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Abstract Answer set programming is a declarative programming paradigm rooted
in logic programming and non-monotonic reasoning. This formalism has become
a host for expressing knowledge representation problems, which reinforces the
interest in efficient methods for computing answer sets of a logic program. The
complexity of various reasoning tasks for general answer set programming has been
amply studied and is understood quite well. In this paper, we present a language
fragment in which the arities of predicates are bounded by a constant. Subsequently,
we analyze the complexity of various reasoning tasks and computational problems
for this fragment, comprising answer set existence, brave and cautious reasoning,
and strong equivalence. Generally speaking, it turns out that the complexity drops
significantly with respect to the full non-ground language, but is still harder than
for the respective ground or propositional languages. These results have several
implications, most importantly for solver implementations: Virtually all currently
available solvers have exponential (in the size of the input) space requirements even
for programs with bounded predicate arities, while our results indicate that for those
programs polynomial space should be sufficient. This can be seen as a manifestation
of the “grounding bottleneck” (meaning that programs are first instantiated and
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then solved) from which answer set programming solvers currently suffer. As a final
contribution, we provide a sketch of a method that can avoid the exponential space
requirement for programs with bounded predicate arities.

Keywords Answer set programming · Computational complexity

Mathematics Subject Classifications (2000) 68N17 · 68Q17

1 Introduction

In the last years, answer set programming (ASP) [36, 43, 51, 56], also called A-Prolog
[3, 26], has emerged as a declarative programming paradigm which has its roots in
logic programming and non-monotonic reasoning. It is well-suited for modeling and
solving problems which involve common sense reasoning, and has been fruitfully
applied to a range of applications including data integration, configuration, diagnosis,
reasoning about actions and change, and many others; see [68] for a recent survey
of applications. Furthermore, a number of extensions of the ASP core language,
which goes back to the seminal paper by Gelfond and Lifschitz [27], have been
developed, which aim at increasing the expressiveness of the formalisms and/or
providing convenient constructs for application-specific problem representation; see
e.g. [52] for a more recent account of such extensions.

The most important and natural such extension is the usage of disjunction in
the head of rules, leading to disjunctive ASP. The semantics of programs with
disjunctive rule heads goes back to the pioneering work of Jack Minker, who
was the first to consider this construct in the context of logic programming and
databases. He proposed to consider the minimal Herbrand models of a logic program
with disjunctive rule heads as the semantics of such programs, and formulated the
generalized closed world assumption (GCWA) [44] in order to overcome problems
of Reiter’s closed world assumption (CWA) [58] over disjunctive databases. This was
complemented with SLI-resolution for handling indefinite clauses [50]. Since then,
Jack Minker was driving the research on disjunctive logic programming and made
many further important contributions, including [23, 47, 61, 62]. A first climax of his
work was the early state-of-the-art monograph [40], which was complemented with
several influential surveys [45, 46, 48, 49]. Today, disjunctive ASP is, besides Core
ASP, the most prominent class of ASP and of disjunctive logic programming alike.

The basic idea of ASP is to encode solutions to a problem into the intended models
of a non-monotonic logic program, in a way such that the solutions are described in
terms of rules and constraints rather than that a concrete algorithm is specified how
to single out the solutions. The problem encoding is then fed into an ASP solver,
which computes some or multiple answer set(s) of the program, from which the
solutions of the problem can easily be read off. Alternatively, ASP-solvers may also
be used to answer queries on the given problem encodings. Advanced ASP solvers
such as Smodels, DLV, GnT, Cmodels, Clasp, or ASSAT (see Asparagus homepage:
http://asparagus.cs.uni-potsdam.de/), are able to deal with large problem instances;
a recent demonstration effort of the potential of ASP was made at the ASP solver
competition [24] which took place within the latest edition of LPNMR in May 2007.

The success of ASP is based on a variety of diverse sophisticated algorithms and
techniques for evaluating non-monotonic logic programs, which in turn draw from

http://asparagus.cs.uni-potsdam.de/
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results about the computational complexity of reasoning tasks from such programs.
The latter is quite well understood, and detailed pictures of the complexity for ASP
and major extensions are given in [4, 5, 10, 13, 35, 42], for ground (propositional)
and non-ground programs (with variables, but without function symbols, i.e., the
Datalog case); see [8] for a survey. Consistency checking of non-ground (disjunctive)
ASP programs has complexity NEXPNP, i.e., non-deterministic exponential time
with an oracle for NP, and thus provides a powerful host for problem solving. In
the propositional case, the complexity is lowered by one exponential, and is �P

2 -
complete. The resource requirements of current implementations, with DLV being
the foremost of the disjunctive ASP systems, match these theoretical worst case
bounds, and use at most exponential space in the non-ground case but only poly-
nomial space in the ground case.

In this paper, we consider non-ground programs under the restriction that the
arities of predicates are bounded by some constant. This restriction is very relevant
in practice, since often only a few arguments in a predicate are sufficient to express
relationships between objects. Furthermore, often complex relationships can be
broken up by splitting the predicates into smaller predicates.

As it turns out, for programs with bounded arities the complexity is (much) lower
than for general programs. In fact, we show that such programs have complexity
within the polynomial hierarchy, and are thus far cheaper to evaluate than unre-
stricted programs.

Example 1 Consider the problem of reachability over paths of length k in a directed
graph. This problem can be represented by an ASP program in the following way,
assuming that each arc (v1, v2) of the input graph is given by e(v1, v2):

pk(X1, Xk) :- e(X1, X2), . . . , e(Xk−1, Xk).

reachable(X, Y) :- pk(X, Y).

reachable(X, Y) :- reachable(X, Z ), pk(Z , Y).

Note that the first rule will in general give rise to an exponential number (in k) of
body literals that all give rise to the same head atom. For instance, for a graph as
depicted in Fig. 1, where k = 2n + 1, there are 2n paths from v1 to vn+1, and therefore
2n different ways for deriving pk(v1, vn+1).

If the graph is given as an input, current ASP grounding methods will not generate
ground versions of the first rule as an optimization. However, if the graph depends
on some nondeterministic subprogram (for instance if this property is to be verified
on subgraphs of an input graph), these optimizations can not be applied, and an

Fig. 1 Example graph
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exponential number of ground rules will be created (cf. Section 6.1), while the results
in this paper indicate that this is not necessary.

In this paper, we study the complexities of the following decision problems:

Answer set existence: Given a program P , decide whether P has some answer set.
Brave reasoning: Given a program P , and a ground literal a, decide whether a

is true in some answer set of P .
Cautious reasoning: Given a program P , and a ground literal a, decide whether a

is true in all answer sets of P .
Strong equivalence: Given programs P and Q, decide whether, for each program

R it holds that P ∪ R and Q ∪ R have the same answer sets.

This enumeration includes the three canonical reasoning tasks (answer set exis-
tence, brave reasoning, and cautious reasoning) which have been amply considered in
the literature, as well as strong equivalence [37]. We consider the fourth task, decid-
ing strong equivalence, to be a central decision problem due to its fundamental role
for a replacement property of logic programs. In particular, whenever P occurs as a
subprogram in the context of another program, we can replace P without changing
the semantics (i.e., without changing the answer sets of the overall program) only by
programs which are strongly equivalent to P . Note that due to the non-monotonic
semantics such a replacement property cannot be obtained by just comparing the
answer sets of the subprograms which are subject to replacement. The replacement
property is important for modularization and optimization of logic programs, and
its semantic and complexity properties have been investigated for ground and non-
ground programs [16, 18, 19, 38, 55, 66].

Our main contributions and results on the above issues are briefly summarized as
follows:

– We provide a complexity characterization of deciding answer set existence,
brave reasoning, and cautious reasoning for programs with bounded arities. The
analysis covers the most commonly considered syntactically restricted classes of
programs, namely stratified negation [2] and head-cycle-free disjunction [4], as
well as weak constraints [7]. Roughly speaking, it turns out that the complex-
ities of these tasks are one level above the complexities of the corresponding
problems for propositional programs, and range from NP resp. co-NP to �P

4 .
Intuitively, this is explained by the fact that models of programs with bounded
arities are of polynomial size, while checking whether an interpretation is closed
under the rules of the program is intractable (more precisely, co-NP-complete).

– We also provide a complexity characterization of deciding strong equivalence
of programs with bounded arities. As it turns out, this problem is �P

2 -complete
for almost all classes of programs which we consider, as compared to co-NEXP-
completeness in the general case (resp. co-NP-completeness for the ground
case). As a by-product, we provide a novel characterization for deciding strong
equivalence between programs containing weak constraints.

– Based on our results and other results on answer set programming in the
literature, we sketch how non-ground programs with bounded arities can be
transformed in polynomial time to logic programs for which exponentially
large intermediate results of the computation using current standard methods
is avoided.
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Our results extend and complement previous results on the complexity of answer
set programming in the literature. They are significant since, unfortunately, current
ASP solvers do not always run in polynomial space, even for families of instances
which can be solved in PSPACE. They highlight the fact that the current ASP systems
suffer from an inherent grounding bottleneck: even if DLV, Smodels’ grounder
Lparse, and other tools employ intelligent grounding techniques to keep the ground
instantiation of a program as small as possible, and apply furthermore also program
transformations for that, there are cases for which the produced grounding is not
polynomial but the program could be solved in polynomial space. As shown by our
results, the grounding bottleneck may be overcome by a different system architecture
for an important class of programs.

The structure of the remainder of this paper is as follows. In Section 2, we give
the necessary preliminaries and recall previous results. Section 3 then considers the
answer set existence problem, followed by Section 4 in which brave and cautious
reasoning are considered. In Section 5, we consider strong equivalence. Section 6
contains a discussion of the results, including possible transformation of some
reasoning tasks to propositional ASP, and Section 7 discusses related work and
concludes the paper.

2 Preliminaries and previous results

In this section, we first give a brief overview of the syntax and semantics of disjunctive
datalog under the answer sets semantics [28]; for further background, see [12, 35].

An atom is an expression p(t1, . . ., tn), where p is a predicate of arity n ≥ 0 and
each ti is either a variable or a constant. A (classical) literal l is an atom a (in this
case, it is positive), or a negated atom ¬a (in this case, it is negative). Given a literal
l, its complement ¬l is defined as ¬a if l = a and a if l = ¬a. A set L of literals is said
to be consistent if, for every literal l ∈ L, ¬l /∈ L.

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm.

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and where a1, . . . , an, b 1, . . . , bm are literals. We
refer to “¬” as strong negation and to “not” as default negation, or simply as
negation. The head of r is the set H(r) = {a1, . . . , an}; and the body of r is B(r) =
{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r) =
{bk+1, . . . , bm}.

A rule r is called fact if m = 0, n > 0, in which case the symbol :- is usually
omitted; (integrity) constraint if n = 0; r is normal if n ≤ 1, definite if n = 1, (proper)
disjunctive if n > 1, and positive if k = m; a positive and normal rule is called Horn.

A weak constraint [7] is an expression wc of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]
where m ≥ k ≥ 0 and b1, . . . , bm are literals, while weight(wc) = w (the weight) and
l (the level) are positive integer constants or variables. For convenience, w and/or
l may be omitted and are set to 1 in this case. The sets B+(wc), and B−(wc), are
defined as for rules. A weak constraint is called positive or Horn iff B−(wc) = ∅.

A program P is a finite set of rules and weak constraints. Rules(P) denotes the
set of rules and WC(P) the set of weak constraints in P . wP

max and lPmax denote
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the maximum weight and maximum level over WC(P), respectively. Programs are
normal (resp., definite, disjunctive, positive, Horn) if all of their rules and weak
constraints enjoy this property. Horn programs without constraints and strong
negation are definite Horn.

Example 2 One of the standard examples for employing non-ground answer-set
programs is the problem of three-colorability of graphs, which we briefly review
here. One constructs a program P3col such that its answer sets provide all valid three-
colorings of a graph which is given via additional facts over predicates v(·) and e(·, ·),
specifying the vertices and respectively edges of the graph. Disjunctions can be used
to guess a coloring, i.e., they assign either red, green, or blue to each vertex, and
constraints are employed to eliminate those colorings which do not result in a valid
coloring, i.e., where connected vertices are assigned the same color. These ideas yield
the program P3col, given as follows:

red(X) ∨ green(X) ∨ blue(X) :- v(X).

:- red(X), red(Y), e(X, Y).

:- green(X), green(Y), e(X, Y).

:-blue(X), blue(Y), e(X, Y).

One can now employ weak constraints, to penalize red vertices, for instance. To this
end, consider the program P2col given by the program P3col together with the simple
weak constraint

:∼ red(X). [1 : 1].
This expression counts the number of red vertices in each valid three-coloring, and
thus only those answer sets are selected which have a minimum number of red
vertices among all valid colorings. Thus P2col can be seen as an approximation for
the 2-coloring problem of graphs, as well. We will sketch how such programs are
semantically treated in more detail below.

For any program P , let UP be the set of all constants appearing in P (if no constant
appears in P , an arbitrary constant is added to UP); let BP be the set of all ground
literals constructible from the predicate symbols appearing in P and the constants
of UP . Moreover, Ground(P, U) is the set of rules rσ obtained by applying, to each
rule and weak constraint r ∈ P , all possible substitutions σ from the variables1 in P
to elements of U . We call Ground(P, UP) the grounding of P , and write Ground(P)

as a shorthand for Ground(P, UP). UP is usually called the Herbrand Universe of P
and BP the Herbrand Literal Base of P .

