S| CQELS queries.

We now informally introduce LARS, which will serve as theoretical underpinning
for both languages.

LARS. The Logic-based Framework for Analyzing Reasoning over Streams [3] extends
Answer Set Programming [11] for streaming data. Crucial extensions are the following:

– Streams are represented as tuples S = (T, υ) where T is a timeline and υ is an
evaluation function mapping each time point t to a set of facts. We call S a data
stream, if it contains only extensional atoms. An interpretation stream expresses
inferred information by additional intensional atoms. The projection of a stream S
to a predicate p is defined as S|p = (T, υ|p), where υ|p(t) = {p(c) | p(c) ∈ υ(t)}.
By Ats(S) =

⋃
t∈T υ(t), we denote the set of all atoms appearing in S.

– Window functions are generically defined to capture all types of windows in practice.
The function wι(S, t,x) of type ι takes as input a stream S, a time point t, and a
vector of parameters x (which depend on type ι) and returns a substream S′ of S.

– Window operators of the form �x
ι are the means to connect LARS formulas to the

corresponding window functions wι(S, t,x).
– Three temporal operators allow fine-grained control for temporal reference. Given a

formula ϕ, 3ϕ (resp. 2ϕ) holds, if ϕ holds at some (resp. all) time point(s) in the
selected window, and @tϕ holds if ϕ holds exactly at time point t in the window.

– The output of a LARS program P wrt. to a data stream D at a time point t is rep-
resented as a set AS(P,D, t) of answer streams, which are minimal interpretation
streams I satisfying the reduct of P under I at t (see [3] for a formal definition).
Intuitively, an answer stream I adds to D inferred information according to P , and
different possibilities exist in general. As RSP queries return just a single answer at
a time point, we consider in this paper LARS programs that have a unique answer
stream. By AS (P,D, t), we directly refer to the single element in AS(P,D, t).

The following examples illustrate how these concepts are combined:

– �73signal holds, if the atom signal appeared (at least once) in the last 7 time units.
(The implicit window type is time-based, see [3] for others.)

– @T+3alert ← �5@T signal . This rule says: If in the last 5 time units, a signal oc-
curred at time T , then 3 time units later, alert has to hold. Given a program P consist-
ing only of this rule, the unique answer stream for D = ([0, 10], {6 7→ {signal}})
at t = 8 additionally contains the mapping 9 7→ {alert}.

We next show how C-SPARQL and CQELS can be translated into LARS.

3 Translating RSP Queries into LARS

We propose the following translations (see details in [7]):

(1) Given a window expression ω in C-SPARQL or CQELS, τ(ω) translates it to a
corresponding window operator of LARS, for example, τ([RANGE 10]) = �10.

(2) Given a LARS program P and a pulling period U > 0, the translations �(P)
and �(P,U) encode the push- and pull- modes by LARS rules, respectively.

(3) Given an RSP query Q, translation τ1 is applied on cs(Q) and translation τ2 is
applied on Q′ ∈ cq(Q) and return LARS programs. Both share the core from trans-
lation τ from SPARQL to Datalog in [18] and differ due to two approaches by
C-SPARQL and CQELS that deal with streaming input. As an extension of τ , static
RDF triples are represented as a 4-ary predicate of the form triple(S, P,O,G)
while triples arriving at a stream s at time t contributes to the evaluation function υ
at t under a predicate striple, that is, striple(s, p, o, s) ∈ υ(t). Auto-generated
predicates of the form ansi are used to hold answers of intermediate translations,
and ans1 holds the answers of the queries.

So far, it has not been clear under which conditions the two engines will return the same
output. Tackling this question now becomes possible at a formal level using LARS.

Given an RDF triple (s, p, o) and a basic graph pattern g, we say (s, p, o) sub-
matches g, denoted by sm(s, p, o, g), iff there exists a triple pattern (S, P,O) ∈ g
s.t. [[(S, P,O)]]{(s,p,o)} 6= ∅, where the notion of subgraph matching [[.]] is defined in [15].
Given a graph pattern P , let trp(P) be the set of triple patterns appearing in P .

The following result identifies a class of RSP queries where the answer streams of
the translated LARS programs by τ1 and τ2 coincide on the output predicate ans1.

