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Abstract. For a given semantics, two nonmonotonic theoriesΠ1 andΠ2 can be
said to be equivalent if they have the same intended models and strongly (resp.,
uniformly) equivalent if for anyΣ, Π1∪Σ andΠ2∪Σ are equivalent, whereΣ is
a set of sentences (resp., literals). In the general case, norestrictions are placed on
the language (signature) ofΣ. Relativised notions of strong and uniform equiv-
alence are obtained by requiring thatΣ belongs to a specified sublanguageL of
the theoriesΠ1 andΠ2. For normal and disjunctive logic programs under stable-
model semantics, relativised strong and uniform equivalence have been defined
and characterised in previous work by Woltran. Here, we extend these concepts
to nonmonotonic theories in equilibrium logic and discuss applications in the
context of prediction and explanation.

1 Introduction

Equilibrium logic [12] is a general purpose formalism for nonmonotonic reasoning ex-
tending the stable-model and answer-set semantics for all the usual classes of logic
programs, adhering to the generalanswer-set programming(ASP) paradigm. It is a
form of minimal-model reasoning in the non-classical logicof here-and-there, which
is basically intuitionistic logic restricted to two worlds, “here” and “there”, and sub-
sumes all important syntactic extensions considered in ASP, including the addition of
strong negation, rules with negation-by-default in their heads, and nested programs, as
well as those constructs like cardinality and weight constraints and aggregates that have
equivalent representations in the more general syntax of equilibrium logic [4, 5].

Recent research in ASP focuses on advanced notions of program equivalence rele-
vant for program optimisation and modular programming [11,1, 14]. A traditional con-
cept of equivalence, where two nonmonotonic theories, under a given semantics, are
viewed as being equivalent if they have the same intended models, is not adequate for
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these purposes because such a notion does not satisfy a replacement property like in
classical logic. Better candidates, however, are strong and uniform equivalence. While
the former meets a replacement principle by definition, the latter is suitable for hierar-
chically ordered modules. In formal terms, two nonmonotonic theories,Π1 andΠ2, are
strongly (resp., uniformly) equivalent if for anyΣ, Π1 ∪ Σ andΠ2 ∪ Σ are equiva-
lent, whereΣ is a set of sentences (resp., literals). In the general case,no restrictions
are placed on the language (signature) ofΣ. Relativised notionsof strong and uniform
equivalence are obtained by requiring thatΣ belongs to a specified sublanguageL of the
theoriesΠ1 andΠ2. For normal and disjunctive logic programs under stable-model se-
mantics, relativised strong and uniform equivalence have been defined and characterised
in previous work by Woltran [19], together with a discussionabout complexity issues
and implementation strategies. Furthermore, relativisedstrong and uniform equivalence
are special cases ofupdate equivalenceintroduced by Inoue and Sakama [7].

In this paper, we extend the work of Woltran [19] and Pearce and Valverde [14]
by characterising relative notions of equivalence for arbitrary (propositional) theories
in equilibrium logic. Furthermore, we discuss how relativised equivalences can be ap-
plied to certain problems from the areas of diagnosis and abduction, with respect to the
problem of deciding whether two logical descriptions have the same explanatory power,
and provide a semantical characterisation of this problem.The formal model of an ab-
ductive explanation our discussion is based is an extensionof a corresponding concept
used by Inoue and Sakama [8] for disjunctive logic programs with default negation in
their heads. Finally, we address the computational complexity of relative equivalence in
equilibrium logic, showing that it remains on the same levelas for logic programs.

2 Equilibrium Logic

We work in the nonclassical logic of here-and-there with strong negationN5 and its
nonmonotonic extension, equilibrium logic [12], which generalises the answer-set se-
mantics for logic programs to arbitrary propositional theories [11]. For more details, the
reader is referred to [12, 13] and the logic texts cited below.

Formulas ofN5 are built-up in the usual way using the logical constants∧, ∨,→,
¬,∼, standing respectively for conjunction, disjunction, implication, weak (or intuition-
istic) negation, and strong negation. The axioms and rules of inference forN5 include
those of intuitionistic logic (see, e.g., [16]) and the strong negation axioms from the
calculus of Vorob’ev [17, 18]; for details, see [13].

