Spatial Ontology-Mediated Query Answering over
Mobility Streams

Thomas Eiter!, Josiane Xavier ParreiraZ, and Patrik Schneider!:2*

L Vienna University of Technology, Vienna, Austria
2 Siemens AG Osterreich, Vienna, Austria

Abstract. The development of (semi)-autonomous vehicles and communication
between vehicles and infrastructure (V2X) will aid to improve road safety by iden-
tifying dangerous traffic scenes. A key to this is the Local Dynamic Map (LDM),
which acts as an integration platform for static, semi-static, and dynamic information
about traffic in a geographical context. At present, the LDM approach is purely
database-oriented with simple query capabilities, while an elaborate domain model
as captured by an ontology and queries over data streams that allow for semantic
concepts and spatial relationships are still missing. To fill this gap, we present an
approach in the context of ontology-mediated query answering that features con-
junctive queries over DL-Lite 4 ontologies allowing spatial relations and window
operators over streams having a pulse. For query evaluation, we present a rewriting
approach to ordinary DL-Lite 4 that transforms spatial relations involving epistemic
aggregate queries and uses a decomposition approach that generates a query exe-
cution plan. Finally, we report on experiments with two scenarios and evaluate our
implementation based on the stream RDBMS PipelineDB.

1 Introduction

The development of (semi)-autonomous vehicles needs extensive communication between
vehicles and the infrastructure, which is covered by Cooperative Intelligent Transport
Systems (C-ITS). These systems collect temporal data (e.g., traffic light signal phases) and
geospatial data (e.g., GPS positions), which is exchanged by vehicle-to-vehicle, vehicle-
to-infrastructure, and combined communications (V2X). V2X aids to improve road safety
by analyzing traffic scenes that could lead to accidents (e.g. red light violation). A key
technology for this is the Local Dynamic Map (LDM) [1]], which acts as an integration
platform for static, semi-static, and dynamic information in a geographical context.
Current approaches for an LDM, however, are purely database-oriented with simple
query capabilities. Our aim is to enable spatial-stream conjunctive queries (CQs) over a
semantically enriched LDM for safety applications, such as detection of red light violations
on complex intersections managed by a roadside C-ITS station. To realize spatial query
answering (QA) over mobility streams, spatial and streaming data must be lifted to the
setting of ontology-mediated QA with the frequently used ontology language DL-Lite 4.
However, bridging the gap between stream processing and ontology-mediated QA is not
straightforward, as the semantics of DL-Lite 4 must be extended with spatial relations
and stream queries using window operators. For this, we build on the work on spatial
QA in [[12] and extend ontology-mediated QA with epistemic aggregate queries (EAQs)
[[LO] to detemporalize the streams. The extension preserves first-order rewritability, which

* Proc. ESWC 2017, preprint.

allows us to evaluate a CQ with spatial atoms over a stream RDBMS. Our contributions

are briefly summarized as follows:

- we outline the field of V2X integration using LDMs in the mobility context (Sec. 2);

- we introduce a data model and query language suited for mobility streams (Secs. 3, 4);

- we present a spatial-stream QA approach for DL-Lite 4 defining its semantics with the
focus of preserving FO-rewritability. The QA approach is based on CQ over DL-Lite 4
ontologies, which combines window operators over streams having a pulse and spatial
relations over spatial objects (Secs. 4 and 5);

- we provide a technique for query rewriting taking the above into account. For query
evaluation, we extend and apply the known techniques of (a) epistemic aggregate queries,
e.g., average, for a “detemporalization” of the streams; and (b) provide a technique for
query decomposition using hypertrees (Secs. 5 and 6);

- we have implemented a prototype and performed experiments in two scenarios to
evaluate its applicability (Sec. 7).

In the final Section 8, we discuss related work and conclude with ongoing and future work.

2 V2X Integration using a Local Dynamic Map

The base communication technologies (i.e.,
the IEEE 802.11p standard) allow wireless

access in vehicular environments, which [voetes™]
enables messaging between vehicles them- SR

selves and the infrastructure, called V2X I — e »’/ [voich v
communication. Traffic participants and srsinerecesing 7 Soparyroud

| surtace (icel

roadside C-ITS stations broadcast every o 9 ‘
100ms messages for informing others about e _
their current state such as position, speed, i S e
and traffic light signal phases [1]]. The main il
types of V2X messages are Cooperative

A.wareness Messages (CAM) that pr(?vide Fig. 1: The four layers of a LDM [I]
high frequency status updates of a vehicle’s

position, speed, vehicle type, etc.; Map Data Messages (MAP) that describe the detailed
topology of an intersection, including its lanes and their connections; Signal Phase and
Timing Messages (SPaT) that give the projected signal phases (e.g., green) for a lane; and
Decentralized Environmental Notification Messages (DENM) that inform if specific events
like road works occur in a designated area.

The Local Dynamic Map (LDM) is a comprehensive integration effort of V2X mes-
sages; the SAFESPOT project [[1] introduced the concept of an LDM as an integration
platform to combine static geographic information system (GIS) maps with data from dy-
namic environmental objects (e.g., vehicles, pedestrians). This was motivated by advanced
safety applications (e.g. detect red light violation) that need an “overall” picture of the
traffic environment. The LDM has the following four layers (see Fig. [I):

- Permanent static: the first layer contains static information obtained from GIS maps and
includes roads, intersections, and points-of-interest;

- Transient static: the second layer extends the static map by detailed local traffic informa-
tions such as fixed ITS stations, landmarks, and intersection features like lanes;

- Transient dynamic: the third layer contains temporary regional information like weather,
road or traffic conditions (e.g., traffic jams), and signal phases;
- Highly dynamic: the fourth layer contains dynamic information of road users detected
by V2X messages, in-vehicle sensors like the GPS module.
Current research (e.g., [19]) on architectures of an LDM identified that it can be built on
top of a spatial RDBMS enhanced with streaming capabilities. As recognized by [19],
an LDM should be represented by a world model, world objects, and data sinks on the
streamed input. However, an elaborate domain model, captured by an LDM ontology,
and extended queries over data streams allowing spatial relations are still missing. The
ontology represents an integration schema modeled in DL-Lite 4 and captures the layers
of an LDM. Likewise, the LDM ontology must represent the content of the V2X messages
and more general GIS objects (e.g., parking or petrol stations) (cf. [11]])

Safety applications on intersections. “Road intersection safety” is an important appli-
cation for improving road safety [1]. Intersections are the most complex environments
and need special attention, where hazardous situations like obstructed view or red-light
violation might lead to accidents. We take the latter as a motivation and running example.