Theorem 1 Let Q = (V, P,D,S) be an RSP query where D = (G,Gn) contains a de-
fault graphG and a setGn of named graphs, and S = {(s1, ω1, g1), . . . , (sm, ωm, gm)}.
Let P1 = τ1(cs(Q)), P2 = τ2(Q

′), for any Q′ ∈ cq(Q), D be a data stream, and t be a
time point. If

∀g 6= g′ ∈ {{trp(P) \
⋃
gi}} ∪ {g1, . . . , gm} : g ∩ g′ = ∅, (?)

∀striple(s, p, o, si) ∈ Ats(D) : sm(s, p, o, gi) and
∀gj 6= gi ∈ S : ¬sm(s, p, o, gj) and ¬sm(s, p, o, trp(P) \

⋃
gj) (??)

then AS (P1, D, t)|ans1 = AS (P2, D, t)|ans1 .

Condition (?) requires that the graph patterns wrt. the static dataset and the input streams
do not share triple patterns while (??) makes sure that triples arrived at stream si are not
allowed to enter any other stream or to stay in the static dataset. Combining these two
conditions intuitively means that all input streams and static dataset have disjoint input.
Then, the two approaches in building snapshots correspond as the distinction of input
due to stream graph patterns in CQELS also happens for C-SPARQL. Thus, the answer
streams produced by two translated LARS programs coincide on the output predicate.

4 RSP Semantics Analysis Based on LARS

In the previous section, (3) presents translations from RSP queries on either C-SPARQL
or CQELS branches into LARS programs. Under condition (?) and (??) in Theorem 1,
the two translated LARS programs from a C-SPARQL and a CQELS queries, rooted
from the same RSP query, produce the same output predicate ans1 (thus on RStream

operator) when they are evaluated at the same time point.
However, C-SPARQL and CQELS are based on two different execution modes:

push-based and pull-based, which are captured in (2) for general LARS programs. In
order to theoretically analyze and compare the semantics of C-SPARQL and CQELS, we
need to combine the above two results, together with taking into account the difference
between IStream and RStream operators. But first of all, we must clarify what we
mean by saying “C-SPARQL and CQELS agree on the output.”

4.1 Agreement between C-SPARQL and CQELS

We propose a characterization of agreement between C-SPARQL and CQELS using
LARS. For the core notion, we concentrate on the agreement on the resulted mappings af-
ter non-aggregate SPARQL operators such as AND, UNION, etc. Extending to aggregate
will be discussed in Section 5.

Intuitively, the two semantics are considered to agree on a timeline T with a pulling
period U , if (1) they both start at the same time point 0, and (2) for every interval
(i · U, (i+ 1) · U] ∈ T , where i ≥ 0, the union of outputs produced by CQELS in the
interval coincides with the output produced by C-SPARQL at the right-end of the interval.
To formalize the conditions for agreement, we need the notion of trigger time points and
incremental output presented next.

Trigger Time Points. Let t1 < t2 be two time points. The set of trigger time points in a
data streamD in the interval (t1, t2] is defined as ttp(t1, t2, D)={t∈ (t1, t2] | υD(t)6=∅}.
For a time point t ∈ TD such that t > 0, the previous trigger point of t with respect to D
is prev(t,D) = max(ttp(0, t− 1, D)) if ttp(0, t− 1, D) 6= ∅ and is 0 otherwise.

Incremental Output. Next, we capture the incremental output strategy, i.e., the IStream
operator by means of the difference between answer streams of two consecutive trigger
time points. Let It = AS (P,D, t). Then, the incremental output inc(P, t) at a trigger
time point t (i.e., υD(t) 6= ∅) is Ats(It \ Iprev(t)) if t > 0, and inc(P, 0) = Ats(I0).
Here, the difference between two streams S1 = (T, υ1) and S2 = (T, υ2) is defined
as S′ = S1 \ S2 = (T, υ′) s.t. for all t′ ∈ T , we have that υ′(t′) = υ1(t

′) \ υ2(t′).

Based on this, we define when two LARS programs, executed on push- and pull-
modes, agree on an interval of time.

Definition 1 Given two LARS programs P1, P2, a data stream D = (TD, υD), and two
time points t1<t2 of TD, letA1=

⋃
t∈ttp(t1,t2,D) inc(P1, t)∪

⋂
t∈ttp(t1,t2,D)∪{t2} Ats(It)

and A2 = Ats(AS (P2, D, t2)). Let R = {p1, . . . , pn} be a set of predicates. We say P1

and P2 push-pull-agree on D and R

(i) during the interval (t1, t2], denoted by P1 ≡D,R
t1,t2 P2, iff A1|R = A2|R;

(ii) with pulling periodU , denoted byP1 ≡D,R
U P2, iffP1 ≡D,R

t1,t2 P2, where t1, t2 ∈ TD
such that there exists some i ∈ N, where t1 = i · U and t2 = (i+ 1) · U .

