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Abstract. Recent research in answer-set programming (ASP) focuses on differ-
ent notions of equivalence between programs which are relevant for program op-
timisation and modular programming. Prominent among these notions is uniform
equivalence, which checks whether two programs have the same semantics when
joined with an arbitrary set of facts. In this paper, we study a family of more
fine-grained versions of uniform equivalence, where the alphabet of the added
facts as well as the projection of answer sets is taken into account. The latter fea-
ture, in particular, allows the removal of auxiliary atoms in computation, which is
important for practical programming aspects. We introduce novel semantic char-
acterisations for the equivalence problems under consideration and analyse the
computational complexity for checking these problems. We furthermore provide
efficient reductions to quantified propositional logic, yielding a rapid-prototyping
system for equivalence checking.

1 Introduction

An important issue in software development is to determine whether two encodings
of a given problem are equivalent, i.e., whether they compute the same result on a
given problem instance. Although the question is well known to be undecidable for
Turing-complete programming languages, there are important KR programming lan-
guages where it is decidable. Our object of investigation is one such language, viz. the
class of disjunctive logic programs (DLPs) under the answer-set semantics [1]. This
formalism constitutes the arguably most important instance of the answer-set program-
ming (ASP) paradigm, whose popularity rests not only on the availability of efficient
solvers but also on the ease of modeling problems. The characteristic feature of ASP is
that solutions to problems are given by the models (the “answer sets”) of their encodings
and not by proofs as in traditional logic-based formalisms.

Given the nonmonotonic nature of DLPs under the answer-set semantics, a standard
equivalence notion in the sense that two programs are viewed as being equivalent if they
have the same answer sets is too weak to yield a replacement property like in classical
logic. That is to say, given a program R along with some subprogram P ⊆ R, when
replacing P with an equivalent program Q it is not guaranteed that Q ∪ (R \ P ) is
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equivalent to R. This led to the introduction of stricter notions of equivalence, viz.
strong equivalence [2] and uniform equivalence [3].

While strong equivalence in effect amounts to a replacement property by definition,
uniform equivalence checks whether two programs have the same answer sets for any
arbitrary input, i.e., for any set of facts. In more formal terms, two programs P,Q are
strongly equivalent iff for any program R (the “context program”), P ∪ R and Q ∪
R have the same answer sets, and P and Q are uniformly equivalent iff the former
condition holds for any set R of facts. While strong equivalence is relevant for program
optimisation and modular programming in general [4–6], uniform equivalence is useful
in the context of hierarchically structured program components, where lower-layered
components provide input for higher-layered ones.1 Strong and uniform equivalence
are, however, too restrictive in the sense that standard programming techniques like the
use of local (auxiliary) variables, which may occur in some subprograms but which
are ignored in the final computation, are not taken into account. In other words, these
notions do not admit the projection of answer sets to a set of designated output letters.

In previous work, Eiter, Tompits, and Woltran [8] introduced a general framework
for defining parameterised notions of program correspondence, allowing both answer-
set projection as well as the specification which kind of context class should be used
for program comparison. This framework thus generalises not only strong and uniform
equivalence but also relativised versions thereof [9] (where “relativised” means that
the alphabet of the context class is an additional parameter). In their analysis, Eiter,
Tompits, and Woltran [8] focused on correspondence problems for propositional DLPs
effectively generalising strong equivalence—in other words, they considered correspon-
dence problems amounting to relativised strong equivalence with projection. In this
paper, we complement these investigations by considering correspondence problems
amounting to relativised uniform equivalence with projection. More formally, in such
correspondence problems, there are fixed alphabets A,B (i.e., sets of atoms) and it is
checked whether, for programs P,Q and any set R ⊆ A of facts, the answer sets of
P ∪R and Q∪R projected to B coincide. (In a relativised strong equivalence problem
with projection, R would be a program over A.) Like Eiter, Tompits, and Woltran [8],
we also consider inclusion problems, i.e., checking set inclusion of the projected answer
sets rather than equality. In such a setting, Q can be viewed as an approximation of P
which is sound with respect to cautious reasoning from P . Note that since relativised
strong equivalence (resp., inclusion) with projection implies relativised uniform equiv-
alence (resp., inclusion) with projection (with respect to the same alphabets) but not
vice versa, characterisations of the former kinds of problems in general do not capture
the latter kinds of problems and so new methods are needed. Developing such charac-
terisations is actually one of the main goals of this paper.