Taxonomy of logic programs Starting from Horn programs without weak con-
straints, we define classes DL[L] with {L} ⊆ {nots, not,∨h,∨, w}. This set is used
to indicate the (possibly combined) admission of

nots: (default) negation; the program remains stratified;
not: unrestricted (default) negation;

1This includes also variables appearing in levels or weights of weak constraints.
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∨h: disjunction; the program remains head-cycle free;
∨: unrestricted disjunction;
w: weak constraints.

Recall that stratified negation, nots, cf. [2, 57], allows only a layered use of default
negation not, such that for each instantiation of a rule, each default negated literal
must be in a lower layer than all head literals; all head literals must be in the same
layer; and each positive body literal must be in the same or a lower layer than the
head literals.2 As well, in head-cycle-free disjunction, ∨h, cf. [4], for short HCF, no
different head literals of any rule instance positively depend mutually on each other
(a head literal a ∈ H(r) depends on a literal b , if b ∈ B+(r), or some literal c ∈ B+(r)
depends on b).

Thus, for instance, DL[∨h, nots] contains all HCF stratified programs without
weak constraints, and DL = DL[∨, not, w] is the full language of all logic programs.

Further classes of logic programs (see, e.g., [8]) would be interesting to study as
well. In this article, our focus remains along the lines of the above taxonomy since it
covers the best known classes.

Semantics A ground rule r is satisfied by a consistent set of literals I iff H(r) ∩ I �=
∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies a ground program P , if each
r ∈ P is satisfied by I. A ground (weak) constraint c is violated by I, iff B+(c) ⊆ I
and B−(c) ∩ I = ∅; it is satisfied otherwise. A non-ground rule r (resp., a program
P) is satisfied by a ground interpretation I iff I satisfies all groundings of r (resp.,
Ground(P)). A non-ground (weak) constraint c is violated by I iff I violates at least
one grounding of c.

Recall that for P ∈ DL[∨, not], a consistent set I ⊆ BP is an answer set3 of P iff
it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct

P I = {H(r) :- B+(r). | I ∩ B−(r) = ∅, r ∈ Ground(P)}.
For P ∈ DL[∨, not, w], a consistent set I ⊆ BP is an (optimal) answer set of P iff
I is an answer set of Rules(P) and HP (I) is minimal among all the answer sets of
Rules(P), where the penalization HP (I) for weak constraint violations is defined as
follows:

HP (I) = ∑lPmax
i=1

(
fP (i) · ∑

w∈NP
i (I) weight(w)

);
fP (1) = 1, and
fP (n) = fP (n − 1) · |WC(Ground(P))| · wP

max + 1 for n > 1;
where NP

i (I) denotes the set of the weak constraints with level i in Ground(P)

violated by I. For any program P , we denote the set of its (optimal) answer sets
by AS(P).

Intuitively, the weights of the constraints are summarized separately in different
levels, and an answer set of Rules(P) is optimal if it has a minimum weight among
all the answer sets of Rules(P) on the highest level used, i.e. on level lPmax. If some

2Hence, strictly speaking we consider local stratification.
3Note that we only consider consistent answer sets, while in [28] also the inconsistent set of all possible
literals can be a valid answer set.
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answer sets of Rules(P) have the same minimal weight at level lPmax, then the weights
on level lPmax − 1 are compared, and so on. This level-by-level evaluation is in fact
captured by the above functions. For a more thorough motivation of these concepts,
see [7].

Example 3 For a brief illustration of the semantics, consider the programs P3col and
P2col from Example 2. Observe that Rules(P2col) = P3col.

Consider the simple graph G = {v(1). v(2). v(3). e(1, 2). e(2, 3).}. Then, each
answer set of P3col ∪ G contains the input graph G together with one of the valid
colorings:

{red(1), green(2), red(3)} {red(1), green(2), blue(3)}
{red(1), blue(2), red(3)} {red(1), blue(2), green(3)}
{green(1), red(2), green(3)} {green(1), red(2), blue(3)}
{green(1), blue(2), red(3)} {green(1), blue(2), green(3)}
{blue(1), red(2), green(3)} {blue(1), red(2), blue(3)}
{blue(1), green(2), red(3)} {blue(1), green(2), blue(3)}

This is also the collection of answer sets of Rules(P2col ∪ G). Given an interpretation
I ∈ AS(Rules(P2col ∪ G)), the weak constraint :∼ red(X). [1 : 1] yields for HP (I)
just the number of red vertices in I. Hence, for our simple example graph G from
above, the program P2col ∪ G derives only the following answer sets:

I1 = G ∪ {green(1), blue(2), green(3)} I2 = G ∪ {blue(1), green(2), blue(3)}.

which have a total penalization of HP (I1) = HP (I2) = 0.

Note that the computation of the penalty thus relies on the groundings of the
weak constraints. We therefore restrict, unless stated otherwise, the use of weak
constraints in a program P in such a way that (1) the number of ground instances
of weak constraints and (2) the highest level index, lPmax, both remain polynomial in
the size of P . This ensures that computation and comparison of penalizations can be
done in polynomial time. Relaxing this restriction is discussed in Section 6.3.

The formal definition of the decision problems for program classes DL[L], where
{L} ⊆ {nots, not, ∨h, ∨, w}, studied in this paper is given as follows:

– Answer set existence: Given a program P ∈ DL[L], decide whether AS(P) �= ∅.
– Brave reasoning: Given P ∈ DL[L] and a ground atom a, decide whether a ∈ I

holds for at least one I ∈ AS(P).
– Skeptical reasoning: Given P ∈ DL[L] and a ground atom a, decide whether

a ∈ I holds for each I ∈ AS(P).
– Strong equivalence: Given P1,P2 ∈ DL[L], decide whether AS(P1 ∪ P) =

AS(P2 ∪ P), for each further program P .

For some classes of programs we make use of the following proposition which is
immediate from the well-known result that any normal stratified program has at most
one answer set:

Proposition 1 For any P ∈ DL[L] with {L}⊆{w, nots}, |AS(P)| ≤ 1.
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Table 1 Complexity of answer
set existence for propositional
fragments of DL

aTrivial without constraints
and strong negation.

{}a {nots}a {not}

{} P P NP
{∨h} NP NP NP
{∨} NP �P

2 �P
2

Hence, weak constraints are immaterial in such programs and we obtain:

Corollary 1 For P ∈ DL[L] with {L} ⊆ {w, nots}, AS(P) = AS(Rules(P)).

Previous results We assume that the reader is acquainted with NP-completeness
and basic notions of complexity theory, and refer to [34, 54] for further background.

As mentioned in the Introduction, previous work on the complexity of ASP
mostly considered the case of propositional programs. Tables 1, 2 and 3 provide
a complete overview of the complexity of answer set checking, brave and cautious
reasoning, respectively, as well as strong equivalence for the propositional variants
of the language fragments considered in this paper. All entries in the tables refer
to completeness results. For the results on strong equivalence, we refer to [18, 19]
(so far, strong equivalence in combination with weak constraints has not been
considered); Tables 1 and 2 are taken from [35]. In these tables, the rows specify the
form of disjunction allowed (in particular, {} = no disjunction), whereas the columns
specify the support for default negation and weak constraints. So the field in row R
and column C indicates DL[L], where {L} = R ∪ C.

For the canonical reasoning problems in the general non-ground case, the com-
plexity of brave and cautious reasoning in general increases by one exponential
compared to the according results in the propositional case. In particular, the results
shift from P to EXP, NP to NEXP, �P

2 to EXPNP, �P
2 to NEXPNP, etc. These

complexity results in the non-ground case have been derived e.g. in [12, 13] for dis-
junctive programs and several of its fragments, and in general are obtained by means
of complexity upgrading techniques as described in [12, 29]. Also the complexity of
the strong equivalence problem increases by one exponential [16, 18] resulting in
co-NEXP-completeness in general, and in EXP-completeness for Horn programs.

3 Complexity of answer set existence

A key issue to the complexity results in this article is the following lemma.

Lemma 1 Given a program P and a consistent set I ⊆ BP of literals, deciding whether
I satisfies P I is in co-NP.

Table 2 Complexity of brave and cautious reasoning for propositional fragments of DL

Brave/cautious {} {w} {nots} {nots, w} {not} {not, w}

{} P P P P NP/co-NP �P
2

{∨h} NP/co-NP �P
2 NP/co-NP �P

2 NP/co-NP �P
2

{∨} �P
2 /co-NP �P

3 �P
2 /�P

2 �P
3 �P

2 /�P
2 �P

3
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Table 3 Complexity of strong
equivalence for propositional
fragments of DL

{} {nots} {not}

{} P co-NP co-NP
{∨h} co-NP co-NP co-NP
{∨} co-NP co-NP co-NP

Proof For deciding the complementary problem, it suffices to guess a ground sub-
stitution θ from the variables in P to UP and a rule r ∈ P , and to check whether I
does not satisfy (rθ)I . Here, rθ denotes the ground instance of r obtained by applying
the substitution θ to its variables. Given r, θ , and I, one can obviously compute (rθ)I

in polynomial time, and checking whether I �|= (rθ)I is also tractable. Therefore, the
complementary problem is in NP, which proves co-NP-membership. �

In fact, the problem is also co-NP-hard, since an NP-complete subsumption
problem (see, e.g., Lemma 1 in [17]) can easily be encoded as its complementary
problem. Note also that in the propositional case, the problem is polynomial.

If we constrain the programs to have the arities of predicates bounded by some
constant, we just need to consider interpretations which are polynomial in the size
of the input program, when examining candidates for answer sets. Notice that this
holds for any reasonably succinct representation of interpretations, in particular
it is true not only for bitmap representations (i.e., a bit representation of I with
one bit encoding a ∈ I for each ground atom a) but also for set representations
(i.e., an explicit enumeration of all ground atoms a ∈ I). Hence, we can guess
such interpretations, which is the main reason for corresponding decision problems
to remain within the polynomial hierarchy. In contrast to the propositional case,
however, the grounding stays exponential, as illustrated in Example 1. We address
this issues also with respect to optimization techniques (“intelligent grounding”) in
Section 6.1.

We proceed to derive complexity results for answer set checking for different
classes of programs with bounded arities step-by-step. Note that to show program
classes DL[L1] ⊆ DL[L2] ⊆ . . . ⊆ DL[Lk] to be complete for a complexity class C,
it suffices to prove C-hardness for DL[L1] and C-membership for DL[Lk]. The
complexity results we obtain for answer set existence are summarized in Theorem 1
(see also Table 4) at the end of the section.

We start with an informal discussion. As sketched above, guessing an interpre-
tation I ⊆ BP and deciding whether I satisfies P I is in �P

2 . Since with an oracle
for this problem we can also decide minimality of I, we obtain �P

3 -membership

Table 4 Complexity of answer set existence under bounded predicate arities

{} a {nots}a {not}

{} co-NP �P
2 �P

2
{∨h} �P

2 �P
2 �P

2
{∨} �P

2 �P
3 �P

3

All entries are completeness results
aTrivial without constraints and strong negation.



Complexity results for answer set programming 133

in general (cf. Lemma 3). In case of DL[∨] programs, since we are interested in
mere answer set existence, due to monotonicity we can omit checking for minimality
and thus stay within �P

2 (cf. Lemma 3). For DL[not] programs, we cannot build on
monotonicity but we can guarantee minimality by not only guessing I, but also a
founded proof of I with respect to P I . This serves the same purpose and explains the
remaining �P

2 entries in Table 4 (cf. also Lemma 2). Similarly, given a DL[] program
we do not guess an interpretation but a founded proof of inconsistency (that can be
checked in polynomial time) and obtain the co-NP result (cf. Lemma 2). The only
exception from the one level shift in general is for DL[nots] programs, for which
propositional answer set existence is tractable, while under bounded predicates it
jumps to the second level of PH. In this case, we cannot do better than checking for
inconsistency stratum by stratum, which requires a polynomial number of NP oracle
calls. Therefore, the �P

2 result (cf. Lemma 2).

Lemma 2 Answer set existence is in co-NP for DL[] programs, in �P
2 for DL[nots]

programs, and in �P
2 for DL[not] programs.

Proof For DL[] programs we can guess a polynomial-size founded proof of incon-
sistency as follows. We guess either a ground substitution of a program constraint
or a (polynomial size) inconsistent set of ground literals together with (a polynomial
number of) polynomial length founded proofs Pra for every guessed ground literal
a. Each proof is a sequence of rule applications r1θ1, . . . , rkθk which derives a
starting from scratch. The proofs can be checked in polynomial time, and constitute
witnesses that the respective ground literal must be contained in any answer set of
the program. Hence, we conclude that the guessed interpretation is a subset of any
answer set. Since, the interpretation is a ground substitution of a program constraint
or inconsistent, it follows that the program does not have an answer set. Therefore,
the complementary problem is in NP. This proves co-NP-membership in case of DL[]
programs.