Example 1. The following query detects red-light violations on intersections by searching
for vehicles y with speed above 30km/h on lanes x whose signals will turn red in 4s:
q1(z,y) : Laneln(x) A hasLocation(x,u) A intersects(u,v) A pos(ine, 4s) (Y, v)

A Vehicle(y) N speed(qug, 4s)(y,7) A (1 > 30) A isManaged(z, z)

A SignalGroup(z) A hasState first, —as)(z, Stop)
Query ¢; exhibits the different dimensions which need to be combined: (a) Vehicle(y)
and isManaged(z, z) are ontology atoms, which have to be unfolded in respect to the ITS
domain modelled in the LDM ontology; (b) intersects(u,v) and hasLocation(z,u) are
spatial atoms, where the first checks spatial intersection and the second the assignment of
a geometry to an object; () speed(avg 25 (y, v) defines a window operator that aggregates
the average speed of the vehicles over the stream and hasStatesirsi, —45) gives us the
upcoming traffic light state.

3 Streams, Pulses, and Spatial Databases
We now introduce the data model and sources that are used in our spatial-stream QA.

Streams and pulses. Our data model is point-based (vs. interval-based) and captures the
valid time (vs. transaction time) saying that some data item is valid at that time point. We
extend this validity of time, and say that a data item is valid from its time point until the
next data item is added to the stream. To capture streaming data, we introduce the timeline
T, which is a closed interval of (N, <). A (data) stream is a triple F' = (T, v, P), where
T is a timeline, v : T — (F,Sr) is a function that assigns to each element of T, called
timestamp (or time point), data items (called membership assertions) of (F,Sx), where
F (resp. Sx) is a stream (resp. spatial with streams) database, and P is an integer called
pulse defining the general interval of consecutive data items on the timeline (cf. [6/20]]). A
pulse generates a stream of data items with the frequency derived from the interval length.
We always have a main pulse Pr with a fixed interval length (usually 1) that defines the
lowest granularity of the validity of data items. The pulse also aligns the data items, which
arrive asynchronously in the database (DB), to the timeline.

Extending [20], we allow additional larger pulses that generate streams with a lower
frequency allowing larger intervals. Larger pulses also imply that their generated data items
are valid longer than items from the main pulse, thus allowing us to resize the window size
of a query and perform optimizations such as caching. Furthermore, pull-based queries
are executed at any single time point ¢ denoted as T;. Push-based queries are evaluated
asynchronously where the lowest granularity is given by Pr.

Example 2. For the timeline T = [0, 100], we have the stream Foap = (T, v, 1) of vehi-
cle positions and speed at the assigned time points v(0) = {speed(cy, 30), pos(ci, (5,5)),
speed(by,10), pos(by, (1,1))}, v(1) = {speed(c1,29), pos(ci,(6,5)) speed(by,5),
pos(by,(2,1))}, and v(2) = {speed(c1,34), pos(c1,(7,5))} for the individuals ¢; and
b1. A second “slower” stream Fsp,r = (T, v,5) captures the next signal state of a traffic
light: v(0) = {hasState(t1, Red)} and v(5) = {hasState(t;, Green)}. As Fspqr has
a pulse of p = 5, we know v(4) = () but under an alternative semantics with an inertia
assumption, we could conclude v'(4) = {hasState(t1, Red)}. Further, the static ABox
contains the assertions Car(cy), Bike(by), and SignalGroup(ty).
Spatial databases and topological relations. We recall the essential idea based on Point-
Set Topological Relations (see [12]). Spatial relations are defined via pure set theoretic
operations on a point set Pz C R? in the plane. An admissible geometry g(s) is a sequence
p = (p1,...,pn) of points over Pg, where Pr C Pg is the set of explicit points. We
define a spatial DB over ['s as a pair S = (P, g) of a point set Pr and a mapping
g:Ts = U, Pp', where I's is a set of spatial objects. The extent of a geometry p
(full point set) is given by the function points(p) as a (possibly infinite) subset of Pg.
For a spatial object s, we let g(s) be its geometry and let points(s) := points(g(s)).
For our KB, we consider the following admissible geometries p over P, and let Pg =
Use rg Points(s) (see [12] for further ones):
- points are the sequences p = (p1), where points(p) = {p1};
- line segments are sequences p = (p1, p2), and points(p) = {ap1 + (1 — a)p2 |« €
R,0<a<1}
We use points to evaluate the spatial relations of two spatial objects via their respective
geometries and define the relations in terms of pure set operations (see [12] for more):
- Inside(x,y): points(x)Cpoints(y) and Outside(x,y): points(x) N points(y)=0;
- Contains(x,y): points(y)Cpoints(x), Intersect(x,y): points(x) N points(y)#0D.
A spatial relation S(s, s’) with s, s’ € I's holds on a spatial DB S, written S |= S(s, s'),
if S(g(s),g(s")) is true. Relative to points, this is easily captured by a first-order (FO)
formula over (R2, <), and on geo-spatial RDBMS rewritable into FO queries.

Combining spatial and stream databases. Following an ontology-mediated QA ap-
proach, the LDM ontology is the global schema called the TBox 7, whereon we link
normal, spatial, and stream DBs. We distinguish between a (standard) static ABox A4, a
stream ABox F, a static-spatial ABox S.4, and a spatial ABox with stream support Sr.
These ABoxes can be stored in respective DBs, and combined in different ways. We focus
on a stream DB with limited support for spatial data, which acts also as a storage for S 4.

4 Syntax, Semantics, and Query Language of DL-Lite 4 (S,F)

We start from previous work in [12]], which introduced spatial CQ answering for DL-Lite 4,
and lift the semantics from the spatial DL-Lite 4 KB to the spatial-stream KB.

Syntax and semantics of DL-Lite 4. We consider a vocabulary of individual names /7,
domain values I'y (e.g., N), and spatial objects I's. Given atomic concepts A, atomic
roles P, and atomic attributes F, we define (a) basic concepts B, basic roles (), and basic
value-domains FE (attribute ranges); (b) complex concepts C, complex role expressions R,
and complex attributes V; and (c) value-domain expressions D:

B = A]3Q|6Uc) C == Te|B|-B|3Q.CY

E = p(Uc) D :=Tp|D1]...| Dy,

Q = P| P R = Q|—Q Vu=U|-U
where P~ is the inverse of P, T p is the universal value-domain and T ¢ is the universal
concept; furthermore, U is a given attribute with domain 6(U¢) (resp. range p(Uc)). A
DL-Litey knowledge base (KB) is a pair = (T,.A) where the TBox 7 and the ABox
A consist of finite sets of axioms as follows:
- inclusion assertions of the form BC C,Q C R, EC D, and U C V; respectively
- functionality assertions of the form funct @) and funct U,
- membership assertions of the form A(a), D(c), P(a,b), and U(a, c), where a,b are

individual names in /7 and cis a value in Iy,.