Taking a database point of view, where programs are seen as queries over databases,
we refer to the equivalence problems studied here as propositional query equivalence
problems (PQEPs) and to the considered inclusion problems as propositional query
inclusion problems (PQIPs).

The main contributions of our paper can be summarised as follows:

1 It is worth noting that uniform equivalence was first studied in the context of datalog programs
as a decidable approximation of datalog equivalence [7].



– We introduce semantic characterisations for PQEPs and PQIPs in terms of novel
semantic structures associated with each program. We have that a PQEP holds iff
the associated structures coincide, and a PQIP holds iff the structures meet set in-
clusion. Interestingly, our characterisation differs from the well-known characteri-
sation of (relativised) uniform equivalence in terms of (relativised) UE-models [3,
9] in case the projection set is unrestricted. Thus, as a by-product, we obtain a new
characterisation of these special forms of equivalence.

– We analyse the computational complexity of checking PQEPs and PQIPs. While
checking the kinds of correspondence problems analysed by Eiter, Tompits, and
Woltran [8] is ΠP

4 -complete in general, checking PQEPs or PQIPs is only ΠP
3 -

complete. Checking relativised strong or uniform equivalence is ΠP
2 -complete [9],

thus projection adds a source of complexity, providing the polynomial hierarchy
does not collapse. Hence, under this proviso, the famous quote “facts do not cease
to exist because they are ignored” [10] is evidenced here.

– We provide efficient reductions of PQEPs and PQIPs into quantified propositional
logic. Given the availability of off-the-shelf solvers for the latter language, we thus
can employ these as back-end inference engines for checking PQEPs and PQIPs.
In fact, we incorporated our translations into the system cc> [11] which was de-
veloped as an implementation for checking the kinds of correspondence problems
studied by Eiter, Tompits, and Woltran [8].

2 Background

We are concerned with propositional disjunctive logic programs (DLPs) which are finite
sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

where n≥m≥ l≥ 0, all ai are propositional atoms from some fixed universe U , and
“not” denotes default negation. Rules of form a ← are facts and are usually written
without the symbol “←”. We denote by At(P ) the set of all atoms occurring in a pro-
gram P , and say that a program is over A if At(P ) ⊆ A. We use PA to refer to the set
of all programs over A.

By an interpretation we understand a set of atoms. A rule r of form (1) is true
under an interpretation I , symbolically I |= r, iff {a1, . . . , al} ∩ I 6= ∅ whenever
{al+1, . . . , am} ⊆ I and {am+1, . . . , an} ∩ I = ∅. If I |= r holds, then I is also said
to be a model of r. As well, I is a model of a program P , symbolically I |= P , iff
I |= r, for all r ∈ P . Following Gelfond and Lifschitz [1], an interpretation I is an
answer set of a program P iff it is a minimal model of the reduct P I , resulting from
P by (i) deleting all rules containing a default negated atom not a such that a ∈ I ,
and (ii) deleting all default negated atoms in the remaining rules. The collection of all
answer sets of a program P is denoted by AS(P ).

We use the following notation in the sequel: For an interpretation I and a set S of
interpretations, S|I is defined as {Y ∩I | Y ∈ S}. For a singleton set S = {Y }, we also
write Y |I instead of S|I . Furthermore, for sets S,S ′ of interpretations, an interpretation
B, and � ∈ {⊆,=}, we define S �B S ′ iff S|B � S ′|B .



Following Eiter, Tompits, and Woltran [8], a correspondence problem (over U) is
a quadruple Π = (P,Q, C, ρ), where P,Q ∈ PU are programs over U , C ⊆ PU is
a class of programs (the context class of Π), and ρ ⊆ 22U × 22U is a binary relation
over sets of interpretations. Π is said to hold iff, for each program R ∈ C, (AS (P ∪
R),AS (Q ∪ R)) ∈ ρ. By instantiating C and ρ, different equivalence notions from
the literature can be expressed. In particular, the following relations hold: P and Q are
strongly equivalent [2] iff (P,Q,PU ,=U ) holds; P and Q are uniformly equivalent iff
(P,Q, 2U ,=U ) holds; P and Q are strongly equivalent relative to A [9], for A ⊆ U ,
iff (P,Q,PA,=U ) holds; and P and Q are uniformly equivalent relative to A [9], for
A ⊆ U , iff (P,Q, 2A,=U ) holds.