Given a DL[nots] program P , we first compute a stratification of P in polynomial
time. Starting with the lowest stratum and I0 = ∅, we proceed stratum by stratum and
consider the subset Ps of rules in P that do not contain literals from higher strata. We
check whether P Is

s is consistent, as examined above for DL[] programs, by means of
an NP oracle call. In case of consistency, with a further oracle call we guess a new
polynomial size partial interpretation Is+1 ⊇ Is together with a polynomial length
founded proof Pra for every guessed ground literal a ∈ Is+1. Each proof is a sequence
of rule applications r1θ1, . . . , rkθk which derives a in P Is

s starting from scratch. With
Is+1 we continue with the next stratum. Since this procedure requires two oracle calls
per stratum and the number of strata is polynomially bounded, the problem is in �P

2 .
Given a normal program P we first guess a (polynomial-size) interpretation I of

P . I is an answer set of P , iff (1) I satisfies the reduct P I , and (2) I is minimal in
satisfying P I . We can check the minimality of I by providing, for each atom a ∈ I,
a founded proof Pra which is a sequence of rule applications r1θ1, . . . , rkθk which
derives a starting from scratch, where default negation is evaluated w.r.t. I. Since
P I is Horn, as above for DL[] programs, the proofs constitute witnesses that the
respective ground literal must be contained in any answer set of P I . Therefore, I
is minimal if a founded proof can be provided for each atom a ∈ I. Furthermore,
because P I is Horn, the number of steps required to derive a is at most the number of



134 T. Eiter et al.

atoms in I, which is obviously polynomial in the size of the original problem. Hence,
we can guess such proofs Pra for all a ∈ I together with I at once and check them
in polynomial time. From Lemma 1, we know that (1) is in co-NP and can thus be
checked with an NP oracle. This proves that we can check (1) and (2) with one NP
oracle call, respectively, thus the problem is in �P

2 . �

Lemma 3 Answer set existence is in �P
3 for DL[∨, not] programs and in �P

2 for DL[∨]
programs.

Proof In general, we can guess a (polynomial-size) interpretation I of P and check
that it is an answer set for P . Clearly, I is an answer set for P iff (1) I satisfies P I

and (2) there does not exist some I′ ⊂ I which satisfies P I . By Lemma 1, given I, (1)
is in co-NP. The complement of (2), given an interpretation I, is in �P

2 : we further
guess I′ ⊂ I and use an NP oracle for the co-NP check. Hence, both (1) and (2) can
be accomplished by means of an oracle for NPNP = �P

2 problems. This proves �P
3

membership of answer set existence.
For a DL[∨] program P , it is sufficient to guess a (polynomial-size) interpretation

I of P and check that it is founded (but not necessarily minimal) and whether I
satisfies P . The argument here is as follows: If I is founded and I satisfies P , then,
no I′ ⊃ I is an answer set of P due to minimality. Thus, we can conclude that either
I itself is an answer set of P , or that there exists a subset of I that is an answer set
of P . Both conclusions serve our purpose of deciding answer set existence. To check
whether I is founded, we need to provide, for each atom a ∈ I, a founded proof
Pra which is a sequence of rule applications r1θ1, . . . , rkθk which derives a starting
from scratch. Since P is positive, the number of steps required to derive a is at most
the number of atoms in I, which is obviously polynomial in the size of the original
problem. Hence, we can guess such proofs Pra for all a ∈ I with one call to an NP
oracle and check them in polynomial time. Furthermore, given I, checking whether
I satisfies P is in co-NP (see Lemma 1), and can thus be decided by a second call to
an NP oracle. Therefore the overall problem is in NPNP = �P

2 . �

We next prove corresponding hardness results, where we employ that C-hardness
for normal programs is immediate from C-hardness for HCF programs, due to a
faithful polynomial-time rewriting of HCF programs to equivalent normal programs
[4]. Unless stated otherwise, this technique is implicitly used throughout the article.

Lemma 4 Answer set existence is co-NP-hard for DL[] programs.

Proof This result is an immediate consequence from conjunctive query evaluation,
which is NP-complete (see [1]): Given a query a :- B and a database DB, deciding
whether the query fires and derives atom a is NP-complete. This holds even if all
involved predicates have arity bounded by a constant. Consider P = DB ∪ { :- B.}.
Obviously, P is Horn and polynomial in size of the database and the query involved.
It is also easily seen that P has no answer set iff a :- B evaluates to true under DB. �

Lemma 5 Answer set existence is �P
2 -hard for DL[nots] programs.
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Proof We prove the result by means of a reduction from deciding the least bit of
the lexicographic maximum satisfying truth assignment for a CNF C = c1 ∧ · · · ∧ ck

over atoms X = {x1, . . . , xn}, which is �P
2 -complete, cf. [54]. A lexicographic maxi-

mum satisfying truth assignment is a truth assignment satisfying C that is maximal
when interpreted as a binary number x1x2 . . . xn. W.l.o.g., each ci = Li,1 ∨ Li,2 ∨ Li,3

contains three literals and C is known to be satisfiable.
We construct a program containing facts of ternary predicates describing the (23−1

possible) satisfying truth assignments for each clause ci. For example, if c1 = x1 ∨
¬x2 ∨ x3, we add

c1(0, 0, 0). c1(0, 0, 1). c1(0, 1, 1). c1(1, 0, 0). c1(1, 0, 1). c1(1, 1, 0). c1(1, 1, 1).

Furthermore, we introduce a fact true(1)., and for each atom xi ∈ X, we add a
predicate valxi(V) and rules

valxi(1) :- c1(t̄1), . . . , ck(t̄k), true(Vi), valxi−1(Vi−1), . . . , valx1(V1).

valxi(0) :- not valxi(1).

where t̄ j = Vl1 , Vl2 , Vl3 , 1 ≤ j ≤ k, given that the atoms of literal Lj,1, Lj,2, and Lj,3 are
xl1 , xl2 , and xl3 , respectively. Note that as usual, valxi−1(Vi−1), . . . , valx1(V1) is empty
if i = 1. For the example clause c1 = x1 ∨ ¬x2 ∨ x3, if we assume that it is the only
clause in C, i.e., k = 1, then the transformation yields the following rules:

valx1(1) :- c1(V1, V2, V3), true(V1).

valx1(0) :-not valx1(1).

valx2(1) :- c1(V1, V2, V3), true(V2), valx1(V1).

valx2(0) :-not valx2(1).

valx3(1) :- c1(V1, V2, V3), true(V3), valx2(V2), valx1(V1).

valx3(0) :-not valx3(1).

Let us denote the resulting program byPlmax. Note thatPlmax is definite and stratified.
The maximum satisfying truth assignment for C is computed in the layers of Plmax,
and encoded by valxi(bi) in the unique answer set I of Plmax. At the bottom valx1(1)

is derived iff Cθ for θ = {x1/1} is satisfiable. Otherwise, valx1(0) is derived. Next,
depending on the value of valx1(b1), valx2(1) is derived iff Cθ for θ = {x1/b1, x2/1} is
satisfiable, otherwise valx2(0) is derived, and so on. Thus, valxn(1) is in I iff the least
bit of the maximum satisfying assignment is 1, and valxn(0) is in I otherwise.

For proving the result, we just need to add the constraint :- valxn(0). to Plmax. Call
the resulting program P . Obviously, P remains stratified and has an answer set iff
the last bit of the maximum satisfying assignment is 1. Since P is polynomial in size
of C, �P

2 -hardness follows. �

Lemma 6 Answer set existence is �P
2 -hard for DL[∨h] programs.

Proof The proof is by reduction of the evaluation problem for a QBF of the form
� = ∀X∃Yc1 ∧ · · · ∧ ck, where the ci are clauses over X ∪ Y. This problem is �P

2 -
hard, even if all clauses have size 3. The reduction presented here is similar to
the “classic” reduction of such formulas to the problem of brave reasoning over
disjunctive programs. In particular, we construct a program P for each QBF � of



136 T. Eiter et al.

above form, such that P does not have an answer set iff � is true. The construction
is as follows:

First, set up a disjunctive fact

t(xi) ∨ f (xi). for each xi ∈ X (1)

using xi as a constant. For each clause ci = Li,1 ∨ Li,2 ∨ Li,3, we introduce a predicate
whose arity is the number of variables from Y. We then define, by rules, which
truth assignments to these variables make the clause true, given the truth of the
variables from X in ci, This is best illustrated by examples. Suppose we have c1 =
x1 ∨ ¬x2 ∨ y3. Then, we introduce c1(V), where the argument V is reserved for the
truth assignments to y3, and define:

c1(0) :- t(x1). c1(1) :- t(x1).

c1(0) :- f (x2). c1(1) :- f (x2).

c1(1) :- f (x1), t(x2).

Informally, this states that clause c1 is satisfied, if either x1 is true or x2 is false, and
in both cases the value of the Y-variable is irrelevant. Or, x1 is false and x2 is true
and the Y-variable is true as well. As another example, consider c2 = x2 ∨ ¬y1 ∨ y5.

Here, we introduce c2(V1, V2), and define:

c2(0, 0) :- t(x2). c2(0, 1) :- t(x2).

c2(1, 0) :- t(x2). c2(1, 1) :- t(x2).

c2(0, 0) :- f (x2). c2(0, 1) :- f (x2). c2(1, 1) :- f (x2).

Now set up a rule which corresponds to evaluating the formula ∃Yc1 ∧ · · · ∧ ck for a
given assignment to X:

w :- c1
(
Ȳ1

) ∧ · · · ∧ ck
(
Ȳk

)
. (2)

where Ȳi, 1 ≤ i ≤ k, is a vector representing the variables from Y occurring in ci, put
at proper position. In the case above, we have c1(Y3) and c2(Y1, Y5).

Let us call the program built so far PQBF ; it will also be used in some of the
subsequent proofs. Note that PQBF is positive, disjunctive, and HCF, as well as
polynomial in the size of the underlying QBF. The functioning of PQBF is as follows:
The disjunctive clauses (1) generate a truth assignment to X, and the remaining
clauses check whether ∃Yc1 ∧ · · · ∧ ck is true under this assignment, deriving w

if so.
For proving Lemma 6, consider the addition of the constraint :-w., and let P be

the resulting program. Then, P has an answer set iff there exists a truth assignment
to X such that ∃Yc1 ∧ · · · ∧ ck is not true under this assignment, i.e., iff � is false. �

Lemma 7 Answer set existence is �P
3 -hard for DL[∨, nots] programs.

Proof Consider an existential QBF � = ∃X1∀X2∃Yc1 ∧ · · · ∧ ck, take PQBF from the
proof of Lemma 6, but now with X = X1 ∪ X2, and add rules p :-w. for each ground
atom p ∈ B+ \ {w, t(xi), f (xi) | xi ∈ X1}, making the program non-HCF, where B+
is the set of all positive literals in BPQBF . Note that the resulting program, denoted
P , remains polynomial in size of �. Intuitively, P guesses a truth assignment σ for
the atoms X1, by means of the disjunctive clauses (1) related to X1. Then, for each of
these truth assignments, the remaining clauses behave like the program in Lemma 6
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for �′ = ∀X2∃Y(c1 ∧ · · · ∧ ck)σ . In particular, the remaining disjunctive clauses (1),
i.e., those related to X2, extend the truth assignment to X2, and the clauses (2) check
whether ∃Yc1 ∧ · · · ∧ ck is true under this assignment, deriving w if so. The additional
rules p :-w., by means of answer-set minimality, ensure that w is in an answer set iff
�′ is true, i.e., iff every extension of σ to a truth assignment on X2 derives w.

Now extend P by the constraint :-not w. Then, every answer set of this extended
program has to contain w. Therefore, the extended program has an answer set iff
there exists a truth assignment to X1 such that �′ is true, i.e., iff � is true. �

This concludes the necessary bounds to derive a full picture of the complexity of
deciding answer set existence for programs with bounded arities. We summarize our
results:

Theorem 1 The complexity of deciding answer set existence under bounded predicate
arities is given by the respective entries in Table 4.

These results show, that if we move from ground (i.e., propositional) programs
to non-ground programs but allow only predicates with small arity, the complexity of
the language moves up only one level in the polynomial hierarchy (PH), but not more.
Thus, unless we use growing predicate arities, we can not encode problems above
PH, e.g., as commonly believed, PSPACE-complete problems. On the other hand,
it means that an exponential-size grounding-at-once can be avoided. Furthermore,
a number of the problems can be polynomially mapped to ASP with disjunctive
propositional programs (harboring �P

2 /�P
2 complexity), avoiding grounding.

We note that the results remain valid if we just restrict the arities of the intensional
predicates, i.e., those occurring in the heads of non-facts, and predicates of non-
ground atoms in disjunctive facts. Intuitively, any answer set S has then polynomial
size modulo a fixed part—i.e., the extensional database given by a grounding of the
non-disjunctive facts wrt. UP—while checking rule compliance of a candidate answer
set S is co-NP-complete rather than polynomial as in the ground case.

4 Complexity of brave and cautious reasoning

In what follows, we now extend our results to brave and skeptical reasoning from
non-ground programs having predicates with bound arities. Compared to answer set
existence, weak constraints are now of relevance to decide the respective reasoning
task. Our results are summarized in Table 5.

Table 5 Complexity of brave and cautious reasoning under bounded predicate arities

Brave/cautious {} {w} {nots} {nots, w} {not} {not, w}

{} DP∗/NP DP∗/NP �P
2 �P

2 �P
2 /�P

2 �P
3

{∨h} �P
2 /�P

2 �P
3 �P

2 /�P
2 �P

3 �P
2 /�P

2 �P
3

{∨} �P
3 /�P

2 �P
4 �P

3 /�P
3 �P

4 �P
3 /�P

3 �P
4

All entries are completeness results.
∗Without constraints and strong negation (= definite Horn) the complexity is NP.
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In what follows, we informally summarize some remarks for the different classes
of programs under consideration, and afterwards give the formal proofs.