The semantics of DL-Lite 4 is in terms of FO interpretations Z = (AZ,-.Z), where the
domain AT = () is the disjoint union of AF of Af and -Z is an interpretation function
as usual (see [9]]). Satisfaction of axioms and logical implication are denoted by =. We
assume the unique name assumption (UNA) for different individuals resp. domain values
and adopt the constant domain assumption, saying that all models share the same domain.

Syntax DL-Lite 4 (S,F). Let T be a timeline and let I's, I'7, and I'y, be pairwise disjoint
sets as above. A spatial-stream knowledge base is a tuple
Ksr=(T,A,S4,(F,Sr),B),
where T (resp. A) is a DL-Lite 4 TBox (resp. ABox), S4 is a spatial DB, and (F,Sx) is
a stream DB with support for spatial data. Furthermore, B C I't x I's is a partial function
called the spatial binding from A to S 4 and F to Sx. If we restrict to a spatial KB resp.
stream KB, we drop F (resp., S) and have
Ks=(T,A,S4,B) resp. Kr=(T,A,F).
We introduce for DL-Lite 4 the possibility to specify the localization of atomic concepts
and roles. For this, we extend their syntax similar as in [12] as follows:
C:=Te|B|-B|3Q.C"| (loc A) | (locs A)
R:=Q| Q| (locQ) | (locs Q),
where s € I's and the concept and roles are as before. Intuitively, (loc A) is the set of
individuals in A that can have a spatial extension (e.g., (loc Parks)), and (locs A) is the
subset where it is s (e.g., (loc(4s.20,16.37) Vienna)).
The extension with streaming is captured by the following axiom schemes:
(streamp C) and (streamp R),
where F is a particular stream over either complex concepts C or roles R in (F, Sx).

Example 3. For Ex.[2] a TBox may contain (streamp,, ,,, speed), (streamp, ,,, (loc pos)),
(streamp,, ,,, Vehicle), and (streamp,,, . hasState), and we have further axioms
Car C Vehicle, Bike C Vehicle, and Ambulance C JhasRole. Emergency.

Semantics DL-Lite 4 (S,F). We give a semantics to the localization (loc @) and (loc,s Q)
for individuals of () with some spatial extension resp. located at s, such that a KB s =
(T, A, S, B) can be readily transformed into an ordinary DL-Lite4 KB Ko = (77, A’),
using the fresh spatial top concept Cs, and spatial concepts C. An interpretation of
Ks is a structure Zg= (A%, - b)), where (A%,) is an interpretation of (7,.A) and
P C AT xTgisa partial function that assigns some individuals a location, such that for
every a € I, (a,s) € By implies b (aZ) = s. We extend the semantics with (loc Q)
and (locs @), where @ is an atomic role in 7 by ((loc A) and (locs A) are accordingly):

(loc Q)*s 2 {(ar,a2) | (a1,a2) € QF N 3s € I's : (az,s) € b*},
(locs Q)¢ ={(a1,a2) | (a1, a2) € @ A (az,s) € b7}

The transformation of s to an ordinary DL-Lite 4 KB K¢ is described in [[12] and [13].

The idea of an initial streaming semantics is by interpreting the stream over the
full timeline, which can be captured by a finite sequence F4 = (F;)T,;,<i<Tmax Of
temporal ABoxes, which is obtained via the evaluation function v on F and T (cf. [7],
[[L5]). Hence, we define the interpretation of the point-based model over T as a sequence
Zp=(Z;) T\ <i<Tuma, Of interpretations Z;= (A%, Zi); T is a model of K, denoted
Ir EKFiffZ, = FiandZ; =T, foralli € T.

The semantics of the (streamp C) and (streamp R) axioms is along the same line.
A stream axiom is satisfied, if a complex concept C (resp. role R) holds over all the time
points of stream F' = (T, v, P); thus we restrict our models such that:

(streamp C)T = Nietp(r,p) C%i and (streamp R)T = Nietpcr,p) R%i,

where tp(T, P) is a set of time points determined by the segmentation of T by P. This
allows us to check for the satisfiability of a KB and gives us a global consistency, which is
of theoretical nature, since we would need to know the full timeline.

Spatial-stream query language over DL-Lite 4 (S,F). We next define spatial-stream
conjunctive queries over K sx. Such queries may contain ontology, spatial, and stream
predicates. An spatial-stream CQ ¢(x) is a formula:

Nizt Qo, (%, ¥) A Nj—y Qs, (x,7) A ALy @ (%,Y) (1)
where x are the distinguished (answer) variables, y are either non-distinguished (existen-
tially quantified) variables, individuals from Iy, or values from [y, and
- each Qo, (x,y) has the form A(z) or P(z,z’), where A is a concept name, P is a role
name and z, 2’ are from x U y;

- each atom Qg (x,y) is from the vocabulary of spatial relations (see Sec. [3) and of the
form S(z, z'), with z, 2’ fromx Uy;

- Qp;(x,y) is similar to Qo, (x,y) but adds the vocabulary for stream operators, which
are taken from [6] and relate to CQL operators [3]]. Moreover, we have a window H over
a stream F; that is derived from L (in Z* for past, or in Z~ for future) time units resp.
T;, and an aggregate function agr € {count, sum, first,...} (see Sec. for details)
that is applied to the data items in the window
- EE%agr represents the aggregate of last/next L time units of stream F;
- Mt represents the current tuples of F; with L = 0;
- EEIIOagr: represents the aggregate of all previous L time units of F};

® This would be represented in CQL as R[Range L], R[Now], R[Range L Slide D], etc.