We also make use of quantified propositional logic, an extension of classical propo-
sitional logic in which formulas are permitted to contain quantifications over proposi-
tional variables. Similar to predicate logic, ∃ and ∀ are used as symbols for existential
and universal quantification, respectively. It is customary to refer to formulas of quan-
tified propositional logic as quantified Boolean formulas (QBFs).

For a QBF of form Qp Ψ , where Q ∈ {∃,∀}, we call Ψ the scope of Qp. An occur-
rence of an atom p is free in a QBF Φ if it does not occur in the scope of a quantifier
Qp in Φ. Given a finite set P of atoms, QP Ψ stands for any QBF Qp1Qp2 . . . QpnΨ
such that P = {p1, . . . , pn}. Finally, Φ[p/φ] denotes the result of replacing each free
occurrence of an atom p in Φ by a formula φ.

For an interpretation I and a QBF Φ, the relation I |= Φ is defined analogously
as in classical propositional logic, with the additional conditions that I |= ∃p Ψ iff
I |= Ψ [p/>] or I |= Ψ [p/⊥], and I |= ∀p Ψ iff I |= Ψ [p/>] and I |= Ψ [p/⊥], for
Φ = Qp Ψ with Q ∈ {∃,∀}.

3 Propositional Query Inclusion and Equivalence Problems

Eiter, Tompits, and Woltran [8] focus on two important instantiations of their frame-
work, viz. on problems of form (P,Q,PA,⊆B) and (P,Q,PA,=B), where A,B ⊆ U
are sets of atoms fixing the alphabet of the context class PA and the alphabet relevant in
comparing the answer sets, respectively. Our interest here are correspondence problems
likewise parameterised by A and B as above, but where the context class is given by
sets of facts from A rather than PA.

Definition 1. Let U be a set of atoms, A,B⊆U , and P,Q∈PU . Then, (P,Q, 2A,⊆B)
is called a propositional query inclusion problem (over U), or PQIP for short, and
(P,Q, 2A,=B) is called a propositional query equivalence problem (over U), or PQEP.

Example 1. Consider P = {a∨b←; a← c} and Q = {a← not b; b← not a; c← a}.
Then, the answer sets of P and Q are given by AS (P ) = {{a}, {b}} and AS (Q) =
{{a, c}, {b}}. Choosing B = {a, b}, we then have that AS (P )|B = AS (Q)|B =
{{a}, {b}}. In fact, for A = B = {a, b}, the PQIP (P,Q, 2A,⊆B) holds. ♦

Note that (P,Q,PA,⊆B) holds only if (P,Q, 2A,⊆B) holds, but not vice versa. In-
deed, (P,Q, 2A,⊆B) from Example 1 holds but (P,Q,PA,⊆B) does not hold, as wit-
nessed by the context program {a← b; b← a} ∈ PA.



It is convenient to assemble the objects witnessing the violation of a PQIP into a
single concept. We introduce two versions of such a concept.

Definition 2. Let Π = (P,Q, 2A,⊆B) be a PQIP over U .

1. A pair (X, Y ) with X ⊆ A and Y ⊆ U is an explicit counterexample (over U) for
Π iff Y ∈ AS (P ∪X) and no Y ′ with Y ′|B = Y |B is contained in AS (Q ∪X).

2. A pair (X, Y ) with X ⊆ A and Y ⊆ B is a projective counterexample for Π iff
Y ∈ AS (P ∪X)|B and Y /∈ AS (Q ∪X)|B .

Theorem 1. Let Π = (P,Q, 2A,⊆B) be a PQIP. Then, the following conditions are
equivalent: (i) Π does not hold; (ii) Π has an explicit counterexample; and (iii) Π has
a projective counterexample.

For any explicit counterexample (X, Y ) for Π , (X, Y |B) is a projective counterex-
ample for Π . Conversely, for any projective counterexample (X, Y ) for Π , there exists
an explicit counterexample (X, Y ′) with Y ′|B = Y .

Example 2. Consider P and Q from Example 1. For A = {a, b, c} and B = {a, b},
the PQIP Π = (P,Q, 2A,⊆B) does not hold. This is witnessed by (bc, abc)2 which is
the unique explicit counterexample (over {a, b, c}) for Π . The corresponding projective
counterexample for Π is (bc, ab). ♦

As far as PQEPs are concerned, we introduce the following notation:

Definition 3. Let Π = (P,Q, 2A,=B) be a PQEP. Then, Π→ = (P,Q, 2A,⊆B) and
Π← = (Q,P, 2A,⊆B) are the PQIPs associated with Π .