The DP results for Horn programs (cf. Lemma 8 and 9) are explained as follows:
The class DP contains the decision problems whose yes instances are characterized by
the conjunction of an NP property and an independent co-NP property. The co-NP
part is needed to show that no contradiction is derivable (which vanishes for definite
Horn programs), while the NP part stems from a foundedness (minimality) check.

As for answer set existence, again we have slightly higher complexity for stratified
normal programs (cf. Lemma 15), since we must evaluate a polynomial number of
NP problems according to the strata of the program, i.e., two NP oracle calls per
stratum are needed.

In the presence of weak constraints (cf. Lemma 14–17), the upper bounds follow
easily since the oracles at hand are powerful enough to guess and check answer sets
for the respective class of programs without weak constraints. Thus, one may first
compute the cost of an optimal answer set in a binary search, and then decide the
problem with a single oracle call.

The only peculiarity in Theorem 2 is for DL[∨], for which brave reasoning is one
level higher than cautious reasoning (cf. Lemma 11 and 13). However, also this is
carried over from the propositional case in which a similar gap exists, see Table 2.
This gap can explained by the fact that minimality is not important for cautious
reasoning in this case, while it is for brave reasoning. These results (also �P

3 -hardness
when negation is involved, cf. Lemma 13) can be proved similar to Lemma 7, where
�P

3 -hardness of answer set existence for disjunctive programs with negation was
shown.

We proceed with a more formal elaboration, starting with the DP and NP entries
in Table 5.

Lemma 8 Brave reasoning is in DP for Horn programs and in NP for definite Horn
programs. Cautious reasoning is in NP for Horn programs in general.

Proof For brave reasoning, we do not need to guess an interpretation I, but instead
can guess a polynomial-size founded proof Pra for the query literal a, as described
in Lemma 2. The proof is a sequence of rule applications r1θ1, . . . , rkθk which derives
a starting from scratch and can be checked in polynomial time. If the program is
definite Horn, consistency and answer set existence is guaranteed. Therefore, Pra

constitutes a witness that the query literal must be contained in the answer set
of the program. This proves NP-membership of brave reasoning for definite Horn
programs.

If constraints or strong negation are present, we need an additional, independent
co-NP-check to ensure that no constraint is violated and obtain DP-membership in
this case. More precisely, Pra, which we can guess and check in NP, constitutes a
witness that the query literal must be contained in the answer set of the program
iff the program is consistent. That is, a further independent check for answer set
existence is required. As proved in Lemma 2, this problem is in co-NP for DL[]
programs and thus for Horn programs. Consequently, brave reasoning for Horn
programs is in DP.

Concerning cautious reasoning, it is sufficient to guess and check a polynomial-
size founded proof for either the query a, or a constraint violation, or inconsistency
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in order to witness cautious consequence of a. In particular, we guess either (1)
a polynomial length founded proof Pra for the query literal a, or (2) a ground
substitution of a program constraint together with a polynomial length founded
proof Pra for every guessed ground literal a, or (3) a polynomial-size inconsistent
set of ground literals together with polynomial length founded proof Pra for every
guessed ground literal a. In all three cases the respective proofs Pra can be checked
in polynomial time and constitute a witness that (1) the query literal is contained in
every answer set of P (which is trivial if no answer set exists due to inconsistency),
that (2) no answer set exists due to constraint violation, hence the cautious query
can be answered trivially, and that (3) no answer set exists due to inconsistency and
the cautious query can be answered trivially. The test decides cautious reasoning for
Horn programs and is in NP. �

Lemma 9 For definite Horn programs without weak constraints, both brave and
cautious reasoning are NP-hard. For Horn programs without weak constraints, brave
reasoning is DP-hard.

Proof The results are inherited from (bounded) conjunctive queries as used in the
proof of Lemma 4. Indeed, consider a conjunctive query a :- B over a database DB.
Then a :- B evaluates to true under DB iff the unique answer set of the definite
Horn program DB ∪ {a :- B.} contains a. For the DP-hardness result, consider two
conjunctive queries a1 :- B1, a2 :- B2 with a1 �= a2, and two databases DB1, DB2 over
disjoint alphabets not containing a1 or a2. Then, a1 :- B1 evaluates to true under DB1

and a2 :- B2 evaluates to false under DB2 iff a1 is a brave consequence of the (non-
definite) Horn program DB1 ∪ DB2 ∪ {a1 :- B1. :- a2, B2.}. �

We proceed with the upper bounds for the remaining program classes without
weak constraints.

Lemma 10 For DL[∨h, not] programs brave reasoning is in �P
2 , and cautious reason-

ing is in �P
2 .

Proof Recall that we can employ the rewriting technique to normal programs [4].
Therefore, let us consider a normal program P . For brave reasoning, we proceed by
guessing a (polynomial-size) interpretation I of P that contains the query literal. We
then need to check whether I is an answer set of P , i.e., iff (1) I satisfies the reduct
P I , and (2) I is minimal in satisfying P I . As in the proof of Lemma 2, we can check
the minimality of I by providing, for each atom a ∈ I, a founded proof Pra which is
a sequence of rule applications r1θ1, . . . , rkθk which derives a starting from scratch,
where default negation is evaluated w.r.t. I. Since P I is Horn, the proofs constitute
witnesses that the respective ground literal must be contained in any answer set of
P I . Therefore, I is minimal if a founded proof can be provided for each atom a ∈ I.
Furthermore, because P I is Horn, the number of steps required to derive a is at most
the number of atoms in I, which is obviously polynomial in the size of the original
problem. Hence, we can guess such proofs Pra for all a ∈ I together with I at once
and check them in polynomial time. From Lemma 1, we know that (1) is in co-NP
and can thus be checked with an NP oracle. This proves that we can check (1) and
(2) with one NP oracle call, respectively, hence brave reasoning is in �P

2 .
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The complementary problem, i.e., cautious reasoning, can be decided by guessing
a (polynomial-size) interpretation I of P that does not contain the query literal,
and checking that I is an answer set of P as above. This proves �P

2 -membership
of cautious reasoning. �

Lemma 11 For DL[∨, not] programs brave reasoning is in �P
3 , and cautious reason-

ing is in �P
3 ; for DL[∨] programs, cautious reasoning remains in �P

2 .

Proof The argumentation follows the corresponding proof for answer set existence
from Lemma 3: Guess a (polynomial-size) interpretation I such that the query atom
a is in I and check that I is an answer set for P , which can be accomplished
by means of an oracle for �P

2 problems. This shows �P
3 -membership for brave

reasoning. The �P
3 -membership for skeptical reasoning follows immediately by using

the complementary problem and the same argumentation as above, but using a /∈ I,
instead of a ∈ I.

For a DL[∨] program P , the complementary problem of skeptical reasoning
can be decided by guessing I with a /∈ I and check whether I is founded (but not
necessarily minimal) for P and also satisfies P (since then, there is also an answer set
I′ ⊆ I of P with a /∈ I′). The checks can be accomplished by means of calls to an NP
oracle (since they are in NP and co-NP, respectively, see also Lemma 1). �

The following results give the matching lower bounds.

Lemma 12 For DL[∨h] programs brave reasoning is �P
2 -hard, and cautious reasoning

is �P
2 -hard.

Proof �P
2 -hardness follows from the reduction in the proof of Lemma 6 with a slight

variation:
For proving the lemma, we create a maximal interpretation if w holds as follows.

Let B+ be the set of all positive literals in BPQBF , and add rules p :-w. for each ground
atom p ∈ B+ \ {w} to PQBF . Call the resulting program P . Note that if we derive w

from PQBF , any element from B+ can be derived in P . Therefore, w is a cautious
consequence of the program P used iff the formula � = ∀X∃Yc1 ∧ · · · ∧ ck is true.

We obtain the dual �P
2 -hardness result for brave reasoning by adding the dis-

junctive fact u ∨ w. to P , where u is a fresh atom, and asking whether u is a
brave consequence of the resulting program; this is the case iff w is not a cautious
consequence of the original program. �

Lemma 13 For DL[∨] programs, brave reasoning is �P
3 -hard, and cautious reasoning

is �P
2 -hard. For DL[∨, nots] programs, cautious reasoning is �P

3 -hard.

Proof �P
3 -hardness of brave reasoning follows from the construction that has been

used in the proof of Lemma 7, where �P
3 -hardness of answer set existence for

disjunctive programs with negation was shown. In fact, w is a brave consequence
of the program P there iff � = ∃X1∀X2∃Yc1 ∧ · · · ∧ ck is true. Since P is positive,
the result follows. Cautious reasoning for this fragment, however, is in �P

2 , since
to disprove a cautious consequence it is sufficient to find some (not necessarily
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subset-minimal) interpretation I which satisfies P and does not contain the query;
such I can be guessed and checked with an NPoracle in polynomial time.

If negation is involved, we obtain �P
3 -hardness of cautious inference by a simple

reduction of the complement of brave reasoning of the atom w as above, by adding
the stratified rule w′ :- not w., where w′ is a fresh atom, and asking whether w′ is a
cautious consequence. �

We conclude with reasoning problems involving weak constraints.

Lemma 14 For DL[∨, not, w] programs, both brave and cautious inference are in �P
4 ,

and for DL[not, w] programs, both inference tasks are in �P
3 .

Proof In case of DL[∨, not, w] programs, by means of an oracle for �P
3 problems,

we can we guess a (polynomial-size) interpretation I of Rules(P), check that it is an
answer set for Rules(P), namely that it satisfies Rules(P)I (which is in co-NP) and
that no I′ ⊂ I satisfies Rules(P)I (which is in �P

2 ), and compute its cost with respect
to WC(P) (which is in P). Therefore, we can compute the cost of an optimal answer
set by a binary search (between zero and maximum violation) by a polynomial
number of oracle calls. With a further oracle call we can ask whether there exists an
optimal answer set I such that a ∈ I, respectively a �∈ I, and hence decide cautious
inference, respectively brave inference. Since we used a polynomial number of
independent �P

3 oracle calls, the problem is in �P
4 .

For DL[not, w] programs we proceed in the same way, but in this case an oracle for
�P

2 problems is sufficient (see also Lemma 3). Therefore, we obtain �P
3 -membership.

�

Lemma 15 For DL[nots, w] programs, both brave and cautious inference are �P
2 -

complete, where hardness holds also for DL[nots].

Proof Membership holds, since the number of strata is polynomially bounded.
Hardness can be shown by the same construction as in the proof of Lemma 5 but
instead of adding :- valxn(0). to Plmax, we check here whether valxn(1) is contained in
the (unique) optimal answer set of Plmax. �

Lemma 16 For DL[∨h, w] programs, both inference tasks are �P
3 -hard.

Proof Consider the open QBF �[X] = ∃Yc1 ∧ · · · ∧ ck, with X = {x1, . . . , xn}. De-
ciding the last bit of the lexicographic maximum assignment to the atoms x1, . . . , xn

making �[X] false is �P
3 -complete.

Consider now the program P which extends PQBF by the weak constraints
:∼ w. [: n + 1] and :∼ f (xi). [: n − i + 1] for each i ∈ {1, . . . , n}. As in previous proofs,
P is positive and HCF. The answer sets of Rules(P) correspond to all possible truth
assignments to X and contain w iff �[X] evaluates to true under the corresponding
guess for X. Now we are interested in those assignments making �[X] false and
w.l.o.g. we assume that at least one such assignment exists. The intuition of the weak
constraints then is as follows: If w is in an answer set of Rules(P) then the highest
penalty is given. For the remaining ones, we first eliminate those where x1 is set to
false, then those where x2 is set to false, and so on. The unique optimal answer set
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of P thus corresponds to the lexicographic maximum assignment to X which makes
�[X] false. Hence, via both brave and cautious reasoning, we can decide the last bit
of this assignment. �

Lemma 17 For DL[∨, w] programs, both inference tasks are �P
4 -hard.

Proof The proof is similar to the one of Lemma 16; the differences mirror the lifting
between the proofs of Lemmas 6 and 7, respectively. In fact, consider the open
QBF �[X1] = ∀X2∃Yc1 ∧ · · · ∧ ck with X1 = {x1, . . . , xn}. Deciding the last bit of
the lexicographic maximum satisfying truth assignment to the atoms x1, . . . , xn for
�[X1] is �P

4 -complete. Again, w.l.o.g. we assume that at least one such assignment
exists. Consider Rules(P), where P is as in Lemma 7 and extend this program by
adding a fresh atom q to the head of all rules. Let Q denote the extended program,
which is positive and disjunctive, but not HCF. By the extension, compared to P , the
program Q has one additional answer set {q}. Due to minimality, the other answer
sets do not contain q, which means that they are the same as those for P . Therefore,
as for P in the proof of Lemma 7, we obtain that w is in an answer set of Q iff
�′ = ∀X2∃Y(c1 ∧ · · · ∧ ck)σ is true for the respective truth assignment σ on X1, i.e.,
iff �[X1]σ is true.