Example 4. We modify ¢, (z,y) of Exampleand use the stream operators instead:
qi(z,y) : Laneln(z) A hasLocation(x,u) A intersects(u,v) A POSTLLONGS i (y,v)
A Vehicle(y) A speedgs g (y,7) A (r > 30) AisManaged(z, z)
A SignalGroup(z) A hasStateg—a ., (2, Stop)
T

Certain answer semantics with spatial atoms. In the streamless setting, due to the
OWA, queries are evaluated over all (possibly infinitely many) models. Certain answers
retain the tuples that are answers in all possible models. More formally, a match for g(x)
in an interpretation Z= (AZ, -7 of K is a function 7 : x Uy — A such that 7(c) = ¢7,
for each constant cin x Uy, and foreachi=1,...nand j =1,...,m:

() 7(z) € AL, for Qo,(x,y) = A(z) (concept atoms);

(i) (m(2),7(2")) € PZ, for Qo,(x,y) = P(z,2) (role atoms); and

(iii) 3s, 8’ € I's : (7(2),8) € X A (m(2),8") € b AS = S(s,8'),

for Qs, (x,y) := S(z,2') (spatial atoms).
A tuple ¢ = ¢1,..., ¢ over I is a (certain) answer for ¢(x) in Z, x = x1,...,xg, if
q(x) has some match 7 in Z where 7(x;) = ¢;, i = 1,..., k; and c is an answer for ¢(x)
over KC, if it is an answer in every model Z of KC. The result Cert(q(x), KC) of g(x) over K
is the set of all its answers. If we drop 7, we obtain a DB setting and let Eval(g(x),Z) be
the set of matches of g(x) over the single model Z of .4 under closed world assumption.
Regarding spatial atoms, as shown in [12/13]] the semantic correspondence between

Ko and Ks guarantees that we can rewrite ¢(x) into an equivalent query ug(x) over
Ks' = (T", A’,84). Using the rewriting and the semantic correspondence of Ko and K,
spatial atoms can be rewritten into a “standard” DL-Lite 4 UCQ, thus, answering spatial
CQs is still FO-rewritable (details in [12] and [13]).

5 Query Rewriting by Stream Aggregation

We aim at answering queries at a single time point T; with stream atoms that define
aggregate functions on different windows sizes relative to T;. For this, we consider a
semantics based on epistemic aggregate queries (EAQ) over ontologies [[10] by dropping
the order of time points for the membership assertions and handle the (streamed) assertions
as bags, which is similar to “classic” stream processing approaches.

Epistemic aggregate queries. As described in [10], EAQ are defined over bags of
numeric and symbolic values, called groups and denoted as {| - |}. Aggregates cannot be
directly transferred to DL-Lite, since with the certain answer semantics each model has
different groups due to unknown individuals, which leads to empty answers. [[10] extended
database semantics for aggregates with an epistemic operator K and a two-layer evaluation
using the completion w.r.t 7. The basic idea is to close the aggregate query, so only known
individuals are grouped and aggregated. More formally, an EAQ is defined asE]

qa(x,a9r(y)) : KX, y,2. ¢,
where x are the grouping variables, agr(y) is the aggregate function and variable, and
¢ is a CQ called main conditions; z are the disjoint existential variables of ¢. We call

w = x Uy U z the K-variables of ¢. The definition of a group was extended in [10] by a
multiset Hy of groups d, called K-group, as:

Hq:={|7(y) | m € KSatz x(z;¢) and 7(x) =d |},
* We simplified EAQs of [10] by omitting v and consider only aggregates with a single variable.

where K Sat are the satisfying K-matches of ¢ for the model Z of K and given by:
KSatr xc(w; ¢) := {m € Eval(¢,T) | m(w) € Cert(auz,,,K)},

where aux,, (W) < ¢ is the auxiliary atom used to map w only to known solutions. The
set of K-answers for an EAQ query ¢ over Z and KC can now be derived as:

qf :={(d,agr(Hq)) | d = 7(x), for some 7 € KSatz sc(w;})}.
The epistemic certain answers ECert(qq,, K) for a query g, over K is the set of K-answers
that are answers in every model Z of K. To compute ECert(qq,, K), [10] gave a “general
algorithm” GA that (1) computes the certain answers, (2) projects on the K-variables, and
(3) aggregates the resulting tuples. Importantly, evaluating EAQs reduces to standard CQ
evaluation over DL-Lite 4 with LOGSPACE data complexity.

Filtered and merged temporal ABoxes. Our approach is to evaluate the EAQ over one
or more filtered and merged temporal ABoxes. The filtering and merging, relative to the
window size and T;, creates several windowed ABoxes Amg 5 which are the union of the
static ABox A and the filtered stream ABoxes from F. The EAQ aggregates are applied
on each windowed ABox Ag, by aggregating normal objects, concrete values, and spatial
objects. More formally, a stream atom ¢ BHCLF agr is evaluated as an EAQ over ontologies

qs(x, agr(y)) : K x,y,2. ¢ B,
where x are the grouping variables and y is the aggregate variable, z are the disjoint
existential variables, and ¢ is a subquery of ¢ with atoms in the same scope of the window
operator EEI% and aggregate functions agr.
Example 5. For query ¢ (x,y) of Ex.[4] we have three EAQs represented as:
Gpos (Y, line(v)) : K y,v. Vehicle(y) A position(y,v);
Gspeed(y, avg(r)) : K y, r. Vehicle(y) A speed(y,r);

Gstate (2, first(m)) : K z,m. hasState(z, m)

We extend the evaluation of EAQs for the stream setting, such that an EAQ is
evaluated over the window relative to T;, the window operator BZ%, and the pulse P.
KSatzy k(W3 ¢) is now the set of K-matches of ¢ for a model Zg of K, where the
windowed ABox Ag is defined as Ag = AU |J{A; | ws < i < w,}. We have four cases
for the window size L and a pulse P, where P enlarges L according to its interval length:
- a current window with L = 0, i.e. wy = w, = Ty;

- apast window with L > 0 leading to w, = (T; — L) and w, = T;;

- a future window with L < 0 thatis ws = T; and w, = (T; + L); and

- the entire history with O resulting in ws, = 0 and w, = T;.

We obtain KB K = (T, Am) as above; the epistemic (certain) answers for g4 over Km
are naturally defined as ECertm(qs, Km) = (75 qgﬁa, where

qiEE ={(d,agr(Haq)) | d = 7(x), for some m € KSatzy xm(W;)}

are the K-matches that are answers in the model Zg of Kg. In ECertg, we did not yet
address the validity of an assertion, say in Ag,, until the next assertion in Ag,. Two
semantics are suggestive: the first ignores intermediate time points, and thus Ag, will be
unknown. The second fills the missing gaps with the previous assertion, i.e. copies it from
Agm, to Am,. For specific aggregate functions, e.g., max, min, or last, the two semantics
coincide, but for sum, avg, and count, they are different.