The model theory ofN5 is based on the usual Kripke semantics for Nelson’s con-
structive logicN (see, e.g., [6, 16]), butN5 is complete for Kripke framesF = 〈W,≤〉
(where as usualW is the set ofpointsor worlds and≤ is a partial-ordering onW )
having exactly two worlds, sayh (“here”) andt (“there”) withh ≤ t. As usual, amodel
is a frame together with an assignmenti that associates to each element ofW a set
of literals1 such that ifw ≤ w′ theni(w) ⊆ i(w′). An assignment is then extended
inductively to all formulas via the usual rules for conjunction, disjunction, implication
and (weak) negation in intuitionistic logic together with the following rules governing

1 We use the term “literal” to denote an atom, or an atom prefixedby strong negation.
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strongly negated formulas:

∼(ϕ ∧ ψ) ∈ i(w) iff ∼ϕ ∈ i(w) or ∼ψ ∈ i(w);
∼(ϕ ∨ ψ) ∈ i(w) iff ∼ϕ ∈ i(w) and ∼ψ ∈ i(w);
∼(ϕ→ ψ) ∈ i(w) iff ϕ ∈ i(w); and ∼ψ ∈ i(w);
∼¬ϕ ∈ i(w) iff ∼∼ϕ ∈ i(w) iff ϕ ∈ i(w).

It is convenient to represent anN5-model as an ordered pair〈H,T 〉 of sets of literals,
whereH = i(h) andT = i(t) under a suitable assignmenti. By h ≤ t it follows
thatH ⊆ T . Again, by extendingi inductively we know what it means for an arbitrary
formulaϕ to be true in a modelM = 〈H,T 〉. We writeM, w |= ϕ to express thatϕ is
true at worldw in modelM.

A formulaϕ is true in a here-and-there modelM = 〈H,T 〉, in symbolsM |= ϕ,
if it is true at each world inM. A formulaϕ is said to bevalid in N5, in symbols|= ϕ,
if it is true in all here-and-there models. Logical consequence forN5 is understood as
follows:ϕ is said to be anN5-consequenceof a setΠ of formulas, writtenΠ |= ϕ, iff
for all modelsM and any worldw ∈ M,M, w |= Π impliesM, w |= ϕ. Equivalently,
this can be expressed by saying thatϕ is true in all models ofΠ . Further properties of
N5 are studied in [10].

Equilibrium models are special kinds of minimalN5 Kripke models. We first define
a partial ordering� onN5 models that will be used both to characterise the equilibrium
property as well as the property of uniform equivalence.

Definition 1. Given any two models〈H,T 〉, 〈H ′, T ′〉, we set〈H,T 〉� 〈H ′, T ′〉 if T =
T ′ andH ⊆ H ′.

Definition 2. LetΠ be a set ofN5 formulas and〈H,T 〉 a model ofΠ .

1. 〈H,T 〉 is said to betotal if H = T (otherwise, ifH ⊂ T , it is non-total).
2. 〈H,T 〉 is said to be anequilibriummodel if it is total and minimal under� among

models ofΠ .

In other words, a model〈H,T 〉 ofΠ is in equilibrium if it is total and there is no model
〈H ′, T 〉 of Π with H ′ ⊂ H . Equilibrium logic is the logic determined by the equi-
librium models of a theory. It generalises answer-set semantics in the following sense:
For all the usual classes of logic programs, including normal, extended, disjunctive and
nested programs, equilibrium models correspond to answer sets [12, 11]. The “transla-
tion” from the syntax of programs toN5 propositional formulas is the trivial one, viz.,
a ground rule of an (extended) disjunctive program of the form

K1 ∨ . . . ∨Kk ← L1, . . . Lm,notLm+1, . . . ,notLn,

where theLi andKj are literals, corresponds to theN5 sentence

L1 ∧ . . . ∧ Lm ∧ ¬Lm+1 ∧ . . . ∧ ¬Ln → K1 ∨ . . . ∨Kk.

A set ofN5 sentences is called atheory. Two theories areequivalentif they have the
same equilibrium models.
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3 Relativised Equivalence Concepts

We consider theoriesΠ1,Π2, etc., and languagesL, L′, etc. It will be convenient nota-
tionally viewing a language as a set of literals. A theory is said to bein the languageL
if all its atomic formulas belong toL.

Definition 3. LetΠ1 andΠ2 be theories.

(i) Π1 andΠ2 arestrongly equivalent relative toL iff for any(empty or non-empty) set
Σ ofL formulas,Π1∪Σ andΠ2∪Σ are equivalent, i.e., have the same equilibrium
models.