Obviously, a PQEP Π holds iff both Π→ and Π← hold. We extend Definition 2
straightforwardly to PQEPs and call a pair (X, Y ) an explicit (resp., projective) coun-
terexample for a PQEP Π if (X, Y ) is an explicit (resp., projective) counterexample for
Π→ or Π←.

Next, we introduce the novel concept of an A-B-wedge for programs over U , where
A,B ⊆ U . A-B-wedges decide problems of form (P,Q, 2A,�B), for � ∈ {⊆,=}, in
such a way that they can be computed separately for P and Q. In particular, an A-B-
wedge for a program P collects the projected answers sets for all possible extensions
of P .

Definition 4. Let U be a set of atoms, A,B ⊆ U , and P ∈ PU . A pair (X, Y ) of
interpretations X, Y ⊆ U is an A-B-wedge (over U) of P iff X ⊆ A and Y ∈ AS (P ∪
X)|B . The set of all A-B-wedges of P is denoted by ωA,B(P ).

Clearly, (X, Y ) is a projective counterexample for Π =(P,Q, 2A,⊆B) iff (X, Y )∈
ωA,B(P )\ωA,B(Q). From this, together with Theorem 1, the following central property
is easily shown:

Theorem 2. For any Π of form (P,Q, 2A,�B), where � ∈ {⊆,=}, Π holds iff
ωA,B(P )� ωA,B(Q).

2 Whenever convenient, we use strings like abc as a shorthand for {a, b, c}.



Example 3. Reconsider the programs P and Q from Example 1 and take U = {a, b, c}.
First, consider A = B = {a, b}. One can verify that ωA,B(P ) = ωA,B(Q) = S, where
S = {(∅, a), (∅, b), (a, a), (b, b), (ab, ab)}. Hence, the PQEP (P,Q, 2A,=B) holds.

Second, consider the PQEP (P,Q, 2A′
,=B) with A′ = A ∪ {c}. We now obtain

ωA′,B(P ) = S ∪ {(c, a), (ac, a), (bc, ab), (abc, ab)},
ωA′,B(Q) = S ∪ {(c, a), (c, b), (ac, a), (bc, b), (abc, ab)}.

By Theorem 2, (P,Q, 2A′
,=B) does not hold. All projective counterexamples are given

by the symmetric difference ωA′,B(P )4ωA′,B(Q) = {(c, b), (bc, b), (bc, ab)}, and the
corresponding explicit counterexamples are (c, bc), (bc, bc), and (bc, abc). ♦

Model-Theoretic Characterisations. We now introduce semantic characterisations for
explicit counterexamples and A-B-wedges in the style of UE-models [3] and A-UE-
models [9]. Recall that UE- and A-UE-models have been introduced to capture uniform
equivalence and uniform equivalence relative to A, respectively. More specifically, two
programs are uniformly equivalent iff their UE-models coincide, and they are uniformly
equivalent relative to A iff their A-UE-models coincide. Let us note that UE-models can
be characterised thus: a pair (X, Y ) is a UE-model of a program P iff X ⊆ Y , Y |= P ,
X |= PY , and, for each X ′ with X ⊂ X ′ ⊂ Y , X ′ 6|= PY .

We first deal with explicit counterexamples.

Theorem 3. Let Π = (P,Q, 2A,⊆B) be a PQIP over U and consider X, Y ⊆ U .
Then, (X, Y ) is an explicit counterexample over U for Π iff

1. Y |= P and X ⊆ Y |A,
2. for each Y ′ with X ⊆ Y ′ ⊂ Y , Y ′ 6|= PY , and
3. for each Z with X ⊆ Z, Z|B = Y |B , and Z |= Q, there is some Z ′ with X ⊆

Z ′ ⊂ Z such that Z ′ |= QZ .

