
Rule-based Stream Reasoning for Intelligent
Administration of Content-Centric Networks?

Harald Beck1, Bruno Bierbaumer2, Minh Dao-Tran1, Thomas Eiter1,
Hermann Hellwagner2, and Konstantin Schekotihin2

1 TU Wien, Vienna, Austria {beck,dao,eiter}@kr.tuwien.ac.at
2 Alpen-Adria-Universität Klagenfurt, Austria

bruno@itec.aau.at, firstname.lastname@aau.at

Abstract. Content-Centric Networking (CCN) research addresses the mismatch
between the modern usage of the Internet and its outdated architecture. Impor-
tantly, CCN routers use various caching strategies to locally cache content fre-
quently requested by end users. However, it is unclear which content shall be
stored and when it should be replaced. In this work, we employ novel techniques
towards intelligent administration of CCN routers. Our approach allows for au-
tonomous switching between existing strategies in response to changing content
request patterns using rule-based stream reasoning framework LARS which ex-
tends Answer Set Programming for streams. The obtained possibility for flexible
router configuration at runtime allows for faster experimentation and may result
in significant performance gains, as shown in our evaluation.

1 Introduction

Various future Internet research efforts are being pursued for efficient multimedia distri-
bution, among them Content-Centric Networking (CCN) [14]. The operation of a CCN
network relies on two packet types, Interest and Data. Clients issue Interest packets
containing the content name they want to retrieve. CCN routers forward the Interest
packets until they reach a content provider, which answers with a Data packet. The
latter travels back to the content consumer following the way of Interest packets. In
addition, the CCN routers have the possibility to cache Data packets in their Content
Stores. Thus, the Interest packets of another consumer can be directly satisfied out of a
Content Store. These caches make it possible to satisfy popular content requests directly
out of caches and reduce the network load [14].

A caching strategy defines which content is stored and for how long before being
replaced. There is a rich literature of strategies for CCN [24, 21]. Examples of most
popular strategies include: (a) Least Recently Used (LRU), which orders items in cache
by access time stamps and replaces the oldest item; (b) First-In-First-Out (FIFO) im-
plementing a queue; (c) Least Frequently Used (LFU) which orders items by access
frequency and replaces the least accessed item; or (d) Random that replaces a random
item in the cache. However, selection of an appropriate strategy is complicated.
? This work was partly funded by the Austrian Science Fund (FWF) under the CHIST-ERA

project CONCERT (A Context-Adaptive Content Ecosystem Under Uncertainty), project num-
ber I1402, as well as projects P26471 and W1255-N23.

Example 1 Consider a situation in which some music clips go viral, i.e., get very pop-
ular over a short period of time. In this case, network administrators may manually con-
figure the routers to cache highly popular content for some time period, and to switch
back to the usual caching strategy when the consumer interests get more evenly dis-
tributed. However, as this period of time is hard to predict, it would be desirable that
routers autonomously switch their caching strategy to ensure high quality of service. �

Evaluations, like [4, 24], show that no “silver bullet” strategy is superior in all tested
scenarios, since for every strategy there are conditions in which it works best. There
conditions can often be characterized by parameters of a consumer interests distribution.
Usually, the content popularity is described in the literature with a Zipf distribution [18]:

P (X = i) =
(
iα
∑C
j=1 1/j

α
)−1

, where C is a number of items in the content catalog,
α is a value of the exponent characterizing the distribution and i is a rank of an item in
the catalog. The variation of the exponent α allows to characterize different popularity
models for consumers interests: (i) if α is high, the popular content is limited to a small
number of items; (ii) if α is low, every content is almost equally popular.

As real CCNs are not deployed yet, there is currently no real-world experience to
rely on, and developing selection methods for caching strategies is not well supported.
Motivated by all this, we consider a router architecture that allows for dynamic switch-
ing of caching strategies in reaction to the current network traffic, based on stream
reasoning, i.e., reasoning over recent snapshots of data streams.
Contributions. (i) We present an Intelligent Caching Agent (ICA) for the administra-
tion of CCN routers using stream reasoning, which allows for the first implementation
of a local and dynamic caching strategy selection. (ii) To simulate various CCN applica-
tion scenarios, router architectures and rule-based administration policies, we propose
an extension of the well-known CCN simulator ndnSIM [15]. (iii) The evaluation results
of our methods on two sample scenarios (as in Example 1) indicate a clear performance
gain when basic caching strategies are dynamically switched by routers in reaction to
the observed stream of requested data packets.