We then add weak constraints :∼ not w. [: n + 1] and :∼ f (xi). [: n − i + 1] for
each i ∈ {1, . . . , n}, giving the highest penalty if w is not in the answer set. Since by
assumption at least one satisfying assignment, i.e. at least one answer set containing
w, exists, this in particular eliminates the answer set {q}, and all answer sets such
that �[X1]σ is false. From the remaining ones, which all are satisfying assignments
(i.e., which all contain w), the weak constraints first eliminate those, where x1 is set
to false, then those where x2 is set to false, and so on. Thus, we get that the optimal
answer set of the resulting program corresponds to the maximal truth assignment to
variables X1 such that �[X1] is true. Both brave and cautious reasoning therefore
allow to decide the last bit of this assignment. Hence, we derive �P

4 -hardness. �

This concludes the collection of results for the forthcoming theorem which
summarizes the complexity results for brave and cautious reasoning under bounded
(intensional) predicate arities.

Theorem 2 The complexity of brave and cautious reasoning under bounded predicate
arities is given by the respective entries in Table 5.

As before, these results show, that if we move from ground (i.e., propositional)
programs to non-ground programs but allow only predicates with small arity, the
complexity of the language moves up one level in the polynomial hierarchy.

5 Complexity of strong equivalence

In this section, we provide several results for strong equivalence. We start by
considering the problem without weak constraints. Afterwards we introduce a notion
for strong equivalence between programs possibly containing weak constraints as
well. To the best of our knowledge, the problem of strong equivalence has not been
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considered in combination with weak constraints, so far. For the sake of simplicity,
we omit strong negation in this section; the complexity behavior of the strong
equivalence problems considered is not affected by this.

5.1 Strong equivalence without weak constraints

In the setting without weak constraints, the problem of strong equivalence is to
test, given two programs P1,P2, whether the answer sets of P1 ∪ P and P2 ∪ P
coincide for any further program, i.e., set of rules, P . We denote the test for strong
equivalence between P1 and P2 by P1 ≡s P2. We restrict the problem to subclasses
by assuming that P1 and P2 are given from such a subclass DL[L], w /∈ {L}. However,
we do not apply this restriction analogously to the context programs P . Indeed, such
restrictions to disjunction-free, negation-free, or even Horn programs do not make
any difference; this is due to the fact that strong equivalence between two programs
P1,P2, can be decided by taking only unary programs (that are programs built from
simple rules of the form a. or a :- b .) as context programs P into account [16]. In
contrast, syntactic concepts which are defined over an entire program (stratification,
head cycles) allow for different ways how to incorporate such restrictions to the
comparison. For instance, one can define that either only context programs P are
considered which separately satisfy the restriction or the combined programs P1 ∪ P
and P2 ∪ P jointly have to satisfy the respective syntactic restriction. Moreover, there
are several ways to concretely define the latter kind of equivalence, by considering
questions, like what should happen if P1 ∪ P is, say stratified, but P2 ∪ P is not. We
leave these issues for future work and mention that questions of this kind have been
partly addressed in related work [18, 53].

Hence, we formally define the problem of deciding strong equivalence with
respect to a given class DL[L] as follows: Given programs P1,P2 from DL[L] (with
w /∈ {L}), does each further program P from DL[∨, not] satisfy AS(P1∪P)=
AS(P2∪P)? Towards our complexity analysis, this definition allows to draw imme-
diate conclusions for different classes as before, i.e., for showing that for program
classes DL[L1] ⊆ DL[L2] ⊆ . . . ⊆ DL[Lk], deciding strong equivalence between
DL[Li] programs is complete for a complexity class C, it suffices to prove C-hardness
for DL[L1] and C-membership for DL[Lk].

Towards our results, let us first recall an important concept. Strong equiva-
lence can be decided via a certain model-theoretic characterization, so-called SE-
models [66], which have been defined for non-ground programs in [16]. Roughly
speaking an SE-model for a program P is a pair (X, Y) of ground interpretations
X ⊆ Y, such that Y satisfies a grounding of P and X satisfies the respective reduct
with respect to Y. We use a slightly adapted version for our purpose: Given a
program P , let U+

P be the extended Herbrand Universe which is built as usual,
but taking an additional set of constants into account, i.e, U+

P = UP ∪ {c1, . . . , cn}
where c1, . . . , cn are new constants disjoint from UP and n is the maximal number
of different variables occurring in a rule (or weak constraint) of P . Moreover, let
B+
P be the set of all ground literals built from the predicate symbols in P and the

constants U+
P . Note that in case P is given over bounded arities, the size of B+

P
remains polynomial in P , and for a propositional program P , B+

P is the set of the
(0-ary) predicates in P .

The following result follows implicitly from the characterization in [16].
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Proposition 2 Let P1,P2 be programs without weak constraints and U = U+
P1∪P2

.
Then P1 ≡s P2 holds iff SEU (P1) = SEU (P2) where, for i ∈ {1, 2}, SEU (Pi) contains
each pair (X, Y), X ⊆ Y ⊆ B+

P1∪P2
, such that Y satisfies Ground(Pi, U), and X

satisfies Ground(Pi, U)Y.

From now on, we call elements from SEU (·) SE-models, hence SE-models here
are always implicitly understood relative to a strong-equivalence problem P1 ≡s P2.

Example 4 We illustrate the characterization using parts of our example for graph-
coloring as introduced in Example 2. Indeed, in P3col the disjunctive guess r

red(X) ∨ green(X) ∨ blue(X) :- v(X).

can be replaced by its so-called shift, r →, given by

red(X) :- v(X), not green(X), not blue(X).

green(X) :- v(X), not red(X), not blue(X).

blue(X) :- v(X), not green(X), not red(X).

without changing the answer sets for any input graph. However, one may ask whether
r can faithfully be replaced by r→ in any program. By definition the latter holds iff
P1 = {r} is strongly equivalent to P2 = {r→}.

In terms of the characterization, we have U = U+
P1∪P2

= {c} and B+
P1∪P2

= {v(c),
red(c), green(c), blue(c)}. One can check that the program Ground(P2, U)—which
is easily obtained by replacing variable X by constant c—has ({v(c)}, {v(c),
r(c), g(c), b(c)}) ∈ SEU (P2) which is however not contained in SEU (P1). Thus, by
Proposition 2, P1 = {r} and P2 = {r→} are not strongly equivalent, and thus r cannot
be faithfully replaced by r→ in any program. For instance, consider

P = {v(c). r(X) :- g(X). g(X) :- b(X). b(X) :- r(X).}.
Then, {v(c), r(c), g(c), b(c)} ∈ AS(P ∪ {r}), while AS(P ∪ {r→}) = ∅.

The membership results for strong equivalence problems of program class DL[L]
are as follows.

Lemma 18 Strong equivalence between DL[] programs is in NP, even for Horn
programs with constraints.

Proof For Horn programs, we have P1 ≡s P2 iff P1 ≡ P2, i.e., iff P1 and P2 are
classically equivalent (see, e.g., [16]). Thus, we can decide the problem by checking
P1 |= r, for each r ∈ P2; and P2 |= s, for each s ∈ P1, where |= stands for classical
semantic consequence. Each such test, say P1 |= r, holds iff for each possible ground
substitution θ for the head of r, P1 ∪ B(rθ) |= H(rθ) holds. Note that only a polyno-
mial number of different such ground substitutions are possible, since the head is a
single atom with bounded arity, but there may be variables left in B(rθ). It remains
to get rid of these remaining variables in B(rθ), since then we can directly make
use of the skeptical reasoning problem for Horn programs, which is contained in NP
(cf. Lemma 8), even for Horn programs with constraints. In fact, substituting the
remaining variables in B(rθ) by disjoint constants from U+

P1∪P2
\ UP1∪P2 , provides

a sufficient test for P1 ∪ B(rθ) |= H(rθ), which follows from the well-known strong
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monotonicity property of plain datalog: given a datalog program P , a database D and
a ground atom a on universe U , for any mapping ρ : U → U , we have P ∪ D |= a
implies (P ∪ D)ρ |= aρ. This shows that a polynomial number of independent NP-
tests decides P1 ≡s P2. Thus the problem itself is in NP. �

Lemma 19 Strong equivalence between DL[not, ∨] programs is in �P
2 .

Proof We guess a pair (X, Y) with X ⊆ Y ⊆ B+
P1∪P2

and check whether it is an SE-
model of exactly one of the programs. Recall that the size of (X, Y) is polynomial
in P1 ∪ P2. Given (X, Y), P1, P2 (and thus also U = U+

P1∪P2
), checking (X, Y) ∈

SEU (Pi) is in co-NP. This can be seen by similar arguments as used for Lemma 1.
Thus we solve the problem in nondeterministic polynomial time with two calls to an
NP-oracle for SE-model checking. �

We now turn to the matching lower-bound results.

Lemma 20 Strong equivalence between DL[] programs is NP-hard, even for definite
Horn programs.

Proof We again use the NP-complete problem of conjunctive query evaluation (see
also proof of Lemma 4). Given a query a :- B and a database DB, consider programs
P1 = DB ∪ {a :- B.} and P2 = DB ∪ {a :- .}. Obviously, P1,P2 are definite Horn and
polynomial in size of the database plus the query. To see that P1 ≡s P2 holds iff a :- B
evaluates to true under DB, one can use the fact that for positive programs P1, P2,
P1 ≡s P2 holds iff for each arbitrary further database F, AS(P1 ∪ F) = AS(P2 ∪ F)

[16]. The result is then easily seen. �

Concerning the remaining results, note that for the problem of strong equivalence
we are not allowed to exploit the fact that normal and head-cycle-free programs
are closely related (as we did in the previous sections). Indeed, the polynomial-time
rewriting of HCF programs to equivalent normal programs [4], is not faithful with
respect to strong equivalence, as is witnessed by Example 4. However, to obtain
�P

2 -hardness for positive HCF programs, a straightforward adaption of previous
constructions is sufficient.

Lemma 21 Strong equivalence between DL[∨h] programs is �P
2 -hard.

Proof Once more, we use a mapping from QBFs of the form � = ∀X∃Yc1 ∧ · · · ∧ ck

to equivalence problems. For a given � of that form, consider the programs P1 =
PQBF ∪ {w :- t(xi), f (xi). | xi ∈ X}, where PQBF is the program already used in the
proof of Lemma 6, and P2 which is obtained from P1 by replacing Rule (2) by w :- .

The function of PQBF has already been discussed in previous proofs. The additional
rules w :- t(xi), f (xi). guarantee that all ground models (not only minimal ones) not
containing w refer to a valid assignment for the variables X. Then, it can be seen
that P1 ≡s P2 holds iff � is true. In particular, we have P1 �≡s P2 iff there exists a
model I of P1 not containing w. That is, there exists an assignment to X, such that all
possible assignments to Y make c1 ∧ · · · ∧ ck false, i.e. � is false. Both programs are
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positive HCF and polynomial-time constructible with respect to the size of �. Since
the evaluation problem for QBFs having the form of � is �P

2 -complete, the result
follows. �

For the case of stratified programs, some additional construction is required, for
which we reuse ideas from the co-NP-hardness proof for ground stratified programs
in [18].

Lemma 22 Strong equivalence between DL[nots] programs is �P
2 -hard.

Proof Again consider any QBF of the form � = ∀X∃Yc1 ∧ · · · ∧ ck. The construc-
tion for the two programs P1, P2 is now as follows, starting again from PQBF :

1. In both programs, remove the disjunctions (1) and add {w :- t(xi), f (xi). |xi ∈ X}.
2. In both programs, add now for each rule w :- B. a new rule v :- B., where v is a

new fixed atom.
3. Add to P1 the rule w :- not v. and to P2 the rule v :-not w.

The two resulting programs work as follows. First suppose � is true, then each model
of P1, resp. P2, contains w and v. Hence, the only differing rules w :- not v. and
v :- not w. do not come into play and P1 ≡s P2 follows quite easily. Now suppose �

is false. Then, we have an interpretation I, which satisfies both P1 \ {w :-not v.} and
P2 \ {v :- not w.}, but does neither contain w nor v. Assume now the interpretation
I ∪ {w}. Clearly, I ∪ {w} satisfies both P1 and P2, but for P1, the fact w is included in
the reduct with respect to I ∪ {w}, while the rule v :- not w. from P2 gets completely
deleted within the reduct. Hence, the models of the respective reducts now have to
differ, i.e. I satisfies the reduct built from P2, but does not satisfy the corresponding
reduct built from P1 which contains the fact w. Using Proposition 2, we arrive at
P1 �≡s P2. This shows that P1 ≡s P2 holds iff � is true. Both programs are stratified
disjunction-free and polynomial-time constructible with respect to the size of �. �P

2 -
hardness thus follows. �

5.2 Strong equivalence and weak constraints

We extend our results to programs with weak constraints. As already mentioned,
so far strong equivalence combined with weak constraints has not been considered
in the literature, and different ways to define this problem are possible. Here,
we basically reuse the definition of the traditional strong equivalence problem as
follows: Given programs P1,P2, then P1 ≡s P2 holds iff, for each further program
P , AS(P1 ∪ P) = AS(P2 ∪ P). Note that this definition now allows for weak con-
straints in P1,P2, but also in all context programs P , and we thus compare the
optimal answer sets of each program extension. Consequently, this notion of strong
equivalence also yields the most natural way to obtain equivalence for substitution
in logic programming with weak constraints.