Intuitively, push-pull-agreement during (t1, t2] is established by comparing the answer
stream evaluated at t2 with the union of incremental answer computed at all trigger time
points in the interval. The term

⋂
t∈ttp(t1,t2,D)∪{t2} Ats(It) ensures that for programs

that always produce some output p(c) at every time point, this output is also counted in
comparing the incremental result and the result at t2.

4.2 Agreement Conditions

Given an RSP query Q = (V, P,D,S), let Q1 = cs(Q) and Q2 ∈ cq(Q). We want to
identify conditions guaranteeing that the LARS programs τ1(Q1) and τ2(Q2) agree on
the output predicate ans1, that is τ2(Q2) ≡D,ans1

t1,t2 τ1(Q1).
Let D = (TD, υD) be a data stream. The projection of D on an input stream iden-

tified by an IRI s is D|s = (TD, υD|s), where for all t ∈ TD, we have that υD|s(t) =
{striple(S, P,O, s) ∈ υD(t)}. That is, we keep only facts with s as the stream identi-
fier. The snapshot of D with respect to S at time point t is defined as:

sn(D,S, t) =
⋃

(s,ω,g)∈S wτ(ω)(D|s, t).
Intuitively, for each input stream pattern (s, ω, g) ∈ S, we apply the window function
wτ(ω) =w� to the projection of D on s. Note that τ(ω) translates the window expres-
sion ω to a window operator �, and w� is the window function behind �. The union of
all substreams extracted by the window functions give us the snapshot. The following
result identifies sufficient conditions where C-SPARQL and CQELS agree.

Theorem 2 Let Q = (V, P,D,S) be an RSP query, where P contains neither MINUS
nor FILTER NOT EXISTS, D = (G,Gn) contains a default graph G and a set Gn
of named graphs, and S = {(s1, ω1, g1), . . . , (sm, ωm, gm)} contains only time-based
windows of the form [RANGE L]. Let Q1 = cs(Q), Q2 ∈ cq(Q), and t1 < t2. If (?)
and (??) hold, and additionally⋃

t∈ttp(t1,t2,D)

sn(D,S, t) = sn(D,S, t2) (? ? ?)

then
τ2(Q2) ≡D,ans1

t1,t2 τ1(Q1).

This result can be straightforwardly extended to check whether τ1(Q1) ≡D,ans1
U τ2(Q2),

but is omitted due to space reason. The theorem shows that having agreement between
C-SPARQL and CQELS is not easy to achieve, as discussed in the next section.

5 Discussion and Conclusion

Theorem 2 identifies sufficient conditions on which C-SPARQL and CQELS agree
on their output, including (i) no MINUS or FILTER NOT EXISTS operator, (ii) only
time-based windows with sliding size 1, (iii) only “disjoint” patterns and data in the
static datasets and the input streams, and (iv) having the same snapshot collected in the
interval as at the right end of the interval.

While (i)-(iii) correspond to useful fragments of queries for practical purposes, (iv)
cannot be guaranteed in case of high throughput. The reason is that with dense input
streams, the snapshots taken at time points near the left end of an interval will have high
chances to collect more triples than the snapshot at the right end of the interval. Thus,
having C-SPARQL and CQELS agreeing in practice is very unlikely, due to the strong
semantic implications of push/pull-based querying. Consequently, data independent
agreement conditions are unlikely to be found for queries that go beyond pure SPARQL.

One can easily find a counter example for the agreement when relaxing any of (i)-(iii)
and keeping other conditions unchanged. For example, when FILTER NOT EXISTS
or MINUS is allowed, the translated LARS programs are not positive. This takes away
the monotonic property, i.e., having more input one any side (push- or pull-based) might
lead to shrinking the output facts and introducing disagreement on the output.

For sliding windows with sliding size greater than 1, C-SPARQL can produce output
that CQELS cannot, even when (? ? ?) is satisfied. Intuitively, this is because the window
only slides after a certain amount of time and might miss some most recent input. In this
case, we think that pull-based is preferable over push-based execution.