Proof. We first show that Y ∈ AS (P ∪ X) and X ⊆ A jointly hold iff the first two
items of the theorem hold. We only show the only-if direction; the if-direction is by
essentially the same arguments. So, assume that Y ∈ AS (P ∪X) and X ⊆ A. Since,
Y ∈ AS (P ∪X), we have Y |= (P ∪X)Y = (PY ∪X). Hence, Y |= PY and thus
Y |= P . Moreover, X ⊆ Y has to hold. Since X ⊆ A by hypothesis, we get X ⊆ Y |A.
Furthermore, Y ∈ AS (P ∪X) implies that there exists no Y ′ with Y ′ ⊂ Y such that
Y ′ |= (P ∪ X)Y = (PY ∪ X). In particular, this yields that for each such Y ′ with
X ⊆ Y ′, Y ′ 6|= PY has to hold.

Finally, it can be shown that there exist no Z with Z|B = Y |B such that Z ∈
AS (Q ∪X) iff the third item of the theorem holds. ut

Next, we characterise A-B-wedges.

Theorem 4. A pair (X, Y ) is an A-B-wedge of P iff (i) X ⊆ A and (ii) there is a Y ′

with X ⊆ Y ′ and Y = Y ′|B such that Y ′ |= P and, for each X ′ with X ⊆ X ′ ⊂ Y ′,
X ′ 6|= PY ′

.



Proof. According to Definition 4, (X, Y ) is an A-B-wedge of P iff X ⊆ A and Y ∈
AS (P ∪ X)|B . It thus remains to show that the latter condition is equivalent to (ii).
Now, Y ∈ AS (P ∪X)|B iff there is some Y ′ with Y = Y ′|B and Y ′ ∈ AS (P ∪X).
By the definition of an answer set, the latter is equivalent to

(∗) Y ′ is a minimal model of (P ∪X)Y ′
.

Since (P ∪X)Y ′
= (PY ′ ∪X) and Y ′ |= PY ′

iff Y ′ |= P , (∗) is in turn equivalent to
Y ′ |= P , X ⊆ Y ′, and for each X ′ with X ⊆ X ′ ⊂ Y ′, X ′ 6|= PY ′

. ut

Since uniform equivalence between programs over U is captured by PQEPs over
U of form (P,Q, 2U ,=U ), let us now describe the relation between UE-models and
A-B-wedges with A = B = U .

First of all, a pair (X, Y ) is a U-U-wedge of some program only if X ⊆ Y |U ,
i.e., only if X ⊆ Y . Now, for a program P , (Y, Y ) is a U-U-wedge of P iff Y |= P .
Furthermore, for X ⊂ Y , (X, Y ) is a U-U-wedge of P iff Y |= P and for all X ′

with X ⊆ X ′ ⊂ Y , X ′ 6|= PY holds. So, there is only a subtle difference between
U-U-wedges and UE-models, laid down in detail by the next result.

Theorem 5. Let X ⊆ Y ⊆ U and P ∈ PU . Then:

1. (Y, Y ) is a UE-model of P iff (Y, Y ) is a U-U-wedge of P . Moreover, if (Y, Y ) is
a UE-model of P but no (X, Y ) with X ⊂ Y is a UE-model of P (i.e., Y is an
answer set of P ), then, for all X ⊆ Y , (X, Y ) is a U-U-wedge of P .

2. If (X, Y ) is a UE-model of P and X ⊂ Y , then (X ′, Y ) is a U-U-wedge for any
X ⊂ X ′ ⊆ Y .

3. If (X, Y ) is a U-U-wedge of P and (∅, Y ) is not a U-U-wedge of P , then there
exists an UE-model (X ′, Y ) of P with X ′ ⊂ X .

Example 4. Consider the programs P = {a ∨ b} and Q = {a ← not b; b ← not a},
which are uniformly equivalent. The UE-models of P and Q are (a, a), (b, b), (a, ab),
(b, ab), and (ab, ab), but the U-U-wedges of the two programs are (∅, a), (a, a), (∅, b),
(b, b), and (ab, ab). ♦

While UE-models were defined with the aim to select a subset of SE-models [12]
(which characterise strong equivalence), wedges are not designed in this respect. Rather,
they have a much closer relation to projective counterexamples. Furthermore, a relation
between A-UE-models [9] and A-U-wedges can be established similar to Theorem 5 in
the context of relativised uniform equivalence.

4 Computational Complexity

We now analyse the complexity of deciding PQIPs and PQEPs. Let us first summarise
some results from Eiter, Tompits, and Woltran [8].

Proposition 1. Given programs P,Q ∈ PU , sets A,B ⊆ U , and � ∈ {⊆,=}, decid-
ing whether (P,Q, PA,�B) holds is ΠP

4 -complete. Moreover, the problem is coNP-
complete if A = U .