To define strong equivalence problems with respect to subclasses, we restrict the
compared programs (in analogy to the previous subsection) but leave the context
ranging over arbitrary programs. Formally the problem of deciding strong equiva-
lence with respect to a given class DL[L] is now as follows: Given programs P1,P2

from DL[L], does each further program P from DL[∨, not, w] satisfy AS(P1 ∪ P) =
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AS(P2 ∪ P)? Note that to decide strong equivalence between P1,P2 ∈ DL[L] pro-
grams where w /∈ {L}, we can safely ignore the weak constraints in the possible
context programs. In fact, this is due to the following observations: (1) if AS(P1 ∪
P) = AS(P2 ∪ P) holds for all P ∈ DL[∨, not], then we can add any additional weak
constraints to the context P , and since the same weak constraints are added to
both programs, the same answer sets are selected; (2) if AS(P1 ∪ P) = AS(P2 ∪ P)

for all P ∈ DL[∨, not, w], then the same holds for all P ∈ DL[∨, not], simply since
DL[∨, not] ⊆ DL[∨, not, w]. Thus, our more general definition coincides with the
traditional definition as long as no weak constraints are present in the compared
programs.

We next provide a novel characterization to decide strong equivalence involving
weak constraints by properly generalizing the characterization from Proposition 2.
Roughly speaking, we have to additionally test whether the possible candidates
for answer sets of program extensions pairwise show the same difference in their
penalties. In the following, we assume for the compared programs P1, P2, that
fP1(i) = fP2(i) holds, for each i > 0 [for the exact definition of fP (·) see Section 2].
Note that this is not a serious restriction, since we can add, for instance, dummy weak
constraints :∼ bi, not bi. [wP1

max : 1], 1 ≤ i ≤ |WC(P1)|, to P2, and, vice versa, weak
constraints :∼ bi, not bi. [wP2

max : 1], 1 ≤ i ≤ |WC(P2)|, to P1. Then, both resulting
programs possess the same number of weak constraints and share the same maximum
weight, but the extensions do neither change the semantics of the two programs, nor
result in an exponential blow up of the problem size. Thus, we assume that this kind
of “pre-processing” has already taken place.

Moreover, we need the following concept: Let P be a program, Y, Z ground
interpretations and i > 0, then

δPi (Y, Z ) =
∑

w∈NP
i (Y)

weight(w) −
∑

w∈NP
i (Z )

weight(w)

denotes the difference on penalization between Y and Z in P on level i.

Lemma 23 For any programs P1, P2 from class DL[not, ∨, w], P1 ≡s P2 holds iff
jointly Rules(P1) ≡s Rules(P2) and for all ground interpretations Y, Z ⊆ B+

P1∪P2

satisfying Rules(P1 ∪ P2), δ
P1
i (Y, Z ) = δ

P2
i (Y, Z ) holds for each level i > 0.

Proof If. First suppose, Rules(P1) ≡s Rules(P2) does not hold. Hence, there exists a
ground interpretation Y, and a set of rules P , such that without loss of generality Y ∈
AS(Rules(P1) ∪ P) \ AS(Rules(P2) ∪ P). We now can penalize all other answer sets
for Rules(P1) ∪ P in order to ensure that Y becomes an optimal answer set for some
program extension. For instance, take P ′ = P ∪ {:∼ not y. [M : 1] | y ∈ BP1∪P \ Y},
where M is a sufficiently large weight. In fact, this penalizes each answer set of
Rules(P1 ∪ P) different from Y, having in mind that no Y ′ ⊂ Y can be answer set of
Rules(P1 ∪ P). Then, Y is an optimal answer set of P1 ∪ P ′ while Y is not an optimal
answer set of P2 ∪ P ′. This yields P1 �≡s P2. Now suppose, Rules(P1) ≡s Rules(P2)

holds but there exist ground interpretations Y, Z , satisfying Rules(P1 ∪ P2), such
that, for some i, δ

P1
i (Y, Z ) �= δ

P2
i (Y, Z ). Now, take the program

P = {a ∨ b :- .} ∪ {y :- a. | y ∈ Y} ∪ {z :-b . | z ∈ Z } ∪ {wci | 1 ≤ i ≤ lP1∪P2
max }
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where wci is a weak constraint of the form :∼ Bi. [δP1
i (Y, Z ) : i] where Bi is the

sequence of the elements from Y if δ
P1
i (Y, Z ) < 0 and the sequence of the elements

from Z , otherwise; a, b are new propositional atoms. Then, Y and Z are the only
answer sets of Rules(Pi ∪ P) for i ∈ {1, 2}. Observe that P1 ∪ P now puts the same
penalty to Y and Z at each level, and thus Y and Z are both also the optimal answers
sets of P1 ∪ P . It remains to show that P2 ∪ P possesses only one optimal answer set.
To this end, let i be the maximal level, such that δ

P1
i (Y, Z ) �= δ

P2
i (Y, Z ). Then, by

definition of P , Y and Z remain differently penalized on level i in P2 ∪ P . Moreover,
the weak constraints from levels lower than i cannot equalize this difference by
definition of fP2∪P (·). Thus Y and Z possess different sums of penalties for the
violated weight constraints in P2 ∪ P having level ≤ i. On all higher levels j > i
the penalties are equalized for Y and Z by definition of P , since we assumed
δ
P1
j (Y, Z ) = δ

P2
j (Y, Z ), for all j > i. Hence, either Y or Z is an optimal answer set

of P2 ∪ P , but not both of them. This shows P1 �≡s P2.
Only-If. For P1 �≡s P2, suppose without loss of generality that Y is an optimal

answer set of P1 ∪ P but not an optimal answer set of P2 ∪ P . If Y is not even an
answer set of Rules(P2 ∪ P) we obtain Rules(P1) �≡s Rules(P2). So suppose Y is
answer set of Rules(P2 ∪ P) but not optimal. Hence, there exists an answer set Z
of P2 ∪ P , such that HP2∪P (Z ) < HP2∪P (Y). Now since Y is optimal for P1 ∪ P , we
obtain that Z is either no answer set of Rules(P1 ∪ P) or HP1∪P (Z ) ≥ HP1∪P (Y).
In the former case, we again get Rules(P1) �≡s Rules(P2). In the latter case, first
observe that both Y and Z satisfy Rules(P1 ∪ P2). Moreover, by the assumption that
fP1(i) = fP2(i) holds for all i > 0, we get that for any program P , f̂P (i) := fP1∪P (i) =
fP2∪P (i), for all i > 0. So, let for any ground interpretation X,

ĤP (X) =
lPmax∑

i=1

⎛

⎝ f̂P (i) ·
∑

w∈NP
i (X)

weight(w)

⎞

⎠ ;

and, in addition, for j ∈ {1, 2},

ĤP j;P (X) =
l
P j
max∑

i=1

⎛

⎜
⎝ f̂P (i) ·

∑

w∈N
P j
i (X)

weight(w)

⎞

⎟
⎠ .

Then, for any ground interpretation X, j ∈ {1, 2}, and any program P ,

HP j∪P (X) = ĤP j;P (X) + ĤP (X).

Hence, using the assumptions HP1∪P (Z ) ≥ HP1∪P (Y) and HP2∪P (Z ) < HP2∪P (Y),
we obtain:

(
ĤP1;P (Z ) − ĤP1;P (Y)

) ≥ (
ĤP (Y) − ĤP (Z )

)
>

(
ĤP2;P (Z ) − ĤP2;P (Y)

);
and thus

ĤP1;P (Z ) − ĤP1;P (Y) �= ĤP2;P (Z ) − ĤP2;P (Y).

It can be checked that then, δ
P1
i (Y, Z ) = δ

P2
i (Y, Z ) cannot hold for all i > 0. This

concludes the proof. �
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We illustrate this characterization by comparing two different variants of the 2-
coloring approximation program, already used in previous examples.

Example 5 Consider the program P2col from Example 2 and a slightly changed
program P2

2col where the weak constraint

:∼ red(X). [1 : 1]
from P2col is replaced by a weak constraint with different penalization:

:∼ red(X). [2 : 1].
One can check that P2col and P2

2col provide the same optimal answer sets for each
added graph, and also for each added program without weak constraints. Indeed, we
have that Rules(P2col) = Rules(P2

2col) and thus Rules(P2col) ≡s Rules(P2
2col). How-

ever, do the answer sets also coincide when we add programs which might contain
also weak constraints?

For instance, consider our example graph G = {v(1). v(2). v(3). e(1, 2). e(2, 3).}
and the extension program

P = G ∪ {:∼ green(X). [1 : 1]}.
Then, P2col ∪ P equally penalizes red and green vertices, and consequently has in its
answer sets those colorings with a maximal number of blue vertices, i.e.,

{blue(1), red(2), blue(3)} and {blue(1), green(2), blue(3)}.
For program P2

2col ∪ P , the different weights additionally make green vertices pre-
ferred over red vertices. Thus the only answer set of P2

2col ∪ P is G together with

{blue(1), green(2), blue(3)}.
Hence, P2col and P2

2col are not strongly equivalent to each other.
This effect is reflected in our characterization as follows by the fact that

for the interpretations Y = G ∪ {blue(1), red(2), blue(3)} and Z = G ∪ {blue(1),

green(2), blue(3)}, we have δP2col (Y, Z ) = 0 while δP
2
2col (Y, Z ) = 1.

Using this characterization, we obtain the following result as a complexity upper
bound.

Lemma 24 Strong equivalence between DL[not, ∨, w] programs is in �P
2 .

Proof We already know that deciding Rules(P1) ≡s Rules(P2) is in �P
2 . The re-

maining check involving the comparison of the classical models with respect to
their weights in the different levels is also in �P

2 . This can be seen as follows. For
the complementary problem one can guess ground interpretations Y, Z , and check
whether they both satisfy P1 ∪ P2, but violate δ

P1
i (Y, Z ) = δ

P2
i (Y, Z ) for some i. The

first check is in co-NP (cf. Lemma 1). For the second check, one has to sum up
the penalties of the weak constraints which are violated by the respective ground
interpretations. Since only a polynomial number of ground weak constraints can
occur (due to our restriction on the usage of weak constraints), this computation is
possible in polynomial time. We obtain an algorithm for the problem which guesses
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Table 6 Complexity of strong equivalence under bounded predicate arities

SE {} {w} {nots} {nots, w} {not} {not, w}

{} NP NP-hard; in �P
2 �P

2 �P
2 �P

2 �P
2

{∨h} �P
2 �P

2 �P
2 �P

2 �P
2 �P

2

{∨} �P
2 �P

2 �P
2 �P

2 �P
2 �P

2

Unless stated otherwise, all entries are completeness results.

Y, Z and then runs in polynomial time using several calls to NP-oracles. This shows
that the complement of the weight comparison is in �P

2 . Hence, the entire problem
is contained in �P

2 . �

By similar argumentation, one can obtain co-NP-membership for the ground case.
Thus, for all classes except DL[w] we obtain completeness results which show that
weak constraints do not add any complexity under our notion of strong equivalence
and we can extend Table 3 in Section 2 with co-NP-entries for all classes DL[L, w],
where co-NP-hardness for DL[L] holds.

Currently, it is unknown whether any of the given bounds for deciding strong
equivalence between non-ground DL[w] programs with bounded arities is tight, and
whether for propositional programs the problem is tractable.

We summarize our results:

Theorem 3 The complexity of strong equivalence under bounded predicate arities is
given by the respective entries in Table 6.

6 Discussion and implications

In this section, we provide a discussion of the complexity results obtained in this
work and outline some of their implications. Perhaps the most important result
from an application point of view is Theorem 2, which implies that reasoning tasks
over programs with bounded arities are feasible in polynomial space. In particular,
the theorem also implies that polynomial reductions to propositional ASP (with
disjunction) from HCF programs with bounded arities exist. However, examining
competitive ASP systems, we can observe that they currently do not respect this
complexity bound, the reason being that they create a ground program which is
equivalent to the input, and which in general has exponential size even for programs
with bounded arities. In Section 6.1, we provide a brief account on the reasons for this
behavior and the nature of the programs that cause it. Furthermore, in Section 6.2 we
provide ideas and a sketch for alternative methods that better match the complexity
results. Finally, in Section 6.3 we discuss related and further issues.

6.1 Exponential grounding for programs with bounded arity

In this section we provide empirical evidence that current ASP systems do require
exponential space for reasoning with programs with bounded predicate arities. In
particular, we show that all competitive ASP grounders, that is the grounding module
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of DLV [35] (version 2007-10-11), Lparse [65] (version 1.0.17), and GrinGo [25]
(version 0.0.1), produce a ground program which is exponential in the size of the
input program.

Example 6 Let us first consider the family of programs as considered in Example 1.
If the input graph is represented simply by facts, then all three systems are able
to fully evaluate the program—that is, they produce only a set of facts (which
is not exponential in the input size). However, if the input graph depends on a
nondeterministic predicate, which is defined by unstratified negation or disjunction,
then this optimized evaluation strategy is no longer applicable. We note that this is
not at all an uncommon situation, for example if one wants to compute reachability
over paths of length k over subgraphs of a given graph, this is exactly what will
happen.

For simplicity, we have added a generic nondeterministic predicate on which the
atoms defining the input graph depends in order to simulate such a situation and to
prevent the systems to apply the optimization.

We consider programs of Example 1 with graphs as in Fig. 1, where k = 2n + 1,
and each arc (v1, v2) of the input graph is specified by a rule e(v1, v2) :- a. Addition-
ally, we add the following rules:

a :- not b . b :- not a. :- not a.