(ii ) Π1 andΠ2 areuniformly equivalent relative toL iff for any (empty or non-empty)
setX of L literals,Π1 ∪X andΠ2 ∪X are equivalent, i.e., have the same equi-
librium models.

Note that if the theories are logic programs, this means theyhave the same answer sets.
We explain some terminology and notation. A model〈H,T 〉 of a theoryΠ is said

to bemaximally non-total(or just maximal) if it is non-total and is maximal among
models ofΠ under the ordering�. In other words, a model〈H,T 〉 of Π is maximal
if for any model〈H ′, T 〉 of Π , if H ⊂ H ′ thenH ′ = T . It is clear that if a theory
Π is finite and has a non-total model〈H,T 〉, then it has a maximally non-total model
〈H ′, T 〉 such thatH ⊆ H ′. However, maximal models need not exist in case thatΠ is
an infinite theory. In what follows, we shall assume that all theories are finite.

Let L be a sublanguage ofL′. If M = 〈H,T 〉 is anL′ model, itsL-1-reductis
defined by

〈H ∩ L, T 〉

and denoted byM|L. The term “1-reduct” stems from the fact that it refers to thefirst
component of the model.

4 Characterising Relative Equivalence

For logic programs, the above relativised notions of equivalence are characterised by
Woltran [19] in terms of what are calledrelativised strong(resp.,uniform) equivalence
models, or RSE(resp.,RUE) modelsfor short. We start by re-expressing these concepts
in terms of ordinary models in the logicN5.

Definition 4. LetΠ be a theory inL′ andL a sublanguage ofL′. A modelM = 〈H,T 〉
is anRSEL-modelofΠ if it meets the following criteria:

4.1 M is a total model ofΠ or
4.2 M is theL-1-reduct of a non-total model〈H ′, T 〉 ofΠ , and
4.3 for any non-total model〈J, T 〉 ofΠ , T \J ∩ L 6= ∅.

In other words, 4.3 holds together with one of 4.1 or 4.2. It iseasy to see that for disjunc-
tive logic programs, the above concept coincides with that of an RSE-model as defined
by Woltran [19]. Indeed, we must check a preliminary condition and Conditions (i)-(iii)
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of Definition 6 by Woltran [19]. Clearly, both 4.1 and 4.2 above imply thatT is a clas-
sical model ofΠ as required by (i). Condition 4.3 above re-expresses Clause(ii), while
Condition 4.2 re-expresses Clause (iii). Finally, we checkthe preliminary condition of
Woltran [19]. By 4.2, ifH 6= T then〈H,T 〉 is the reduct of a non-total model〈H ′, T 〉
of Π , soH ′ ⊂ T . Therefore,H ′ ∩ L ⊆ T ∩ L. But by 4.3,H ′ ∩ L 6= T ∩ L. Since
H = H ′ ∩ L, it follows thatH ⊂ T ∩ L as required by the original definition of an
RSE-model.

Now the following lemma is straightforward but useful. It says that two models with
the sameL-1-reduct satisfy the sameL-sentences.

Lemma 1. LetM andM′ beN5 models andϕ a formula all of whose atoms belong
to the languageL. IfM|L =M′|L, thenM |= ϕ iffM′ |= ϕ.

4.1 Relativised Strong Equivalence

Relativised strong equivalence (RSE) is defined as Woltran [19] does but for arbitrary
theories. We can now show that sameness of RSE-models is a sufficient condition to
ensure RSE.

Theorem 1. LetΠ1 andΠ2 be theories having the same RSEL-models. Then,Π1 and
Π2 are strongly equivalent relative toL.

Proof. Assume the hypothesis of the theorem and consider the theoryΠ1∪Σ whereΣ
is any set of sentences inL. Consider any equilibrium modelM = 〈T, T 〉 of Π1 ∪ Σ.
We shall show thatM is also an equilibrium model ofΠ2 ∪Σ. By the symmetry of the
situation, the same argument will show that any equilibriummodel ofΠ2 ∪Σ must be
an equilibrium model ofΠ1 ∪Σ.