Proposition 2. Given programs P,Q ∈ PU , B ⊆ U ,� ∈ {⊆,=}, and C ⊆ PU , where
each R ∈ C is polynomial in the size of P ∪ Q, deciding whether (P,Q, C,�B) holds
is ΠP

3 -complete.

Another relevant previous result concerns the complexity of checking relativised
uniform equivalence [9, 13], which thus provides us complexity bounds for PQIPs and
PQEPs without projection.

Proposition 3. Given programs P,Q ∈ PU , A ⊆ U , and � ∈ {⊆,=}, deciding
whether (P,Q, 2A,�U ) holds is ΠP

2 -complete. Moreover, hardness holds even for ar-
bitrary but fixed A.

For general PQIPs and PQEPs, we expect an increase in complexity but, in view
of Proposition 2, it cannot be beyond ΠP

3 . However, Proposition 2 does not provide
details about the hardness of such problems. In fact, Eiter, Tompits, and Woltran [8]
report ΠP

3 -hardness for ordinary equivalence with projection, i.e., PQEPs of the form
(P,Q, 2A,=B) with A = ∅. Our main result below shows that nearly all parameteri-
sations for PQIPs and PQEPs result in a matching lower bound. In particular, we show
that ΠP

3 -hardness holds even if the context alphabet A is fixed arbitrarily. Thus, also
uniform equivalence without restriction of the context class is hard for ΠP

3 as long as
B ⊂ U , where B is the projection set. This is in stark contrast to Proposition 1, which
shows that considering programs over A (instead of sets of facts over A) remains in
coNP for arbitrary B, providing A = U .

Theorem 6. Given programs P,Q ∈ PU and sets A,B ⊆ U of atoms, deciding
whether (P,Q, 2A,⊆B) holds is ΠP

3 -complete. Hardness holds even for arbitrary but
fixed A.

Proof (Sketch). Membership in ΠP
3 follows from Proposition 2. We show ΠP

3 -hardness
by reducing the ΠP

3 -hard problem of checking validity of a QBF of form ∀Z∃X∀Y φ,
where φ is a propositional formula in disjunctive normal form (DNF) and Z ∪X ∪ Y
are the variables occurring in φ, into PQIPs.

The reduction is as follows: Let Φ = ∀Z∃X∀Y φ be a QBF of the described form,
with φ =

∨n
i=1 Ci being a formula in DNF. Define ΠΦ = (PΦ, QΦ, 2A,⊆Z), where A

is an arbitrary set of atoms and PΦ, QΦ are given as follows:

PΦ = {z ∨ z̄ ← ; ← z, z̄ | z ∈ Z} ∪ {← v ; ← v̄ | v ∈ X ∪ Y };
QΦ = {v ∨ v̄ ← ; ← v, v̄ | v ∈ Z ∪X}∪

{y ∨ ȳ ←; y ← a; ȳ ← a; a← y, ȳ | y ∈ Y }∪
{a← C∗i | 1 ≤ i ≤ n} ∪ {a← not a}.

Here, C∗ is a sequence of atoms containing each atom w occurring positively in C, and
w̄ for each w occurring negatively in C. Moreover, a and all v̄’s are new distinct atoms.
It can be shown that Φ is valid iff ΠΦ holds. ut

Since a PQEP Π holds iff its associated PQIPs Π→ and Π← both hold, it follows
that the complexity of checking PQEPs is in ΠP

3 as well. The matching lower bounds
for PQEPs (P,Q, 2A,=B) for arbitrary A follow in view of the following lemma, which
slightly generalises a result by Eiter, Tompits, and Woltran [8].



Lemma 1. The PQIP (P,Q, 2A,⊆B) holds iff the PQEP (LP,Q ∪ {gQ ← not gP },
LP,Q ∪ {gQ ∨ gP ←}, 2C ,=B) holds, where LP,Q = {← gP , gQ} ∪ {H ← gR, B |
R ∈ {P,Q},H ← B ∈ R}, A ⊆ C ⊆ A ∪ {gP , gQ}, and gP , gQ are new atoms.

Roughly speaking, the above lemma yields two properties: First, it maps PQIPs into
PQEPs via two new atoms. Second, it shows that these new atoms can be arbitrarily
fixed in the context of the resulting PQEP. Thus, hardness carries over also for arbitrary
but fixed alphabets and we have the following result:

Theorem 7. Given programs P,Q ∈ PU and sets A,B ⊆ U of atoms, deciding
whether (P,Q, 2A,=B) holds is ΠP

3 -complete. Hardness holds even for arbitrary but
fixed A.