Algorithm 1: NSQ - Answer Naive Stream Query

Input: A stream conjunctive query g, time point T;, and a KB KC

Output: Set of tuples O

/* Step 1l: Detemporalize */
foreach Q ; of g do

Ag, + AU, <j<w, Aj according to B and T; ;

/Cagi «— (T, »AEEi> ;

build auz; (x, y, z) from ¢ EH% agrof QF; ;

build g; 1 (x, y, z%) from PerfectRef (aux;, T)(x,y, z) ;
build g; 2 (x, agr(y)) from g; 1 (x,y,z?) and ¢ BE agr;
R; 1 := evaluate Answer(auw;, K,) /* certain answers */ ;
R; 2 :=evaluate g;,1 over R; 1 /* K projection */ ;

R; :=evaluate q; 2 over R; o /* aggregation */ ;

Add R; to Aquz and replace Q F; in g with R;(z,y) ;

/* Step 2: Standard evaluation */
O := evaluate Answer(q, (7, AU Aquz)) ;

Example 6. We pose the query ¢; (z, y) at Tq and replace the stream atoms with auxiliary
atoms related to the EAQ of Ex.[5}
q1(z,y) : LaneIn(z) A hasLocation(z,u) A intersects(u,v) A gpos(y, v)
Nqspeed(y,T) A (1 > 30) AisManaged(x, z) A gstate(2, Stop)

The queries are computed using the ABoxes Agmp,1) = AU Ao U Ay and Ag1 4) =
AUy <;<4 Ai. This leads under ECertm for ggpeeq to the groups G, ={|30, 29, 34|}
and G, ={|10, 5|}, which results in gspeca={(c1,31), (b1,7.5)}. The results for the other
EAQ are gstate={(t1, Red)} and qPOS:{(Cla ((5,5),(6,5),(7,5))), (b1, ((1,1),(2,1)))}-

ECertg gives the certain answers for a single EAQ including the ontology atoms in
the same scope as the stream atoms. Answering the full CQ ¢ can be done by answering
each EAQ gy, separately and joining the answers, i.e.,

ECertAll(q,Kr,T;) = ECertm(ge,, Ke,, > ECerts(qq,, ngng),
where the wy, = w(¢y, T;) are the computed window sizes and A 1 B = {t over sig(A)U
sig(B) | t[sig(A)] € A, t[sig(B)] € B} is the join (cf. [18]) of sets A, B of K-answers,
where sig() is the relational signature of a K-answer set. The new K-answers are also
answers in every model Z of K. More details on deriving the g4, are given in Sec.

We now introduce the algorithm NSQ (see Alg. , where z? are the non-distinguished
variables in ¢ and PerfectRef (resp. Answer) is the “standard” query rewriting (resp.
evaluation) as in [9]]. NSQ extends the GA of [[10] to compute the answers for stream CQs
as follows: (1) calculate the epistemic answer for each stream atom over the different
windowed ABoxes and store the result in an auxiliary ABox using new atoms. Furthermore,
replace each stream atom with a new auxiliary atom; (2) calculate the certain answers over
A and the auxiliary ABox, using “standard” DL-Lite 4 query evaluation. A proof sketch
for correctness of NSQ is given in [[13]], viz. that for every stream CQ ¢, KB ICx, and time
point T;, we have NSQ(q, K, T;) = ECertAll(q, Kx,T;). It considers that ¢ must be
constrained by 7 and that aggregate functions must obey conditions as in [10]; it exploits
that answering each EAQ (Step 1) can be decoupled from answering the full CQ.

Standard aggregates. Different aggregate functions for use in ECert(q, K) were already
discussed in [10]]. For last and first, we extend the definition of Hg, as the sequence
of time points is lost. By iteratively checking if we have a match in one of the ABoxes

Amg,ws < i < we, we can determine the first resp. last match. The extension of Hg for
first and last is by checking each model for match (details in [13]). In an implementation,
the first/ last match can be simply cached while processing the stream.

Spatial aggregates. For spatial objects, we define geometric aggregate functions on the

multiset of Hg. As the order of assertions (i.e., points) is lost, we need to rearrange them

to create an admissible geometry g(s) that is a sequence p = (p1, ..., pn). We add new
aggregates on Hg to create new admissible geometries g(sq):

- agrpeint: We evaluate last to get the last available position p; and set g(sa) := (p1);

- agriine: we create p = (p1, ..., Pn), Where p; # p,, and determine a total order on the
bag of points in each K-group, such that we have a starting point using last and iterate
backwards finding the next point.

- agrangle: This aggregate function determines angles (in degrees) in a geometry by
applying (1) agriine, then (2) obtain a simplified geometry using smoothing, and (3)
calculate the angles between the lines of the geometry.

Besides the above aggregate functions, more functions such as computing the convex hull

or minimum spanning tree can be applied. In contrast to numerical aggregates, spatial

aggregates introduce for each K-group (d, agr(Ha)) a new spatial object sq of I's and an
admissible geometry g(sq) with agr(Ha) = (p1, ..., ps). This is achieved by (a) adding

a binding (d, sq) to B and (b) creating a new mapping g : sq4 — (p1,...,Pn) in Squz-

For simplicity, we assume that I's is static and contains (candidates for) sq already.

Combining spatial and stream queries. We combine the spatial and temporal elements

of a query g and KB K as follows: (1) detemporalize the stream atoms using EAQs; (2)

transform ¢ and K to an ordinary UCQ and KB as in Sec. [where in Step 2 of Alg.

Cert(q, (T, AU Aguz, Sa USqauz, BY) is changed to Certg(ug, (T, AU Aguz)). We

still keep LOGSPACE data complexity, which follows from the data complexity of single

EAQs and the fact that the number of aggregate atoms bounds the number of EAQs. As

shown before, spatial binding and relations do not increase the data complexity.

6 Query Evaluation by Hypertree Decomposition

We focus on pull-based evaluation of spatial-stream CQs, which is already challenging,
as we must deal with three different types of query atoms that need different evaluation
techniques over possibly separate DBs. Ontology atoms are evaluated over the static
ABox A using the “standard” DL-Lite 4 query rewriting, i.e., PerfectRef [9]]. For spatial
query atoms, we need to dereference the bindings by joining the binding B and the spatial
ABox S 4, where we evaluate the spatial relations (e.g., Inside) over the spatial objects of
the join; Stream query atoms are computed as described in Alg.[T|over the stream ABox
F and the spatial ABox with stream support Sx.

Evaluation strategies. In [12], we introduced spatial CQ evaluation based on the assump-

tions that no bounded variables occur in spatial atoms and the CQ ¢s(x) has to be acyclic.