We first show thatM is an RSEL-model ofΠ1. Evidently, it is a total model of
Π1, so Condition 4.1 holds. Suppose that Condition 4.3 fails, so that there is a model
〈J, T 〉 of Π1 with J ⊂ T such thatT ∩ L = J ∩ L. Since〈T, T 〉 |= Σ, by Lemma 1,
〈J, T 〉 |= Σ, but this contradicts the assumption that〈T, T 〉 is an equilibrium model
of Π1 ∪ Σ. So Condition 4.3 applies andM is an RSEL-model ofΠ1 and hence by
assumption ofΠ2. Therefore

〈T, T 〉 |= Π2 ∪Σ.

We need to show that it is in equilibrium. Note that since〈T, T 〉 is an RSEL-model of
Π2, by Condition 4.3 there is no model〈J, T 〉 of Π2 with J ⊂ T such thatT ∩ L =
J ∩ L. Suppose thatM is not an equilibrium model ofΠ2 ∪ Σ. ThenΠ2 ∪ Σ has a
model〈H,T 〉 with H ⊂ T , so in particular〈H,T 〉 |= Π2 and by 4.3,T \H ∩ L 6= ∅.
So,H ∩ L ⊂ T ∩ L ⊆ T . It follows that 〈H ∩ L, T 〉 is theL-1-reduct of a model
〈H,T 〉 |= Π2, withH ⊂ T . By Condition 4.2,〈H ∩L, T 〉 is therefore an RSEL-model
of Π2, hence ofΠ1. So, again by 4.2, it is theL-1-reduct of some model〈H ′, T 〉 of
Π1 with H ′ ⊂ T such thatH ′ ∩ L = H ∩ L. By Lemma 1, since〈H,T 〉 |= Σ also
〈H ′, T 〉 |= Σ and hence〈H ′, T 〉 |= Π1 ∪ Σ. But this contradicts the assumption that
〈T, T 〉 is an equilibrium model ofΠ1 ∪ Σ. Therefore,〈T, T 〉 is an equilibrium model
of Π2 ∪Σ. ⊓⊔
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We now tackle the converse of Theorem 1.

Theorem 2. LetΠ1 andΠ2 be theories such thatΠ1 andΠ2 are strongly equivalent
relative toL. Then, they have the same RSEL-models.

Proof. Suppose thatΠ1 andΠ2 have different RSEL-models. We shall define a set of
L-sentencesΣ such thatΠ1∪Σ andΠ2∪Σ have different equilibrium models. Without
loss of generalisation, assume there is anM which is an RSEL-model ofΠ1 but not of
Π2. We consider several cases and subcases.

CASE 1. M = 〈T, T 〉 is a total RSEL-model ofΠ1 that is not an RSEL-model ofΠ2.
SetΣ = T ∩L. Then clearlyM |= Π1∪Σ. Moreover,M is an equilibrium model
of Π1 ∪ Σ. For, if not, there is a model〈H,T 〉 of Π1 ∪ Σ with H ⊂ T . Since
Σ = T ∩L, we must haveT ∩L ⊆ H . But thenT ∩L = H ∩L, which contradicts
Condition 4.3 forM being an RSEL-model ofΠ1. There are two reasons whyM
is not an RSEL-model ofΠ2.
SUBCASE 1.1. M 6|= Π2. In this case, sinceM 6|= Π2, it cannot be an equilibrium

model ofΠ2 ∪Σ.
SUBCASE 1.2. M |= Π2, but Condition 4.3 fails forΠ2. So, there is a model
〈J, T 〉 of Π2 with J ⊂ T such thatT ∩ L = J ∩ L. Applying Lemma 1, we
conclude that〈J, T 〉 |= Σ since〈T, T 〉 |= Σ. Therefore,〈J, T 〉 |= Π2 ∪Σ, so
M is not an equilibrium model ofΠ2 ∪Σ.