We observe that thus also the special case when A = B, which amounts to notions
similar to modular equivalence [15], and database-like settings, where A is a subset of
the common EDBs and B is a subset of common IDBs, remain hard for ΠP

3 .

5 Translating Query Problems

In this section, we discuss issues for computing PQIPs and PQEPs. We adopt a re-
duction approach here, translating the problems under consideration into problems for
which solvers already exist. Naturally, the translations we seek should be constructible
in polynomial time.

First of all, we remark that since checking PQIPs and PQEPs is ΠP
3 -complete, these

tasks cannot be efficiently reduced to DLPs under the answer-set semantics, unless
the polynomial hierarchy collapses. Hence, a more expressive language is required.
This leads us to quantified propositional logic as a suitable target language, as any
decision problem in PSPACE can be efficiently reduced to QBFs. Moreover, there are
several practicably efficient solvers for QBFs available, which can be used as back-end
inference engines for solving the encoded problems.

In fact, such a reduction approach to QBFs was already adopted for realising the
system cc> [11], which allows to verify the kinds of correspondence problems studied
by Eiter, Tompits, and Woltran [8]. In principle, we can use cc> as such to verify
PQIPs and PQEPs, because the latter problems can be reduced to the former, in view of
the following observation:

Theorem 8. Given Π = (P,Q, 2A,�B), for � ∈ {⊆,=}, we have that Π holds iff
(P ∪GA, Q∪GA, {∅},�B) holds, where GA = {a′ ∨ a′′ ←; a← a′ | a ∈ A} and all
a′, a′′ are new, mutually disjoint atoms.

However, verifying PQIPs and PQEPs that way would involve two reduction steps,
as cc> relies itself on a reduction to QBFs. The direct encodings described next avoid
this.

In what follows, we make use of sets of globally new atoms in order to refer to
different assignments of the same atoms within a single formula. More formally, given
a set V of atoms, we assume (pairwise) disjoint copies V i = {vi | v ∈ V }, for every
i ≥ 1. Furthermore, we introduce the following abbreviations:



1. (V i ≤ V j) =
∧

v∈V (vi → vj);
2. (V i < V j) = (V i ≤ V j) ∧ ¬(V j ≤ V i); and
3. (V i = V j) = (V i ≤ V j) ∧ (V j ≤ V i).

Observe that the latter is equivalent to
∧

v∈V (vi ↔ vj).
These operators allow to compare different subsets of atoms from a common set V

under subset inclusion, proper-subset inclusion, and equality, respectively, in the fol-
lowing way: Given X, Y ⊆ V , an interpretation I with I|V i = Xi and I|V j = Y j is
(i) a model of V i ≤ V j iff X ⊆ Y , (ii) a model of V i < V j iff X ⊂ Y , and (iii) a
model of V i = V j iff X = Y .

We use superscripts as a general renaming schema for formulas and rules. That is,
for each i ≥ 1, αi expresses the result of replacing each occurrence of an atom v in
α by vi, where α is any formula or rule. For a rule r of form (1), we define H(r) =
a1∨· · ·∨al, B+(r) = al+1∧· · ·∧am, and B−(r) = ¬am+1∧· · ·∧¬an. We identify
empty disjunctions with ⊥ and empty conjunctions with >.

The following abbreviation is central: For any program P ,

P 〈i,j〉 =
∧
r∈P

(
(B+(ri) ∧B−(rj))→ H(ri)

)
.

Then, the following relation holds:

Proposition 4 ([16]). Let P be a program with At(P ) = V , I an interpretation, and
X, Y ⊆ V such that, for some i, j, I|V i = Xi and I|V j = Y j . Then, X |= PY iff
I |= P 〈i,j〉.

Example 5. Consider the program Q = {a ← not b; b ← not a}. Then, for instance,
Q〈1,2〉 is given by (¬b2 → a1) ∧ (¬a2 → b1), and we have that the interpretation
{a2, b2} ∪X1 is a model of Q〈1,2〉, for each X1 ⊆ {a1, b1}, reflecting the fact that any
interpretation X is a model of the reduct Q{a,b}. ♦

With these building blocks at hand, we proceed with our central encoding.