This allows an evaluation in two stages:

(1) evaluate the ontology part of gs(x) by dropping all spatial atoms over Ks'. For this,
we can apply the standard query rewriting and evaluate the resulting UCQ over A;

(2) filter the result of Step (1), by evaluating the spatial atoms on the matches 7 (for the
distinguished variables x) taking the bindings B to S 4 into account.

10

As shown in [[12]], one evaluation strategy is based on the hypergraph of gg and the derived
join plan, while another is based on compiling g (x) into a single, large UCQ with spatial
joins. The hypergraph-based strategy is well suited for lifting to spatial-stream CQs as the
partial EAQ results are already stored. Hence, we merge it with the two-stage evaluation of
Sec. [5] (detemporalization). For this, we aim to find large subqueries of combined stream
and ontology atoms, and an efficient evaluation order (the join plan), which allows the
partial evaluation and merging of the intermediate results to obtain the final result. In our
opinion, the hypergraph-based strategy has the advantage of allowing fine-grained caching,
full control over the evaluation, and possibly different DBs.

Hypergraphs and join trees. Many works have been dedicated to connecting hyper-
graphs, (acyclic) DB schemes, and join trees (see [[18]] for an overview). For decomposing
a query ¢, the query hypergraph H(q) = (V, E) is popular, where the vertices V represent
the variables in ¢ and the hyperedges in E' capture the atoms in ¢ with shared variables.
In case of an acyclic conjunctive query (ACQ), which is defined in terms acyclicity of
H(q), a join tree can be generated from H (q) that yields a plan for computing the query q.
We focus here on a-acyclicity, which can be efficiently tested by the GYO-reduction (cf.
[L8]]). A specific join tree Jy can be found via the maximum-weight spanning tree T's of
the intersection graph Iy of H, where edge weights of T's are edge counts of V in Iy.

Details on the query evaluation. The combined evaluation extends our spatial evaluation
strategy with hypertree decomposition of a hypergraph, by keeping intermediate results of
each step in memory. The main steps of our query evaluation algorithm are:

(1) construct the c-acyclic hypergraph H, from ¢ and label each hyperedge in H, with [,
ls, and [if it represents an ontology, spatial, or stream atom, resp. the combination
of them; [gets the window size assigned, e.g., [o for speedangavg.

(2) build the join tree J,; of H, and extract the subtrees Jy, in H,, such that each node
is covered by the same label I ,,. The intention is to extract subtree CQs that share
the same window size L (where static queries have L = 0), so they can be evaluated
together and cached for future query evaluations.

(3) apply detemporalization as in Alg. |1} where for each subtree J, the stream CQ gy, is
extracted and computed. The results are stored in a (virtual) relation 124,, and each
Jg, 1s replaced with a query atom pointing to 2.

(4) traverse J,; bottom up, left-to-right, to evaluate the CQ gg4, for each subtree Jy, (now
without stream atoms) and keep the results in memory for future steps. Ontology and
spatial atoms are evaluated as described before.

Example 7. The subqueries and join order of query ¢3(z,v) in Table 1 is as follows:

(1) g3,r1(z,y) : Vehicle(x) A positiongiogine (2, y);
(2) gs,n1(v,u) : LaneIn(v) A hasLocation(v,u); and
(3) gs(z,v) : g3, 1 (z, y) Aintersects(y, u) A gs,n1(v, w).

Caching for future queries is achieved by storing the intermedia results in memory with an

expiration time according to L and the pulse. Static results never expire.

7 Implementation and Experimental Evaluation

We have implemented a prototype for our spatial-stream QA approach in JAVA 1.8
using the open-source PIPELINEDB 9.6.1 (https://www.pipelinedb.com/) as the spatial-
stream RDBMS. The hypertree decomposition for each query is computed once using the

11

https://www.pipelinedb.com/

qi(x,y,z) : Car(x), speed(x,y)[avg, 10], vehicleMaker(x,z),y > 30 /* cars w/ brands, travelling above 30km/h */
q2(x,y) : LanelIn(x),hasSignal(x,y),SignalGroup(y), signalState(y,z)[last, 15],z = "R” /* lanes and signal groups switched to red */

gs(x,v): Vehicle(x),pos(x,y)[line, 10], inside(y,u), hasGeo(v,u), LaneIn(v) /% vehicles on incoming lanes */

qa(x,y) : Vehicle(x),pos(x,w)[line, 30], intersects(w,z), pos(y, z)[1ine, 30], Car(y) /* vehicles with crossed paths */

gs(x,y) : Vehicle(x), speed(x,z)[avg, 15], pos(x, y)[line_angle, 15],z > 30,y > —10,y < 10 /* vehicles above 30km/h heading straight */
qs(x,y) : Taken from Ex.[T] /* Detection of red-light violation */
q7(x,2z) : LaneIn(x),isPartof(x,u), Intersection(u),u = "I1”, hasSignal(x,y), /* synthetic, testing many ontology atoms */

SignalGroup(y), signalState(y, r)[last, 15],r = "R”, connect(x, q), connect(q, v),
Lane(v), hasSignal(v,z), SignalGroup(z), signalState(z, s)[last, 15],s = "R”
gs(x,y) : Vehicle(x),pos(x,y)[line,20], intersects(y,u), LaneIn(r), hasGeo(r,u), /* synthetic, testing many spatial atoms */
intersects(y,v),LaneIn(s), hasGeo(s,v), intersects(y,w), LaneIn(t),
hasGeo(t,w), within(y, z), hasGeo(q, z), Intersection(q)
9e(x,q,T,s,t,u) : Vehicle(x), speed(x, q)[avg, 1], speed(x, r)[avg, 5], speed(x, s)[avg, 10], /* synthetic, testing many stream atoms */
speed(x, t)[avg, 25|, speed(x, u)[avg, 50

Table 1: Benchmark queries (windows size in seconds)

implementation at |https://www.dbai.tuwien.ac.at/proj/hypertree/. Based on it, each subquery
is evaluated separately and (spatial) joined in-memory. For the FO-rewriting of DL-Lite 4,
we used the implementation of PerfectRef in OWLGRES 0.1 [24] for now; more recent
(and more efficient) implementations for query rewriting (e.g., [23]) are available.