CASE 2. M = 〈H,T 〉 is a non-total RSEL-model ofΠ1 that is not an RSEL-model
of Π2. Observe that〈T, T 〉 is a total RSEL-model ofΠ1. Hence, in case〈T, T 〉 is
not an RSEL-model ofΠ2, we can apply the same argument of Case 1 to conclude
that〈T, T 〉 is an equilibrium model ofΠ1∪Σ and, again, cannot be an equilibrium
model ofΠ2 ∪Σ.
So suppose〈T, T 〉 is an RSEL-model ofΠ2 and Condition 4.2 fails forM =
〈H,T 〉, i.e., there is no non-total model ofΠ2 whoseL-1-reduct equalsM. Let
Γ = {A → B | A,B ∈ (T \H) ∩ L}. By Condition 4.3,Γ is non-empty. Set
Σ = H ∪ Γ . Now, evidently〈T, T 〉 is a model of bothH , sinceH ⊆ T , and
of Γ , so 〈T, T 〉 |= Π2 ∪ Σ. We claim it is an equilibrium model ofΠ2 ∪ Σ,
For, if not, there is a model〈J, T 〉 of Π2 ∪ Σ with J ⊂ T . Clearly,H ⊆ J , but
H 6= J ∩ L, otherwise〈J ∩ L, T 〉 = M would be an RSEL-model ofΠ2. So,
H ⊂ J ∩ L. Thus,(J ∩ L)\H is non-empty, and by Condition 4.3,(T \J) ∩ L
is also non-empty. Choose anA from (J ∩ L)\H andB from (T \J) ∩ L. Then,
A → B ∈ Γ , but 〈J, T 〉 6|= A → B, since〈J, T 〉, h |= A but 〈J, T 〉, h 6|= B. It
follows that〈J, T 〉 6|= Σ and so〈T, T 〉 is an equilibrium model ofΠ2 ∪ Σ. On
the other hand, it is not an equilibrium model ofΠ1 ∪ Σ. In particular, we know
that 〈H ′, T 〉 |= Π1 ∪ H , since there is a non-total model〈H ′, T 〉 of Π1 whose
L-1-reduct equalsM. Moreover,〈H ′, T 〉 |= Γ since〈H ′, T 〉, h 6|= A for each
A→ B ∈ Γ and〈H ′, T 〉, t |= B for eachA→ B ∈ Γ . ⊓⊔

4.2 Relativised Uniform Equivalence

We now turn to the characterisation of relativised uniform equivalence via the concept
of a relativised uniform equivalence model. First, we mention the following lemma that
will be useful later.
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Lemma 2. SupposeΠ1 andΠ2 are theories which are uniformly equivalent relative to
L. Then, they have same total RSEL-models.

Proof. Assume the hypothesis. SupposeΠ1 has a total RSEL-model〈T, T 〉 that is not
a total RSEL-model ofΠ2. Evidently,〈T, T 〉 |= Π1 ∪ (T ∩ L). Moreover, by Condi-
tion 4.3,〈T, T 〉must be an equilibrium model ofΠ1 ∪ (T ∩L) since there is no model
〈J, T 〉 of Π1 with J ⊂ T such thatT ∩ L ⊆ J ∩ L. Clearly, if 〈T, T 〉 6|= Π2, it cannot
be an equilibrium model ofΠ2 ∪ (T ∩ L). On the other hand, if〈T, T 〉 |= Π2 and
it is not an RSEL-model ofΠ2, then Condition 4.3 fails forΠ2. So, there is a model
〈J, T 〉 of Π2 with J ⊂ T such thatT ∩ L = J ∩ L, whence clearly〈T, T 〉 is not in
equilibrium forΠ2 ∪ (T ∩ L). This contradicts the assumption of relativised uniform
equivalence. ⊓⊔

From now on we assume that all theories are finite. As mentioned previously, this
means that, under the�-ordering among their models, maximal elements are guaran-
teed to exist. So, the following notion is well-defined.

Definition 5. LetΠ be a theory inL′ andL a sublanguage ofL′. An RSEL-model of
Π is anRUEL-modelofΠ if it is either total or maximal under� among all non-total
RSEL-models ofΠ .

Theorem 3. LetΠ1 andΠ2 be theories which are uniformly equivalent relative toL.
Then, they have the same RUEL-models.

Proof. Assume the hypothesis. By Lemma 2, the two theories have the same total
RSEL-models, hence total RUEL-models. Suppose that they differ on non-total RUEL-
models, say thatΠ1 has a non-total RUEL-model〈H,T 〉 that is not an RUEL-model of
Π2.

CASE 1. Suppose there is a non-total RSEL-model〈J, T 〉 of Π2 with H ⊂ J . So,Π2

has a non-total model〈H ′, T 〉 with H ′ ∩ L = J . Choose an elementA from J\H
and setX = H ∪ {A}. Clearly,〈T, T 〉 |= Π1 ∪ X and by maximality,〈T, T 〉 is
an equilibrium model ofΠ1 ∪ X . On the other hand, by inspection,〈H ′, T 〉 is a
non-total model ofΠ2 ∪X , so〈T, T 〉 is not an equilibrium model ofΠ2 ∪X .