In summary, we provide a feasibility study for using logic-based stream reasoning
techniques to guide selection of caching strategies in CCNs. Moreover, we also pro-
vide a detailed showcase of analytical, declarative stream reasoning tools for intelligent
administration problems; to the best of our knowledge, no similar work exists to date.

2 Stream Reasoning

Router administration requires evaluation of streaming data. To the best of our knowl-
edge, declarative stream reasoning [6] methods [12, 11, 23, 16, 2] have not been used.

Example 2 (con’t) Consider the following rules to select a caching strategy. If in the
last 30 seconds there was always a high α̂ value (some content is very popular), use
LFU, and for a medium value, take LRU. Furthermore, use FIFO if the value is low but
once in the last 20 seconds 50% was real-time content. Otherwise, use Random. �

Example 2 illustrates that a fully declarative, rule-based language would assist the read-
ability of a router’s module that controls (potentially far more complex) decisions. We

2

r1 : @T high ← �30@T α̂(V), V ≥ 1.8. r5 : use(lru)← �30
2mid .

r2 : @T mid ← �30@T α̂(V), 1.2 ≤ V < 1.8. r6 : use(fifo)← �30
2low , �20

3rtm50.

r3 : @T low ← �30@T α̂(V), V < 1.2. r7 : done ← use(lfu) ∨ use(lru) ∨ use(fifo).

r4 : use(lfu)← �30
2high. r8 : use(random)← not done.

Fig. 1: Program P deciding which caching strategy to use

employ the rule-based LARS [2] which can be seen as extension of Answer Set Pro-
gramming (ASP) [3, 10] for streams. In particular, it provides window operators to limit
limit reasoning to so-called snapshots as in CQL [1]. We give a high-level intuition.
LARS. A LARS program is a set of rules of form α← β1, ..., βj ,notβj+1, ...,notβn,
(n ≥ 0) where α, β1, . . . , βn are formulas and not denotes negation-as-failure. Let a
be an atom and t ∈ N. Then, the set F of LARS formulas is defined by the grammar
ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | 3ϕ | 2ϕ | @tϕ | �wϕ. It uses the following:

– The window operator �w limits evaluation of a formulaϕ to the substream returned
by a function w, which takes a stream and a time point. We only use a special
window operator �k which returns the snapshot of the last k seconds.

– The temporal quantifiers 3 and 2 are used to query whether a formula ϕ holds at
some time point in a selected window, or at all time points.

– The @-operator allows a jump in time, i.e., @tϕ evaluates ϕ at time t.

Example 3 Fig. 1 formalizes the rules of Example 2 in LARS, where atom α̂(V) is
used to retrieve from the router an estimation of the α value V . Similarly, rtm50 is true
if at least 50% of the content forwarded by the router was real-time. Rule (r1) says the
following. If in the last 30 seconds (�30), at a specific (variable) time T (@T) we had
atom α̂(V) for some value V ≥ 1.8, then high is true at T . Then, rule (r4) states that,
if high is true at all (2) of the last 30 seconds, then (←) we shall use lfu . If use(X)
cannot by derived for any X ∈ {lfu, lru,fifo} by rules (r4) − (r6), the disjunction in
(r7) fails, thus done will not be derived, and due to (r8) we will then use random . �

3 System Description
As shown in Fig. 2, ICA extends the architecture of a common CCN router with a deci-
sion unit, which consists of three main components: (1) a database (DB) storing snap-
shots of parameters observed by the controller, (2) a knowledge base (KB) containing
the ICA logic and (3) a reasoner that decides about configuration of the controller given
the KB and a series of events in the DB. This architecture was implemented in ndnSim
[15] and used in the evaluation as presented in Section 4.