Our experiment is based on two scenarios of monitoring vehicles and traffic lights
(a) on a single intersection and (b) on a network of locally connected intersections, both
managed by a single roadside C-ITS station. The ontology, queries (see Table [I), the
experimental setup with logs, and the implementation are available on http://www.kr.tuwien
ac.at/research/projects/loctrafflog/eswc2017. We use a custom DL-Lite4 LDM ontology
with 119 concepts (with 113 inclusion assertions); 34 roles and 28 data roles (with 31
inclusion assertions). The LDM ontology models the C-ITS domain in a layered approach,
separating concepts like ITS features (e.g., intersection topology), geo-features (e.g., POIs),
geometries (e.g., polygon), actors (e.g., vehicles), events (e.g., accidents); and roles like
partonomies (e.g., isPartOf), spatial relations, and generic roles (e.g., speed).

For (a), we have a T-shaped intersection as shown in Fig. 2] that represents a real-world
deployment of a C-ITS station in Vienna. It connects two roads with 13 lanes and 3 signal
groups that are linked to the lanes. We developed a synthetic data generator that simulates
the movement of 10, 100, 500, 1000, 2500, and 5000 vehicles on a single intersection
updating the streams averagely 50ms. This allows us to generate streams with up to 10000
data points per sec. and streamE] We chose random starting points and simulated linear
movements on a constant pace, creating a stream of vehicle positions. We also simulated
simple signal phases for each traffic light that toggle between red and green every 3
secs. The aim of this scenario is to show for simple driving patterns the scalability of
our approach in the number of vehicles. For (b), we use a realistic traffic simulation of 9
intersections in a grid, developed with the microscopic traffic simulation PTV VISSIM
(http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/), allowing us to simulate realistic
driving behavior and signal phases. The intersection structure, driving patterns and signal
phases are more complex, but the number of vehicles is lower (max. 300) than in (a),
as we quickly have traffic jams. We developed an adapter to extract the actual state of
each simulation step, allowing us to replay the simulation from the logs. To vary data
throughput, we ran the replay with Oms, 100ms (real-time), 250ms and 500ms delay.

> The intervals vary due to the number of vehicles, so we scale the DB updates up to 12 generators.

12

https://www.dbai.tuwien.ac.at/proj/hypertree/
http://www.kr.tuwien.ac.at/research/projects/loctrafflog/eswc2017
http://www.kr.tuwien.ac.at/research/projects/loctrafflog/eswc2017
http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/

Fig. 2: Schematic representation of scenario (a) and (b)

Type #Q #A (a) t with #vehicles (b) t with ms sim. delay

10 100 500 1000 2500 5000 | 0 100 250 500

q O, F 11 0.85 0.82 091 1.05 122 1.58 0.78 0.74 0.73 0.71
¢ O, F* 1 6 0.83 0.83 0.83 0.83 0.83 0.83 0.77 077 072 0.71
g3 O,S,F 3 23 0.89 0.87 1.00 125 139 1.74 0.83 0.81 0.77 0.75
qa O,S,F 3 22 1.10 1.09 1.24 1.53 1.81 2.32 1.02 1.00 095 093
g O,S,F 3 42 1.11 1.10 1.26 1.39 190 1.92 1.05 1.00 098 0.96
g O,S,F 7 52 1.39 1.39 149 1.69 236 2.28 1.40 128 126 1.25
qgr O,F* 6 69 1.16 1.16 1.16 1.16 1.16 1.16 1.15 1.12 1.11 1.09
gs O,S 9 73 0.92 094 130 143 172 219 0.99 098 0.92 091
q O,F 9 105 1.67 1.73 1.99 2.06 249 297 1.71 1.68 1.66 1.63

Table 2: Results (¢ in secs) for scenario (a) and (b), marked with * are signal streams

Results. We conducted our experiments on a Mac OS X 10.6.8 system with an Intel
Core i7 2.66GHz, 8GB of RAM, and a 500GB HDD. The average of 11 runs for query
rewriting time and evaluation time was calculated, where the largest outlier was dropped.
The results are shown in Table [2] presenting query type (O for ontology, F’ for stream, and
S for spatial atoms), number of subqueries #@), size of rewritten atoms # A, and ¢ as the
average evaluation time (AET) in seconds for n vehicles or the delay in ms.

The baseline spatial-stream query is g3 for 500 vehicles, where we have a time-to-load
(TOL) of 0.22s, an evaluation time for the stream (resp. ontology) atom of 0.54s (resp.
0.03s), and a spatial join time of 0.05s. Clearly, 50% of the AET is use for the stream atom
(including rewriting steps). The TOL could be reduced by pre-compiling the program;
this shortens evaluation by roughly 0.2s. Initial evaluation of the queries g4, g5, g6 and qg
show that with each new stream subquery the number of results dropped down to zero,
which seems an implementation issue of PIPELINEDB with Continuous Views on the same
stream with different window sizes. We found a workaround by adding a delay of 0.2s
which again increases the number of results. This delay increases the AET, e.g. by 0.76s in
q9, and might be ignored with future versions of PIPELINEDB and other stream RDBMS.
The synthetic queries with mostly ontology (gs), spatial (g7), and stream atoms (gy) clearly
show that the challenging part of query evaluation are the stream aggregates. The good
performance of PIPELINEDB allows us to work on condensed results (reducing the join
sizes); however, stream aggregates could be further accelerated by calculated continuously
inline aggregates on the DB, which are skimmed by our queries. Notably, PIPELINEDB
keeps not always the order of inserted data points; this does not affect our bag semantics.

13

In general, our approach is designed to retain complete results; however, completeness
might be lost as (1) the underlying spatial-stream RDBMS loses results as described above;
(2) evaluation of a subquery is slow and subsequent queries start too late. One can solve
(1) at the level of the spatial-stream RDBMS, and (2) can be overcome by continuous
inline aggregates and query parallelization. In conclusion, the experiments show that the
AET of our experimental prototype is for up to 500 vehicles below 1.5s (except qg). This
suggests that with optimizations, e.g. quick detection of red-light violations on complex
intersections is feasible.

8 Related Work and Conclusion

Data stream management systems (DSMSs) such as STREAM [3]], were built supporting
streaming applications by extending RDMBS [14]]. More recently, RDF stream processing
engines, such as C-SPARQL [5], SPARQLstream [8], and CQELS [17], were proposed for
processing RDF streams integrated with other Linked Data sources. Besides C-SPARQL,
most of them follow the DSMSs paradigm and do not support stream reasoning. EP-
SPARQL [2] resp. LARS [6] proposes a language that extends SPARQL resp. CQ with
stream reasoning, but translates KBs into expressive (less efficient) logic programs. Regard-
ing spatio-temporal RDF stream processing, a few SPARQL extensions were proposed,
such as SPARQL-ST [21] and st-SPARQL [16]. Closest to our work are (i) [22]], which
supports spatial operators as well as aggregate functions over temporal features (ii) [8]],
which allows evaluating OQA queries over stream RDBMS, and (iii) [20], which extends
SPARQL with aggregate functions (using advanced statistics) evaluated over streamed and
ordered ABoxes. This work differs regarding (a) the evaluation approach using EAQ with
aggregates on the query and not ontology level, (b) hypergraph-based query decomposition,
and (c) the main focus of querying streams of spatial data in an OQA setting.