CASE 2. Suppose there is no non-total RSEL-model〈J, T 〉 of Π2 with H ⊂ J . Since
〈H,T 〉 is not an RUEL-model ofΠ2, it cannot be an RSEL-model ofΠ2 as well.
Consider the model〈T, T 〉. Since Condition 4.3 holds forΠ1, clearly〈T, T 〉 is an
RSEL-model ofΠ1, and hence by Lemma 2 an RSEL-model ofΠ2. So,〈T, T 〉 |=
Π2 ∪H . Since there is noH2 ⊇ H such thatH2 ⊂ T and〈H2, T 〉 |= Π2, 〈T, T 〉
is an equilibrium model ofΠ2∪H . On the other hand,〈T, T 〉 is not an equilibrium
model ofΠ2 ∪H since〈H ′, T 〉 |= Π1 ∪H , for someH ′ ∩ L = H . ⊓⊔

Theorem 4. Suppose thatΠ1 andΠ2 are theories with the same RUEL-models. Then,
they are uniformly equivalent relative toL.

Proof. Assume the hypothesis and suppose that for some setX of L atoms,Π1∪X has
an equilibrium model〈T, T 〉 that is not an equilibrium model ofΠ2∪X . Clearly,〈T, T 〉
is a total RUEL-model ofΠ1 and so, by assumption, also ofΠ2. Therefore,〈T, T 〉 |=
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Π2. Since it is not an equilibrium model ofΠ2∪X , there is a model〈H,T 〉 |= Π2∪X
with H ⊂ T and clearlyX ⊆ H . Then,〈H ∩L, T 〉 is an RSEL-model ofΠ2. Keeping
T fixed, we extend this to a maximal non-total RSEL-model 〈H2, T 〉 of Π2, where
H ⊆ H2. Then, there is a model〈H ′, T 〉 of Π2 such that

H ′ ∩ L = H2 ⊇ H ∩ L.

Evidently,〈H2, T 〉 is an RUEL-model ofΠ2. However, it is not even an RSEL-model
of Π1. If it were, there would be a model〈H1, T 〉 of Π1 with H1 ∩ L = H2. Since
X ⊆ H∩L ⊆ H1, 〈H1, T 〉would be a non-total model ofΠ1∪X , which is impossible
by the initial assumption that〈T, T 〉 is an equilibrium model ofΠ1 ∪X . ⊓⊔

As we have seen in Lemma 2, total RUEL-models and total RSEL-models coincide.
For non-total RUEL-models, we obtain an alternative characterisation as follows:

Lemma 3. LetΠ be a theory inL′ andL a sublanguage ofL′. A pair 〈H,T 〉 is a non-
total RUEL-model ofΠ iff 〈T, T 〉 |= Π and it is theL-projection of an(unrelativised)
UE-model〈H ′, T 〉 ofΠ withH ′ ∩ L ⊂ T ∩ L.

5 An Application to Prediction and Explanation

In this section, we illustrate how the concept of relativised uniform equivalence can be
applied in contexts such as prediction and abductive inference and explanation. Differ-
ent types of scenarios are possible. For instance, in predicting the behaviour of physical
systems we might have a general theoryΠ comprising strict laws as well as nonmono-
tonic rules, e.g., describing inertia axioms, default conditions etc., together with initial
conditions represented by atomic formulas in a suitable subset of the language. Another
type of scenario is represented by anabductive logic program, 〈Π,A〉, whereΠ is a
logic program (of any general type, e.g., disjunctive, nested, etc.) andA is a set of lit-
erals calledabduciblesin a suitable sublanguage ofΠ . In each case, we are interested
in the question: When are two such “theories” equivalent in terms of predictive power,
explanatory capacity, and so on? The structure of inferenceis similar in the two cases
mentioned. In each case, the theoryΠ conjoined with a set{A1, . . . , An} of literals
representing initial conditions, abducibles, etc., entails a sentence, sayϕ, representing,
e.g., the prediction of a physical state, the effects of an action, or an explanandum in an
abductive system. In the context of equilibrium logic and ASP, entailment is of course
nonmonotonic.2

To fix notation and terminology, let us consider the general case ofabductive the-
ories, which are given as pairs of form〈Π,A〉, whereΠ is a theory andA is a set of
literals, and the matter of equivalence with respect to abductive explanations. This leads
to the following definition.