Finally, if the static datasets and the input streams share patterns by which triples
are matched for R2R operators, the result of C-SPARQL and CQELS will be different.
For instance, if these datasets share the same pattern and the static dataset contains
some triples matching this pattern, then C-SPARQL can produce output even when no
input triple arrives at the stream, as it cannot distinguish where a triple comes from.
Besides, the stream graph pattern of CQELS has no mapping due to empty input, and
thus produces no output. However, this situation should not happen often in practice as
merged input streams will usually be distinguishable by an implicit schema.

The core notion of agreement does not consider aggregates. When considering
aggregates, we observe that only certain types of aggregates allow for tracing agreement
between pull- and push-based executions. For example, for COUNT, we can say that
CQELS agrees with C-SPARQL in an interval (t1, t2] iff the sum of output values
produced by the former during the interval equal to the output value returned by the latter
at t2. Similar extension can be done for MAX, MIN. However, with MEDIAN or AVG,
one cannot reproduce the result from CQELS’ output to match that from C-SPARQL.
In general, we can only give agreement notion for aggregates that can be recursively
defined.
Conclusion and Outlook. This paper utilizes LARS to give insights on the con-
trast between two RSP semantics implemented in two representative engines, namely
C-SPARQL and CQELS. In addition to [9], we introduced a notion of agreement between
the engines and identified conditions when it holds.

The theoretical result is based on the assumption that engine execution time is
neglectable to the input rate. For further practical comparison, we envision future work

where this condition is dropped. Implementing the proposed translations is also on
our agenda. In another direction, we are investigating equivalence for general LARS
programs. Once this result is available, one can have an automatic equivalence checker
which takes any two translated LARS programs of two continuous queries from any two
stream processing languages, tell whether the two original queries are equivalent, and
possibly even enumerate their different outputs due to our model-based approach.

References

1. A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic foundations
and query execution. VLDB J., 15(2):121–142, 2006.

2. D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL: a
continuous query language for rdf data streams. Int. J. Semantic Computing, 4(1):3–25, 2010.

3. H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A logic-based framework for analyzing
reasoning over streams. In AAAI, 2015.

4. A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL - extending SPARQL to process
data streams. In ESWC, pages 448–462, 2008.

5. J.-P. Calbimonte, Ó. Corcho, and A. J. G. Gray. Enabling ontology-based access to streaming
data sources. In ISWC (1), pages 96–111, 2010.

6. R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 Concepts and Abstract Syntax.
http://www.w3.org/TR/rdf11-concepts/, 2014.

7. M. Dao-Tran, H. Beck, and T. Eiter. Contrasting RDF Stream Processing Semantics. Technical
report, Institut für Informationssysteme, TU Wien, 2015.

8. D. Dell’Aglio, J. Calbimonte, M. Balduini, Ó. Corcho, and E. D. Valle. On Correctness in
RDF Stream Processor Benchmarking. In ISWC 2013, pages 326–342, 2013.

9. D. Dell’Aglio, E. D. Valle, J.-P. Calbimonte, and O. Corcho. Rsp-ql semantics: a unifying
query model to explain heterogeneity of rdf stream processing systems. IJSWIS, 10(4), 2015.

10. N. Dindar, N. Tatbul, R. J. Miller, L. M. Haas, and I. Botan. Modeling the execution semantics
of stream processing engines with SECRET. VLDB J., 22(4):421–446, 2013.

11. T. Eiter, G. Ianni, and T. Krennwallner. Answer Set Programming: A Primer. In RW, pages
40–110, 2009.

12. S. Groppe. Data Management and Query Processing in Semantic Web Databases. Springer,
2011.

13. S. Harris and A. Seaborne. SPARQL 1.1 Query Language. http://www.w3.org/TR/sparql11-
query/, 2013.

14. M. Kolchin and P. Wetz. Demo: YABench - Yet Another RDF Stream Processing Benchmark.
In RSP Workshop, 2015.

15. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. ACM Trans.
Database Syst., 34:16:1–16:45, September 2009.

16. D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive approach
for unified processing of linked streams and linked data. In ISWC (1), pages 370–388, 2011.

17. D. L. Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, and M. Fink. Linked stream data
processing engines: Facts and figures. In ISWC - ET, pages 300–312, 2012.

18. A. Polleres. From SPARQL to rules (and back). In WWW 2007, pages 787–796, 2007.
19. Y. Zhang, P. Minh Duc, O. Corcho, and J. P. Calbimonte. SRBench: A Streaming RDF/S-

PARQL Benchmark. In ISWC, pages 641–657, 2012.