The components (2) and (3) are based on the LARS framework, which we im-
plemented using DLVHEX 2.5 [9] as language of this system, i.e., higher-order logic
programs with external atoms. We define an external atom &w[S,E, F](T, V) repre-
senting the described time-based LARS window operator. The terms S,E ∈ N define
the time interval of the window and F is a string comprising a function name. Our

3

Reasoner

Networking

UnitEvent

Database

KB

parameters

state

snapshot

commands

configuration

C
O
N
T
R
O
L
L
E
R

Output

Input

Cache

chunks

Standard CCN RouterDecision unit

Fig. 2: Architecture of an Intelligent Caching Agent (ICA)

1 intv1(S,E) :- &getSolverTime[](E), S=E-30.
2 intv2(S,E) :- &getSolverTime[](E), S=E-20.

3 val(high,S,E,T):- &w[S,E,alpha](T,V), V>=18, intv1(S,E).
4 val(mid,S,E,T) :- &w[S,E,alpha](T,V), 12<=V, V<18, intv1(S,E).
5 val(low,S,E,T) :- &w[S,E,alpha](T,V), V<12, intv1(S,E).
6 val(rtm50,S,E,T):- &w[S,E,rtc](T,V), V>50, intv2(S,E).

7 some(ID,S,E) :- val(ID,S,E,_).
8 always(ID,S,E) :- val(ID,S,E,_), val(ID,S,E,T):T=S..E.

9 use(lfu) :- always(high,S,E), intv1(S,E).
10 use(lru) :- always(mid,S,E), intv1(S,E).
11 use(fifo):- always(low,S1,E1), intv1(S1,E1), some(rtm50,S2,E2), intv2(S2,E2).

12 done :- use(X), X!=random.
13 use(random) :- not done.

Listing 1.1: DLVHEX encoding for ICA

DLVHEX plug-in evaluates the function over events registered in the database within
the given time interval and returns its results as a set of tuples {(t1, v1), . . . , (tk, vk)},
where ti and vi indicate the time point and the value of a function, respectively. E.g.
for F = alpha the estimated values α̂ of the parameter α of the Zipf distribution will
be returned. To define rules that respect only recent events, we use an external atom
&getSolverTime[](E) which has no inputs. It outputs the current system time E. The
DLVHEX encoding for ICA is presented in Listing 1.1, which corresponds to the LARS
encoding presented in Fig. 1 and could be in principle automatically generated from it.

4 Evaluation

We selected the Abilene topology [20]. For every simulation run (see below), we con-
nected 1000 consumers and all content providers randomly to one of the 11 routers.
Scenarios. As popularity change scenarios, we used (i) LHL that starts with α = 0.4
(low), then changes to 2.5 (high), and then back to low; (ii) HLH is dual. The values
are from [17, 21]. Each simulation is 1800 seconds, α changes at 600 and 1200. Each
consumer starts downloading a video at a random time point in each interval.
Caching Strategies. To measure the potential effect of switching strategies, we com-
pare against the static ones Random and and LFU [21]. Dynamic strategy Admin is

4

(a) LHL cache hit ratio (b) HLH cache hit ratio (c) LHL cache hit dist. (d) HLH cache hit dist.

Fig. 3: Aggregated evaluation results over 30 runs for each caching strategy

hypothetical, where all routers change their caching strategy exactly at phase changes L
to H and H to L; in L they use Random, in H they use LFU. Finally, Intelligent Caching
Agent (ICA) dynamically selects for each router a strategy due to locally observed data.
Simulation System Parameters. Following [17, 14, 19], we use 1000 users × 50
videos, in 1000 chunks of 10KB. Routers store 0.1, 0.5, 1, 4 or 10% of all chunks.
Performance Metrics. The cache hit ratio should be high; it is the number of hits an
Interest packet is satisfied by a router’s content store per total number of requests. The
cache hit distance should be low; it is the average number of hops for a Data packet
from request to a router that returns it, i.e., the number of routers travelled between the
router answering a request and the consumer that had issued it. See [24] for details.
Results. We determined 1% of chunks to be a reasonable storage size. We observed that
the reaction to changing content access for ICA was close to the ideal preconfiguration
of Admin. Interestingly, up to 5 routers used the Random strategy in the H phase under
the ICA strategy. Here, the advantage of dynamic and local switching kicked in.

Fig. 3 shows performance comparisons of caching strategies LFU, Admin and ICA
in relation to Random (100%), where plots show aggregated results over 30 individual
runs. Fig. 3a/3b depict cache hit ratios for LHL/HLH; Fig. 3c/3d show cache hit dis-
tances. In summary, dynamic switching is advantageous in all settings. ICA is at least
as good as Admin for LHL scenarios, and proves to be the best strategy for HLH due
to the advantage of choosing strategies locally for each router. Notably, both dynamic
strategies lead to a decreased cache hit distance relative to the Random strategy.