2 The main difference between a prediction in the former senseand an abductive explanation
in the latter sense ismethodological: in the first case, the literals{A1, . . . , An} are specified
in advance as part of the initial conditions of the system, while in the second case, it isϕ
that is supplied in advance as an explanandum, and the abducibles{A1, . . . , An} are to be
discovered.
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Definition 6. An abductive explanationof a sentenceϕ by an abductive theoryP =
〈Π,A〉 is a set{A1, . . . , An} satisfying

Π ∪ {A1, . . . , An} |∼ ϕ (1)

as well as the following two conditions:

6.1 {A1, . . . , An} ⊆ A and
6.2 Π ∪ {A1, . . . , An} is consistent,

where|∼ is nonmonotonic entailment.3

Note that Condition 6.2 merely ensures that the explanationof ϕ is non-trivial. For
present purposes we do not, however, insist that{A1, . . . , An} be a minimal set of
abducibles explainingϕ, nor even that it is non-empty. We note further that Defini-
tion 6 is equivalent to the definition of an abductive explanation as given by Inoue and
Sakama [8] for the case of disjunctive logic programs with default negations in their
heads.

If {A1, . . . , An} is an abductive explanation ofϕ from P , then we also say that
{A1, . . . , An} explainsϕ in P .P is said to haveexplanatory powerif there exist some
ϕ and{A1, . . . , An} satisfying (1) as well as Conditions 6.1 and 6.2. Evidently,two
abductive theories can have the same explanatory power in weaker or stronger senses.
They may capture the same explananda by means of possibly differing explanans (ab-
ducibles), and therefore differing explanations, or they may support essentially the same
explanations. In this latter sense, we can say therefore that two abductive theories,P1

andP2, based on the same abducible setA, have thesame explanatory power in the
strong senseif, for any ϕ and any{A1, . . . , An} ⊆ A, {A1, . . . , An} explainsϕ in
P1 iff {A1, . . . , An} explainsϕ in P2. We consider here only abductive theories with
(non-vacuous) explanatory power.

We can easily relate this notion of explanatory equivalenceto relativised uniform
equivalence. The following is straightforward.

Proposition 1. LetP1 = 〈Π1,A〉 andP2 = 〈Π2,A〉 be abductive theories based on
the same abducibles. IfΠ1 andΠ2 are uniformly equivalent relative toA, thenP1 and
P2 have the same explanatory power(in the strong sense).

If Π1 andΠ2 are uniformly equivalent relative toA, then for any{A1, . . . , An} ⊆ A,
Π1 ∪ {A1, . . . , An} andΠ2 ∪ {A1, . . . , An} have the same equilibrium models, so the
explanatory power ofP1 andP2 is the same whether we interpret entailment|∼ in the
cautious or brave sense.

To establish a converse of Proposition 1, we need to pin down the type of inference
defined by|∼. Evidently, brave reasoning has a greater chance of succeeding, since
prima facieit seems possible that theories might have the same consequences in the
cautious sense, even under the addition of new atoms, yet have different equilibrium
models and therefore not be relativised uniformly equivalent.

So let us suppose that|∼ is entailment with respect to to some equilibrium model;
in other words,Π |∼ ϕ iff ϕ is true in some equilibrium model ofΠ . Then we have:

3 We leave open for the moment whether entailment is to be understood in the cautious or brave
sense.
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Proposition 2. If P1 andP2 have the same(non-vacuous) explanatory power(in the
strong sense), thenΠ1 andΠ2 are uniformly equivalent relative toA.

Proof. Assume the hypothesis of the proposition and suppose that they are not uni-
formly equivalent relative toA. Then, there exists a subset{A1, . . . , An} ⊆ A such
thatΠ1 ∪ {A1, . . . , An} andΠ2 ∪ {A1, . . . , An} have different equilibrium models.
Say,Π1 ∪{A1, . . . , An} has an equilibrium modelM that is not an equilibrium model
of Π2 ∪ {A1, . . . , An}. We can establish thatP1 andP2 have different explanatory
powers if we can find a sentenceϕ that is true inM, so that

Π1 ∪ {A1, . . . , An} |∼ ϕ (2)

but
Π2 ∪ {A1, . . . , An} 6 |∼ϕ. (3)