There is one problem: Neither Lparse nor GrinGo will accept this program as is,
because these systems only support a restricted language in which each variable in
a rule must occur in a positive atom, the predicate of which is defined essentially
by a nonrecursive program. In order to obtain a program that meets the syntactic
restrictions imposed by Lparse and GrinGo, we consider the following modification
of the program:

a :-not b . b :- not a. :-not a.

f (V1, V2) :- e(V1, V2), a.

pk(X1, Xk) :- e(X1, X2), . . . , e(Xk−1, Xk), f (X1, X2), . . . , f (Xk−1, Xk).

reachable(X, Y) :- pk(X, Y), e(X, V1), e(V2, Y).

reachable(X, Y) :- reachable(X, Z ), pk(Z , Y), e(X, V1), e(V2, Z ), e(V3, Y).

The main difference to the original program is that the graph encoding is done
by facts in order to be able to provide domain predicates. Then, a new predicate
f duplicates the graph, but also depends on a nondeterministic predicate a, thus
simulating situations in which subgraphs are to be considered, or in which the
graph structure depends on some nondeterministic assumptions. The predicate pk

is then defined by means of f , but adding also corresponding atoms composed with
the predicate e, which serve as domain predicates for the variables X1, . . . , Xk.
Furthermore, for defining reachability we have added domain predicates for the
variables X, Y, Z in the last two rules. Here, the knowledge that X has to occur
as a source vertex in some arc and that Y has to occur as a target vertex in some
arc has been exploited. Z must occur both as source and target node in arcs, and we
chose its occurrence as target node for providing a domain predicate. The variables
V1, V2, V3 just serve for stating that an appropriate arc must exist.
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Fig. 2 Grounding size in relation to program size for DLV (dashed line, crosses), GrinGo (solid line,
stars) and Lparse (dotted line, circles) for n between 1 and 22. Left in linear scale, right in logarithmic
scale

When we compare the size of the input programs with the size of the ground
programs for this class of programs in Fig. 2, we can clearly observe an exponential
behavior for all three systems. Lparse appears to perform better than the other two
systems, however this is only due to the output format: While GrinGo and DLV
output valid ground logic programs, Lparse produces a more concise numerical
format. Indeed, when we look at the number of ground rules that are produced in
Fig. 3, we can see that Lparse actually always creates more rules in the tested range
than the other two systems DLV and Gringo, which produce almost equal programs.
We have also tried DLV with the version that is not accepted by Lparse and GrinGo
and obtained a similar behavior.

In any case, the crucial observation is that all systems have an exponential be-
havior for this class of programs.
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Fig. 3 Ground rules produced by DLV (dashed line, crosses), GrinGo (solid line, stars) and Lparse
(dotted line, circles) for n between 1 and 22. Left in linear scale, right in logarithmic scale
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Let us now look at another, more generic class of programs.

Example 7 Consider the following class of programs with predicate arity bounded
by 1:

e(0). e(1).

p(X) :- e(X), not q(X).

q(X) :- e(X), not p(X).

r :- p(X1), . . . , p(Xk).

One would expect an exponential grounding also in this case. DLV , however,
applies an optimization and transforms the program to

e(0). e(1).

p(X) :- e(X), not q(X).

q(X) :- e(X), not p(X).

r :- p′, . . . , p′.
p′ :- p(X).

where p′ is a new predicate, exploiting the fact that the variables X1, . . . Xk have a
single occurrence in the original rule. The transformed program always produces 9
ground rules, independent of k; only the size of the penultimate rule (which is already
ground) depends on k.

Lparse, on the other hand, refuses to ground this program because it is not
domain-restricted. GrinGo does accept this kind of programs and indeed produces
an exponential ground program.

In order to obtain a uniform input program to all systems, which as a side-
effect also impedes DLV from applying the optimization, we consider the following
(strongly equivalent) variant of the program:

e(0). e(1).

p(X) :- e(X), not q(X).

q(X) :- e(X), not p(X).

r :- p(X1), . . . , p(Xk), e(X1), . . . , e(Xk).

Lparse already produces around 70 MB of ground output for k = 20, and exceeds
1 GB of main memory consumption for k = 22, producing around 300 MB of
ground output. DLV consumes less memory, but still produces about 17 MB of
ground output for k = 20, stays just below 1 GB of main memory consumption
when producing about 70 MB of ground output for k = 22. Gringo uses only a few
megabytes of main memory, but produces more than 500 MB of ground output (the
difference to Lparse is due to the more concise output format of Lparse). Figure 4
illustrates the exponential space behavior of the systems.

Interestingly, all three systems produce essentially the same amount of ground
rules, as evidenced in Fig. 5. In this case, the smaller size (in bytes) of the ground out-
put produced by DLV is due to the fact that DLV produces shorter ground



154 T. Eiter et al.

100 150 200 250 300 350 400
0

1 108

2 108

3 108

4 108

5 108

6 108

input size [bytes]

g
ro

u
n

d
in

g
 s

iz
e

 [
b

y
te

s
]

100 150 200 250 300 350 400
102

103

104

105

106

107

108

109

input size [bytes]

g
ro

u
n

d
in

g
 s

iz
e

 [
b

y
te

s
]

Fig. 4 Grounding size in relation to program size for DLV (dashed line, crosses), GrinGo (solid line,
stars) and Lparse (dotted line, circles) for k between 1 and 22. Left in linear scale, right in logarithmic
scale

instantiations of the last rule, as it omits ground atoms for e(X1), . . . , e(Xk) as an
optimization. In fact, for these programs this even compensates the more concise
output format of Lparse.

Indeed, the ground programs provided by Lparse will contain 6 + 2k rules: The
two facts are included directly, the rules p(X) :- e(X), not q(X). and p(X) :- e(X),

not q(X). give rise to two ground rules each (one for each fact of predicate e), and 2k

ground rules for the final rule. Note that the number of variables per rule (k) is not
bounded, and therefore depends on the size of the input.

We observe that in programs as in these examples an exponential grounding is
generated by the systems, while only a small part of it is relevant for the computation.
Indeed, our result shows that this part fits in polynomial space for bounded arities.
It is worth noting that even techniques like magic sets (cf. [21]) cannot reduce the
grounding size for this kind of programs. Note that the predicate arities in Example 7
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Fig. 5 Ground rules produced by DLV , GrinGo, and Lparse for k between 1 and 22. Left in linear
scale, right in logarithmic scale
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are not only bounded; these programs are actually monadic. For monadic programs,
the complexity of the reasoning tasks is in fact the same as for propositional programs
(cf. Section 6.3).

As a final note, Example 7 evidences that there exist programs for which GrinGo
produces an exponential-sized ground program while DLV does not, thanks to an
optimization. Programs of this kind are, however, never in the language fragment
accepted by Lparse. Moreover, all programs accepted by Lparse, and for which
Lparse produces an exponential grounding, will also cause DLV and Gringo to
generate exponential-sized ground programs.

6.2 Avoiding exponential space

In this section, we provide indications on how solvers can avoid exponential space for
reasoning tasks on programs with bounded predicate arities. The first observation is
that simply grounding the input will in general not achieve this task, as evidenced in
Section 6.1.

One possibility is therefore using top–down techniques for query answering, which
intuitively ground “on demand” and work on a proof tree. Our results show that the
size of these proof trees should stay polynomial. However, there is not much work on
top–down methods in ASP, and actually none of the competitive systems currently
uses them. We refer to Section 6.3 for a summary of top–down methods in ASP.

In this section, we take a slightly different path, and indicate how one can use the
fact that the size of the proof trees are polynomially bounded in order to write a
sort of meta-interpretation program that reduces the input nondeterministically to a
polynomial substrate and uses the approach of [14] to define the answer sets on top of
this substrate. The resulting program should produce a polynomially sized grounding
using most grounders, and in this way allows for re-using existing ASP solvers.
Therefore, this technique can be seen as a polynomial reduction from reasoning over
programs with bounded arities to propositional programs. In fact, our complexity
results imply that such a reduction is feasible for sublanguages up to disjunctive HCF
programs, but is probably infeasible for positive disjunctive non-HCF programs and
richer languages.

For simplicity, we consider first the case of the sublanguage allowing definite Horn
programs. As a further simplification, let us assume that the program contains only
one predicate (with fixed arity). It is clear that any program can be transformed into
this format (without changing the intended meaning of the program) by creating
a new predicate symbol, which incorporates the previous predicate symbols as an
argument, and by filling unused arguments with a new constant.

Example 8 Recall the program of Example 1 for k = 5, with a graph as in Fig. 1
where n = 2.

pk(X1, X5) :- e(X1, X2), e(X2, X3), e(X3, X4), e(X4, X5).

reachable(X, Y) :- pk(X, Y).

reachable(X, Y) :- reachable(X, Z ), pk(Z , Y).

e(v1, x1). e(v1, y1). e(x1, v2). e(y1, v2).

e(v2, x2). e(v2, y2). e(x2, v3). e(y2, v3).
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This program can be converted into a program with only one predicate symbol with
fixed arity. Note that in this case all predicates of the original program have the same
arity, so no “arity-filling” has to be done.

p(pk, X1, Yk) :- p(e, X1, X2), p(e, X2, X3), p(e, X3, X4), p(e, X4, X5).

p(reachable, X, Y) :- p(pk, X, Y).

p(reachable, X, Y) :- p(reachable, X, Z ), p(pk, Z , Y).

p(e, v1, x1). p(e, v1, y1). p(e, x1, v2). p(e, y1, v2).

p(e, v2, x2). p(e, v2, y2). p(e, x2, v3). p(e, y2, v3).

In the program of Example 7, there is one predicate r with arity 0, while all other
predicates have arity 1, so in this case a new constant (cnew) is needed. The converted
program is

p(e, 0). p(e, 1).

p(p, X) :- p(e, X), not p(q, X).

p(q, X) :- p(e, X), not p(p, X).

p(r, cnew) :- p(p, X1), . . . , p(p, Xk).

The meta-interpretation program is structured into Program Table, Instance
Selection, and Meta-Interpreter. All three parts are modules in the sense of [12].

Program table The Program Table is simply a representation of rules as facts. For
example, the rule

p(a, X) :- p(X, Y), p(Y, Z ).

will be represented as

tabH(r, a, ‘X‘). tabB(r, ‘X‘, ‘Y‘). tabB(r, ‘Y‘, ‘Z ‘).

where r is a new constant for identifying the rule, and ‘X‘, ‘Y‘, ‘Z ‘ are new constants
identifying the variables.

Example 9 The program of Example 8 will be represented as

tabH(r1, pk, varx1, varx5). tabB(r1, e, varx1, varx2). tabB(r1, e, varx2, varx3).

tabB(r1, e, varx3, varx4). tabB(r1, e, varx4, varx5).

tabH(r2, reachable, varx, vary). tabB(r2, pk, varx, vary).

tabH(r3, reachable, varx, vary). tabB(r3, reachable, varx, varz).

tabB(r3, pk, varz, vary).

tabH(r4, e, v1, x1). tabH(r5, e, v1, y1). tabH(r6, e, x1, v2). tabH(r7, e, y1, v2).

tabH(r8, e, v2, x2). tabH(r9, e, v2, y2). tabH(r10, e, x2, v3). tabH(r11, e, y2, v3).

where varx, vary, varz, varx1, varx2, varx3, varx4, varx5 are new constants repre-
senting variables, and r1, . . . , r11 are new constants representing rules.

Instance selection The Instance Selection now encodes the fact that it suffices to
choose a polynomial amount of ground rules for deriving the truth of an atom. We
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know that it is sufficient to use nk rule instances (n being the number of constants,
bounded by the program size, and k being the bound on predicate arities). We
therefore create nk new constants which act as labels. For simplicity, we assume that
we have predicates label defining the nk labels for each rule, rule defining the rule
identifiers, rulevar defining the variable identifiers occurring in each rule, and const
for defining the universe of the original program.

Example 10 For the program of Example 8, the following facts would be added.

rule(r1). rule(r2). rule(r3). rule(r4).

rule(r5). rule(r6). rule(r7). rule(r8).

rule(r9). rule(r10). rule(r11).

rulevar(r1, varx1). rulevar(r1, varx2). rulevar(r1, varx3).

rulevar(r1, varx4). rulevar(r1, varx5).

rulevar(r2, varx). rulevar(r2, vary).

rulevar(r3, varx). rulevar(r3, vary). rulevar(r3, varz).

const(v1). const(v2). const(v3).

const(x1). const(x2). const(y1). const(y2).

const(pk). const(e). const(reachable).
label(l1). . . . label(l1000).

Note that there are 10 constants in the program and the arity of the unique predicate
is 3, so 103 labels are needed. In this small example, this seems quite excessive, but
for growing input the behavior is definitely better than the native grounding. In this
family of examples, break-even is reached at about a value of 20 for n (or 41 for k).

The Instance Selection program itself then looks as follows:

sel(L, R) ∨ nsel(L, R) :- label(L), rule(R).

val(L, R, V, C) :- sel(L, R), rulevar(R, V), const(C), not nval(L, R, V, C).

nval(L, R, V, C) ∨ nval(L, R, V, C′) :- sel(L, R), rulevar(R, V),

const(C), const(C′), C <> C′.

The basic idea is to select a polynomially bounded number of rule instances by means
of the first rule, and nondeterministically determine the variable valuations of the
selected rules by means of the second and third rule. In this way, all relevant rule
instantiations will be enumerated by the answer sets of this program. This will take
exponential time, but polynomial space, which contrasts the exponential space bound
of simply grounding the original program.