5 Conclusion

In our paper we focused on a principled approach of automated decision making by
means of high-level reasoning on stream data. This allowed us to design a purely declar-
ative control unit for automated administration of CCN routers. A comprehensive fea-
sibility study shows how reasoning techniques can be used for dynamic switching of
caching strategies in reaction to changing user behavior may give significant savings
due to performance gains. These observations clearly motivate the advancement of
stream reasoning research, especially on the practical side. In particular, stream pro-
cessing engines are in need that have an expressive power similar to LARS.

5

References
1. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations

and query execution. VLDB J. 15(2), 121–142 (2006)
2. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A Logic-based Framework for Analyzing

Reasoning over Streams. In: AAAI. (2015)
3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communica-

tions of the ACM 54(12), 92–103 (2011)
4. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.B.: Analyzing the video popularity

characteristics of large-scale user generated content systems. IEEE/ACM Trans. Netw. 17(5),
1357–1370 (2009)

5. Cisco Visual Networking Index: Forecast and Methodology, 2014-2019. White Paper (2016)
6. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a Streaming World! Reasoning

upon Rapidly Changing Information. IEEE Intelligent Systems 24, 83–89 (2009)
7. Do, T.M., Loke, S.W., Liu, F.: Answer Set Programming for Stream Reasoning. In: Adv.

Artif. Intell. pp. 104–109 (2011)
8. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Domain Expansion for ASP-Programs with

External Sources. Artif. Intell. 233, 84–121 (2014)
9. Eiter, T., Mehuljic, M., Redl, C., Schüller, P.: User guide: dlvhex 2.x. Tech. Rep. INFSYS

RR-1843-15-05, TU Vienna (2015)
10. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Se-

mantics and complexity. In: JELIA. pp. 200–212 (2004)
11. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream Rea-

soning with Answer Set Programming. Preliminary Report. In: KR. pp. 613–617 (2012)
12. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering

an incremental ASP solver. In: ICLP. pp. 190–205 (2008)
13. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Gener. Comput. 9(3-4), 365–386 (1991)
14. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.: Net-

working named content. In: CoNEXT. pp. 1–12. (2009)
15. Mastorakis, S., Afanasyev, A., Moiseenko, I., Zhang, L.: ndnSIM 2.0: A new version of the

NDN simulator for NS-3. Technical Report NDN-0028, NDN (2015)
16. Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: Streamrule: A nonmonotonic

stream reasoning system for the semantic web. In: RR. pp. 247–252. (2013)
17. Rossi, D., Rossini, G.: Caching performance of content centric networks under multi-path

routing (and more). Relatório técnico, Telecom ParisTech (2011)
18. Rossi, D., Rossini, G.: On sizing CCN content stores by exploiting topological information.

In: IEEE INFOCOM. pp. 280–285 (2012)
19. Rossini, G., Rossi, D., Garetto, M., Leonardi, E.: Multi-terabyte and multi-gbps information

centric routers. In: IEEE INFOCOM. pp. 181–189. (2014)
20. Spring, N.T., Mahajan, R., Wetherall, D., Anderson, T.E.: Measuring ISP topologies with

rocketfuel. IEEE/ACM Trans. Netw. 12(1), 2–16 (2004)
21. Tarnoi, S., Suksomboon, K., Kumwilaisak, W., Ji, Y.: Performance of probabilistic caching

and cache replacement policies for content-centric networks. In: IEEE LCN. pp. 99–106.
(2014)

22. Yu, H., Zheng, D., Zhao, B.Y., Zheng, W.: Understanding user behavior in large-scale video-
on-demand systems. In: EuroSys. pp. 333–344. (2006)

23. Zaniolo, C.: Logical foundations of continuous query languages for data streams. In: Data-
log. pp. 177–189 (2012)

24. Zhang, M., Luo, H., Zhang, H.: A Survey of Caching Mechanisms in Information-Centric
Networking. IEEE Communications Surveys and Tutorials 17(3), 1473–1499 (2015)

6