Definition 5. Let Π = (P,Q, 2A,⊆B) be a PQIP, At(P ∪ Q) = V , and A,B ⊆ V .
Then,

T [Π] = ΦΠ ∧ ∀V 4
(
(B4 = B1)→ ΨΠ

)
, where

ΦΠ = P 〈1,1〉 ∧ (A2 ≤ A1) ∧ ∀V 3
((

(A2 ≤ A3) ∧ (V 3 < V 1)
)
→ ¬P 〈3,1〉

)
and

ΨΠ =
((

Q〈4,4〉 ∧ (A2 ≤ A4)
)
→ ∃V 5

((
(A2 ≤ A5) ∧ (V 5 < V 4)

)
∧Q〈5,4〉)).

Observe that the free variables of T [Π] are given by V 1 ∪ A2. Assignments to
V 1 ∪ A2 yield the explicit counterexamples for Π , in case T [Π] is satisfied by those
assignments. More specifically, T [Π] expresses the conditions of Theorem 3, where as-
signments for V 1, A2, V 3, V 4, and V 5 correspond to Y , X , Y ′, Z, and Z ′, respectively.
Taking the semantics of the introduced building blocks into account, Y 1∪X2 |= ΦΠ iff
X and Y satisfy the first and the second item of Theorem 3, and Y 1∪X2 |= ∀V 4((B4 =
B1) → ΨΠ) iff X and Y satisfy the third item of Theorem 3. Formally, we have the
following key property:



Lemma 2. Let Π = (P,Q, 2A,⊆B) be a PQIP, At(P ∪Q) = V , A,B ⊆ V , X ⊆ A,
and Y ⊆ V . Then, (X, Y ) is an explicit counterexample for Π iff Y 1 ∪X2 |= T [Π].

Expressing the task whether a PQIP holds is now a simple matter to realise:

Theorem 9. For any PQIP Π = (P,Q, 2A,⊆B), Π holds iff ¬∃V 1∃A2T [Π] is valid.

The extension of the encodings to PQEPs is done by means of the associated PQIPs.

Lemma 3. Let Π = (P,Q, 2A,=B) be a PQEP, At(P ∪Q) = V , A,B ⊆ V , X ⊆ A,
and Y ⊆ V . Then, (X, Y ) is an explicit counterexample for Π iff Y 1∪X2 |= T [Π→]∨
T [Π←].

Theorem 10. For any PQEP Π = (P,Q, 2A,=B), Π holds iff ¬∃V 1∃A2(T [Π→] ∨
T [Π←]) is valid.

It is easily observed that our encodings in Theorems 9 and 10 are (i) always polyno-
mial in the size of P , Q, A, and B, and (ii) possess at most two quantifier alternations
in any branch of the formula tree. Thus, the complexity of evaluating these QBFs is
not harder than the complexity of the encoded decision problems, which shows that our
encodings are adequate in the sense of Besnard et al. [17].

The reductions described above have been incorporated into the system cc>, which
is available on the Web at

http://www.kr.tuwien.ac.at/research/ccT.

In fact, the implemented translations include optimised versions such that adequacy is
retained also for (relativised) uniform equivalence. Details about these optimisations
are omitted for space reasons.

6 Discussion

In this paper, we studied refined versions of uniform equivalence for disjunctive logic
programs under the answer-set semantics, where the alphabet of the context class as
well as removal of auxiliary atoms is taken into account. We also considered correspon-
dence problems in which projective set inclusion is taken as basic comparison rela-
tion instead of projective set equality. We furthermore provided a novel model-theoretic
characterisation in terms of wedges which at the same time yields new characterisations
for (relativised) uniform equivalence (vis-a-vis UE-models), and analysed the compu-
tational complexity of correspondence checking. Finally, we described efficient reduc-
tions of PQIPs and PQEPs to QBFs, yielding an implementation of these problems by
means of off-the-shelf QBF solvers.

Other refined equivalence notions in the context of answer-set programming are,
e.g., visible equivalence [18], a form of ordinary equivalence with projection, and up-
date equivalence [19]. We also mention the system SELP [20] for checking strong
equivalence, which is based on a reduction to classical logic, very much in the spirit
of our implementation approach.

An open topic for future work is the extension of our results to more general classes
of programs like, e.g., nested logic programs. A further interesting issue concerns the
case of nonground programs—however, thereby we have to face undecidability which
holds already for uniform equivalence [21] between nonground programs.
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