Example 11 Putting together the programs of Examples 9 and 10 and grounding
them will yield more than one million ground rules, but the important property is that
this number is in the order of n3 rather than 2n for growing program size. There are
some obvious and simple optimizations, which can drastically reduce the grounding
size, such as not including facts in the instance selection process, or not including
constants representing predicate names (such as e, pk, and reachable in our example)
as possible variable valuations. Just these two simple improvements would already
reduce the grounding size by about one half in our example.
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Meta-Interpreter Finally, the Meta-Interpreter module can be taken over basically
as is from [14]. In order to provide the programs obtained from the Instance Selector
module directly as an input to the meta-interpreter (which works on propositional
programs) it would be convenient to write for each rule something like

head(N, f (V1, . . . , Vk)) :-tabH(r, ‘X1‘, . . . , ‘Xk‘), sel(N, r),
val(N, r, ‘X1‘, V1), . . . , val(N, r, ‘Xk‘, Vk).

pbl(N, f (V1, . . . , Vk)) :- tabB(r, ‘Y1‘, . . . , ‘Yk‘), sel(N, r),
val(N, r, ‘Y1‘, V1), . . . , val(N, r, ‘Yk‘, Vk).

where p(X1, . . . , Xk) was the head and p(Y1, . . . , Yk) was a body atom of the
rule r in the original program, writing constant arguments directly where they oc-
curred. However, doing this involves either the availability of function symbols or
value invention (in that case, f (V1, . . . , Vk) would be a new constant), which are
not available in all ASP systems.4 Alternatively, one can slightly alter the meta-
interpreter program in order to work on a vector of k constants, which in our setting
identify a propositional atom, as there is only one predicate symbol.

Example 12 Continuing from Example 11, we would add the following interface
rules between the instance selector and the meta-interpreter if function symbols were
available, f being a fresh function symbol.

head(N, f (pk, V2, V3)) :- sel(N, r1), val(N, r1, varx1, V2), val(N, r1, varx5, V3).

pbl(N, f (e, V2, V3)) :- sel(N, r1), val(N, r1, varx1, V2), val(N, r1, varx2, V3).

pbl(N, f (e, V2, V3)) :- sel(N, r1), val(N, r1, varx2, V2), val(N, r1, varx3, V3).

pbl(N, f (e, V2, V3)) :- sel(N, r1), val(N, r1, varx3, V2), val(N, r1, varx4, V3).

pbl(N, f (e, V2, V3)) :- sel(N, r1), val(N, r1, varx4, V2), val(N, r1, varx5, V3).

head(N, f (reachable, V2, V3)) :- sel(N, r2), val(N, r2, varx, V2), val(N, r2, vary, V3).

pbl(N, f (pk, V2, V3)) :- sel(N, r2), val(N, r2, varx, V2), val(N, r2, vary, V3).

head(N, f (reachable, V2, V3)) :- sel(N, r3), val(N, r3, varx, V2), val(N, r3, vary, V3).

pbl(N, f (reachable, V2, V3)) :- sel(N, r3), val(N, r3, varx, V2), val(N, r3, varz, V3).

pbl(N, f (pk, V2, V3)) :- sel(N, r3), val(N, r3, varz, V2), val(N, r3, vary, V3).

head(N, f (e, v1, x1)) :- sel(N, r4).

head(N, f (e, v1, y1)) :- sel(N, r5).

head(N, f (e, x1, v2)) :- sel(N, r6).

head(N, f (e, y1, v2)) :- sel(N, r7).

head(N, f (e, v2, x2)) :- sel(N, r8).

head(N, f (e, v2, y2)) :- sel(N, r9).

head(N, f (e, x2, v3)) :- sel(N, r10).

head(N, f (e, y2, v3)) :- sel(N, r11).

Looking at the last rules it is evident that instance selection for facts is superfluous,
as already argued in Example 11.

4Note however, (the relevant part of) f (V1, . . . , Vk) can suitably be stored in a (polynomial size)
table.
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Together with the meta-interpreter program described in [14] and the Program
Table and Instance Selector module, each answer set of the obtained program will
include the representation of an answer set of the original program. Importantly, the
grounding of this program stays polynomial also for larger programs of this type.

If function symbols are not available, one can just omit f , making head and
pbl predicates of arity four instead of two, and modifying the meta-interpreter
accordingly.

Note that Program Table, Instance Selection, and Meta-Interpreter form modules
as defined in [12], and therefore the answer sets of the combined program can be
obtained by combining the answer sets of the modules in an incremental way, as
described in [12]. Furthermore, looking at the example, we can see that the program
can be grounded using polynomial space in the size of the original program (since
arities and the number of variables in rules are bounded). Using the resulting meta-
interpretation program, one can transform brave (respectively cautious) reasoning
over the original program to brave (respectively cautious) reasoning over the meta-
interpretation program, using the predicate in_AS of the meta-interpreter, which
holds for atoms in an answer set.

It should be noted that there is no correspondence between the answer sets of
the original program P and answer sets of the meta-interpretation program using
this simple approach. In order to establish such a correspondence, a check is needed
whether P is closed under the set of facts described by the meta-interpreter in the
predicate in_AS. Checking this property is co-NP-complete, and can be formulated
in ASP by a small program using similar techniques as above. That program,
receiving in_AS as input, has an answer set iff P is not closed under the described set
of facts. The number of variables in each rule of this program is furthermore bounded
by a constant (i.e., it corresponds to a propositional program of polynomial size). It
guesses a rule instance (i.e., a rule name and values for its variables) and checks
whether the body is not unsatisfied (thus satisfied), and whether the head is not
satisfied. The checking program can then be integrated into the meta-interpretation
program by exploiting techniques described in [11], or evaluated separately.

Constraints in a Horn program incur a similar need for a co-NP check under
brave reasoning, as well as strong negation (checking that no constraint is violated
respectively that no inconsistent pair of literals can be derived). An analogous
situation arises when negation in rule bodies is allowed, for all of Answer Set
Existence, Brave Reasoning, and Cautious Reasoning. Here, each answer set of P
is again given by the answer set of a polynomial portion of the grounding of P , which
can be guessed and evaluated using the meta-interpretation program, and checked
for closedness in a similar way.

6.3 Further discussion

As shown in previous sections, for many cases the complexity of the reasoning tasks
for bounded predicate arities is one level higher up in the polynomial hierarchy than
in the propositional case, which is intuitively due to the intractability of checking
whether the body of a non-ground rule can fire in a given interpretation. Under
suitable restrictions, the latter problem is tractable, and the complexity is not higher
than in the propositional case; e.g., if the associated hypergraph of the rule is acyclic,
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whose nodes are the variables in the rule body, and where each atom A in the
body provides a hyperedge containing all variables in A; tractability then follows
from well-known results in databases [1, 30]. Trivially, this is the case for monadic
programs, i.e., if all predicates are unary.

We have also outlined, that in some cases the reasoning tasks may be polynomially
transformed to propositional ASP, avoiding the grounding bottleneck. Top–down
algorithms appear to be good candidates for methods which work in polynomial
space, but so far there is little work on this topic. In [6] a resolution method for
cautious reasoning with DL[not] programs has been presented. A top–down method
for the answer set semantics (DL[not]) is mentioned as further work in [63], building
on the method for the well-founded semantics developed in that paper. Several
approaches to top–down derivation for DL[∨] programs have been proposed, see
e.g. [40, 69] and references therein. Recently, a method for top–down cautious query
answering for DL[nots,∨] programs has been described [33]. Unfortunately, it is not
clear whether the space complexities of these approaches stay within polynomial
space if the predicate arities are bounded.

Another approach to overcome exponential space requirements could be to
perform a focused grounding using the query, in principle “emulating” a top–down
derivation. In [21, 32] generalizations of the magic sets technique to DL[∨], in a
more restricted form to DL[not], and implicitly by means of combination also to
DL[not, ∨ ] have been described. However, in general these techniques will not be
able to avoid exponential space consumption in all cases. In particular, the main
feature of magic sets is that it allows for exploiting information from partially bound
queries. As a side effect, this method can avoid parts of the program which are not
relevant to the query, and it can restrict the relations of the remaining programs
by exploiting the occurrence of constants in queries and rule bodies. However, this
is somewhat orthogonal to the features that bounded arities allow to exploit. In
particular, for programs and queries that do not contain constants, magic sets can
do little apart from avoiding the grounding of program parts which are completely
unrelated to the query. In particular, the program in Example 7 together with the
query r cannot profit from magic sets, as all predicates are relevant to r and no partial
bindings can be exploited.

In the analysis, we assumed (as implicit in [15]) that in presence of weak con-
straints the weight of a given answer set of a program is computable in polyno-
mial time; this holds, e.g., if the number of ground instances of weak constraints
is bounded by a polynomial in the number of constants. In the general case,
computing the weight is #P-complete,5 and remains #P-hard even under bounded
predicate arities.6 Thus, answer set checking, becomes hard for the class PP (since
the decision problem can be solved resorting to relative preference rather than
solving the function problem of computing the actual weight). According to current

5Membership in #P is under the proviso that for binary number representation, the highest level
index is polynomial in the problem representation size. Recall that #P is the class of function
problems “compute f (x),” where f is the number of accepting paths of an NP machine. The class
PP, instead, contains all decision problems solvable by such a machine where at least 1/2 of the
computation paths accept iff the answer is “yes”.
6One can easily express counting the number of satisfying assignments for a monotone 2CNF φ =∧m

i=1(xi1 ∨ xi2 ) as computing the weight of the single answer set of the program consisting of the facts
c(1, 0), c(0, 1), c(1, 1) and the single weak constraint :∼ c(X11 , X12 ), . . . , c(Xm1 , Xm2 ). [1 : 1].
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beliefs in complexity theory PP is incomparable to the polynomial hierarchy. As a
consequence, the reasoning tasks are no longer in the polynomial hierarchy, but still
feasible in polynomial space (a more detailed account is that they are feasible with
a PP oracle suitable replacing an NP oracle; a precise characterization remains for
future work).

Finally, we mention that compared to strong equivalence, the problem of uni-
form7 equivalence [9, 59] is in general undecidable for non-ground programs with
negation-as-failure, see [16]. As already observed in [18], this undecidability result
prevails under bounded predicate arities since the closely related problem of datalog
equivalence in databases also remains undecidable in this setting [64].

7 Related work and conclusions

In this paper, we provided complexity results for answer set programming with non-
ground programs where the predicate arities are small (more precisely, bounded by
a constant), under various syntactic restrictions. We have considered the three major
reasoning tasks (answer set existence, brave reasoning, and cautious reasoning) as
well as deciding strong equivalence. Under bounded predicate arities, all these tasks
are decidable in polynomial space, and thus have far lower complexity than in the
unrestricted case where the problems considered range from EXP to EXP�P

2 .
There has been previous work on the computational complexity of queries on

relational databases where the number of variables in the query language is bounded
by a constant [67]. This setting is orthogonal to ours, since bounded predicate arity
still allows for arbitrarily many variables in each rule of a program, and conversely a
bounded number of variables does not restrict the arity of predicates up front, since
any variable may occur in the same atom multiple times. Our results on bounded
arities therefore complement this previous work, and they consider more classes of
programs.

Strong equivalence recently has become an important decision problem in ASP
due to its connection with program replacement (cf., e.g., [17] and references there)
and corresponding aspects of modularization and optimization. The complexity of
strong equivalence testing has been studied for the most significant program classes
in the propositional case [18, 19, 38] and the general non-ground case [16, 18, 38].
Checking strong equivalence under bounded predicate arities has first and very
briefly been discussed in [18], where a detailed study has been left for further work.

The problem of strong equivalence together with preference criteria between
answer sets has been analyzed in context with preference semantics which rely on
orderings between rules [20] or where the preference is defined via a designated
connective (“ordered disjunction”) [22]. A slightly different line of research includes
characterizations for further extensions of logic programs like weight-constraints or
monotone constraints, see e.g., [39, 66]. To the best of our knowledge, however,
strong equivalence in combination with weak constraints has not been considered
so far.

7The problem of uniform equivalence between programs P1,P2 is to decide whether, for each set F
of (non-disjunctive) facts, AS(P1 ∪ F) = AS(P2 ∪ F) holds.
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Our results in Tables 4, 5 and 6 in fact show that in the problem setting considered
here, the reasoning tasks range from NP to �P

4 , and are thus even within the
polynomial hierarchy. The classical approach of ASP, which computes in a first step
the grounding of the program, and then works on a propositional program—which
is employed by virtually all current competitive ASP systems—cannot guarantee
polynomial space bounds, since even under bounded predicate arities and optimiza-
tions, the ground program may have exponential size in the worst case. Thus, the
classic ASP approach suffers from a grounding bottleneck in this case. As we have
outlined, in some cases the reasoning tasks may be polynomially transformed to
propositional ASP, avoiding the grounding bottleneck. Since bounding arities is a
natural restriction, this result is of high practical relevance.

There are several directions for future work. One direction is to extend and
complete the results in this paper, to obtain a picture of the complexity for other
reasoning tasks (such as answer set checking), for other notions of equivalence, and
for further classes of programs. Furthermore, it would be interesting to analyze the
expressiveness of ASP under the restrictions considered here, as a database query
language (cf. [12, 60]) and a multi-valued function specification, respectively, cf. [41].
Finally, similar results may be obtained for other major non-monotonic formalisms,
such as default logic, autoepistemic logic, or circumscription, since they are closely
related to ASP.
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