This means thatϕ has to be chosen so there is no other equilibrium model ofΠ2 ∪
{A1, . . . , An} in whichϕ is true. Moreover, Conditions 6.1 and 6.2 above should also
hold for (2). By assumption, no equilibrium model ofΠ2∪{A1, . . . , An} can be equiva-
lent toM in that it satisfies exactly the same sentences; otherwise itwould make exactly
the same literals true and false and so be exactlyM. So, for each equilibrium model
Mi ofΠ2∪{A1, . . . , An}, there must be some sentenceαi true inM that is not true in
Mi. Since we are assuming that the theories are finite, there areat most finitely many
equilibrium modelsMi of Π2 ∪ {A1, . . . , An} and therefore finitely many suchαi.
Evidently, the sentence

∧
i αi is true inM but not true in any equilibrium model of

Π2 ∪ {A1, . . . , An}. So, we have

Π1 ∪ {A1, . . . , An} |∼
∧

i

αi and (4)

Π2 ∪ {A1, . . . , An} 6 |∼
∧

i

αi. (5)

Furthermore, we have that 6.1 is satisfied and 6.2 holds sinceΠ1 ∪{A1, . . . , An} has a
model. This contradicts the initial assumption thatP1 andP2 have the same explanatory
power. ⊓⊔

Combining Propositions 1 and 2 with Theorems 3 and 4 yields the following se-
mantic characterisation of explanatory equivalence.

Corollary 1. Two abductive theoriesP1 = 〈Π1,A〉 andP2 = 〈Π2,A〉 have the same
explanatory power(in the strong sense) iff Π1 andΠ2 have the same RUEA-models.

We note that Inoue and Sakama [8, 9] provided for the case of abductive logic pro-
grams with default negations in the heads a characterisation similar to our Proposi-
tions 1 and 2. However, they derived that two abductive programs〈Π1,A〉 and〈Π1,A〉
have the same explanatory power iffΠ andΠ2 are strongly equivalent relative toA.
In view of our results, it seems that relativised strong equivalence should in their char-
acterisation be replaced by relative uniform equivalence.Because otherwise we would
obtain that, for anyA, strong equivalence relative toA would coincide with uniform
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equivalence relative toA, which is obviously violated (consider, e.g., the programs
{a ∨ b ←} and{a ← not b; b ← not a} which are uniformly equivalent relative to
{a, b} but not strongly equivalent relative to{a, b}). Let us also note that they do not
apply any semantic characterisations of equivalence analogous to Corollary 1 above. On
the other hand, they also consider equivalence in the context of an extended abduction
concept [9].

6 Complexity

The complexity of relativised equivalence between disjunctive logic programs has been
established by Woltran [19] and has been further studied by Eiter, Fink, and Woltran [2].
Both notions, i.e., RSE and RUE, yieldΠP

2 -complete decision problems. Thus,ΠP
2 -

hardness for these problems is immediate for equilibrium logic. To show that RSE and
RUE remain in classΠP

2 for the general setting studied here, first observe that the
central subtask of checking whether a given pair〈T, T 〉 is an equilibrium model of
some theoryΠ is in coNP. Moreover, to decide the complementary problem ofRUE
betweenΠ1 andΠ2, one can guess setsT, F of literals and check whether〈T, T 〉 is an
equilibrium model of exactly one ofΠ1 ∪ F andΠ2 ∪ F . This algorithm runs in non-
deterministic time with access to an NP-oracle, and thus inΣP

2 . ΠP
2 -membership for

RUE follows immediately. The same argumentation holds for RSE in view of the proof
of Theorem 2, where it is shown that only very simple theories(which are polynomial
in the size to the compared programs) are sufficient to decideRSE.

7 Conclusions and Future Work

In this paper, we extended results for relativised notions of equivalence from logic pro-
grams under the answer-set semantics to arbitrary (propositional) theories in equilib-
rium logic. To this end, we introduced the concept of anL-1-reduct which restricts
the language of one world in the two-world Kripke-model for equilibrium logic. These
partially bound models can be shown to characterise relativised strong and uniform
equivalence between theories in the same manner as relativised SE- and UE-models
are used for logic programs [19]. Furthermore, we discusseda possible application of
relativised equivalences in the area of abduction and we briefly studied the complexity
of the introduced equivalence notions.

An interesting topic for further work is to extend our notions to include the removal
of auxiliary letters—important for considering submodules of theories having dedicated
output atoms—tantamount to consideringprojected equilibrium models, where only
a subset of the atoms are of interest. This would be an extension of the framework
introduced by Eiter, Fink, and Woltran [3] for disjunctive logic programs.
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