Our approach is situated in-between “classical” stream processing approaches that
handle the streaming data as bags in windows, and temporal QA over DL-Lite using
temporal operators like LTL in [4], which are evaluated over a (two-sorted) model sep-
arating the object and temporal domain. We believe that detemporalization with its bag
semantics suffices for the C-ITS case, since the order of V2X messages is not guaranteed,
and for most of the normal as well as spatial aggregates it can be ignored (e.g., sum) or
is implicit in the data (e.g., Euclidian distance of points). Besides [4], similar temporal
QA is investigated in [7] and [[15], which are all on the theoretical side and provide no
implementation yet. Finally, we build on the results for EAQs in [10], but we introduce
spatial streams and more complex queries.

This work is sparked by the LDM for V2X communications, which serves as an
integration effort for streaming data (e.g., vehicle movements) in a spatial context (e.g.,
intersections) over a complex domain (e.g., a mobility ontology). We introduced a suitable
approach using ontology-mediated QA for realizing the LDM. For spatial-streaming
queries, bridging the gap between stream processing and ontology-mediated QA is not
straightforward; we extended previous work in [12]] and used epistemic aggregate queries
to detemporalize the stream sources. The latter preserves FO-rewritability, which allows us
to evaluate conjunctive queries with spatial atoms over existing stream RDBMSs. We also
provided a technique to construct query execution plans using hypergraph decomposition,
and we have implemented a proof-of-concept prototype to assess the feasibility of our

14

approach on two experiments with mobility data. The results are encouraging, as the
evaluation time appeared to be moderate already without optimization.

Future work. Our ongoing and future research is directed to advance the theoretical and
practical aspects of our approach. On the theoretical side, a detailed correctness proof
for the algorithm that accounts for all different aggregate functions is needed. So far,
consistency for QA is neglected and could be enforced in different ways by repairs. The
query language could be lifted to SPARQL, but epistemic aggregates, query decomposition,
and spatial relations would need reevaluation. On the practical side, our implementation
should be extended to pull-based QA with extensive caching and inline aggregates on the
DB, along with other optimizations, such as using the pulse for pre-caching resp. window
size optimizations, and different query rewriting techniques. Also more complex spatial
aggregates, i.e., trajectories, should be considered. Furthermore, cyclic queries need to
be handled. The implementation could be tested in more complex scenarios like event
detection (e.g., bus delays) with public transport data.

References

1. Andreone, L., Brignolo, R., Damiani, S., Sommariva, F., Vivo, G., Marco, S.: Safespot final
report. Tech. Rep. D8.1.1 (2010), available online.

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event
processing and stream reasoning. In: Proc. of WWW 2011. pp. 635-644 (2011)

3. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations
and query execution. VLDB J. 15(2), 121-142 (2006)

4. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: First-
Order Rewritability of Temporal Ontology-Mediated Queries. In: IJCAI’15. 2706-2712 (2015)

5. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-sparql: a continuous query
language for rdf data streams. Int. J. Semantic Computing 4(1), 3-25 (2010)

6. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based framework for analyzing
reasoning over streams. In: Proc. of AAAI 2015. pp. 1431-1438 (2015)

7. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages over knowl-
edge bases. J. Web Sem. 33, 50-70 (2015)

8. Calbimonte, J.P., Mora, J., Corcho, O.: Query Rewriting in RDF Stream Processing. In: ESWC
2016. pp. 486-502 (2016)

9. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and
efficient query answering in description logics: The dl-lite family. J. Autom. Reasoning 39(3),
385-429 (2007)

10. Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate queries over ontologies. In: Proc.
of ONISW 2008. pp. 97-104 (2008)

11. Eiter, T., Fiireder, H., Kasslatter, F., Parreira, J.X., Schneider, P.: Towards a semantically
enriched local dynamic map. In: Proc. 23rd World Congress on Intelligent Transport Systems
(ITSWC-2016), Melbourne, October 10-14, 2016 (2016)

12. Eiter, T., Krennwallner, T., Schneider, P.: Lightweight spatial conjunctive query answering using
keywords. In: Proc. of ESWC 2013. pp. 243-258 (2013)

13. Eiter, T., Parreira, J.X., Schneider, P.: Towards spatial ontology-mediated query answering over
mobility streams. In: Proc. of Stream Reasoning Workshop 2016, pp. 13-24 (2016)

14. Golab, L., Ozsu, M.T.: Issues in data stream management. SIGMOD Rec. 32(2), 5-14 (2003)

15. Klarman, S., Meyer, T.: Querying temporal databases via OWL 2 QL. In: Proc. of RR 2014. pp.
92-107 (2014)

16. Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic sensor web:
The model strdf and the query language stsparql. In: Proc. of ESWC 2010. pp. 425-439 (2010)

15

17.

18.
19.

20.

21.

22.

23.

24.

Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for
unified processing of linked streams and linked data. In: ISWC 2011. pp. 370-388 (2011)
Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)

Netten, B., Kester, L., Wedemeijer, H., Passchier, I., Driessen, B.: Dynamap: A dynamic map
for road side its stations. In: Proc. of ITS World Congress 2013 (2013)

Ozgep, O.L., Méller, R., Neuenstadt, C.: Stream-query compilation with ontologies. In: Proc. of
Al 2015. pp. 457-463 (2015)

Perry, M., Jain, P., Sheth, A.P.: SPARQL-ST: extending SPARQL to support spatiotemporal
queries. Geospatial Semantics and the Semantic Web 12, 61-86 (2011)

Quoc, H.N.M., Le Phuoc, D.: An elastic and scalable spatiotemporal query processing for linked
sensor data. In: Proc. of SEMANTICS 2015. pp. 17-24. ACM (2015)

Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop
of databases. In: Proc. of ISWC 2013. pp. 558-573 (2013)

Stocker, M., Smith, M.: Owlgres: A scalable owl reasoner. In: Proc. of OWLED 2008 (2008)

16

	Spatial Ontology-Mediated Query Answering over Mobility Streams

