
An Extension of the Systemcc⊤ for Testing Relativised Uniform Equivalence
under Answer-Set Projection∗

Johannes Oetsch
Institut für Informationssysteme 184/3,

Technische Universität Wien,
Favoritenstraße 9-11,

A-1040 Vienna, Austria
oetsch@kr.tuwien.ac.at

Martina Seidl
Institut für Softwaretechnik 188/3,

Technische Universität Wien,
Favoritenstraße 9-11,

A-1040 Vienna, Austria
seidl@big.tuwien.ac.at

Hans Tompits
Institut für Informationssysteme 184/3,

Technische Universität Wien,
Favoritenstraße 9-11,

A-1040 Vienna, Austria
tompits@kr.tuwien.ac.at

Stefan Woltran
Institut für Informationssysteme 184/2,

Technische Universität Wien,
Favoritenstraße 9-11,

A-1040 Vienna, Austria
woltran@dbai.tuwien.ac.at

Abstract

The systemcc⊤ is a tool for testing correspondence be-
tween nonmonotonic logic programs under the answer-set
semantics with respect to different refined notions of pro-
gram correspondence. The basic architecture ofcc⊤ is
to reduce a given correspondence problem into the satis-
fiability problem for quantified propositional logic and to
employ off-the-shelf solvers for the latter language as back-
end inference engines. In a previous incarnation ofcc⊤,
the system was designed to test correspondence between
logic programs based onrelativised strong equivalence un-
der answer-set projection. Such a setting generalises the
usual notion of strong equivalence by taking the alphabet of
the context programs as well as the projection of the com-
pared answer sets to a set of designated output atoms into
account. In this paper, we describe an extension ofcc⊤
for testing similarly parameterised correspondence prob-
lems but generalisinguniform equivalence, which have re-
cently been introduced in previous work. Besides reviewing
the formal underpinnings of the new component ofcc⊤, we
discuss an alternative encoding as well as optimisations for
special problem classes. Furthermore, we give a prelimi-

∗The authors of this work were partially supported by the Austrian
Science Fund (FWF) under grant P18019; the second author wasalso
supported by the Austrian Federal Ministry of Transport, Innovation,
and Technology (BMVIT) and the Austrian Research PromotionAgency
(FFG) under grant FIT-IT-810806.

nary performance evaluation of the new component.

1. Introduction

In this paper, we deal with a system for testing vari-
ous refined notions of program correspondence for non-
monotonic logic programs under the answer-set semantics.
The latter formalism has been proven useful in a vari-
ety of domains including planning, diagnosis, information
integration, and Semantic-Web reasoning, and represents
the canonical instance of the generalanswer-set program-
ming (ASP)paradigm, an important approach for declara-
tive problem solving.

The system discussed here, calledcc⊤ (standing for
“correspondence-checking tool”) [12], belongs to a current
line of research in ASP about questions of program equiv-
alence relevant for different software engineering tasks like
modular programming and debugging. This research was
for the most part initiated by the seminal work of Lifschitz,
Pearce, and Valverde [11] aboutstrong equivalence. Al-
beit the latter notion circumvents a shortcoming of ordi-
nary equivalence between logic programs (viz., that ordi-
nary equivalence does not yield a replacement property sim-
ilar to the one of classical logic), it is however too restric-
tive for certain applications. This led to the investigation of
more liberal notions, chiefly among themuniform equiva-
lence[6]. In any case, both strong and uniform equivalence
do not take standard programming techniques like the use

ccT

program P

program Q

context set A

projection set B

non-normal form

QBF-solver

normal form

QBF-solver
qst

non-normal form

QBF

normal form

QBF

input files

Figure 1. Overall architecture of cc⊤.

of local (auxiliary) variables into account, which may oc-
cur in some subprograms but which are ignored in the final
computation. In other words, these notions do not admit the
projectionof answer sets to a set of dedicated output atoms.

To accommodate issues like the above, Eiteret al.[7] in-
troduced a general framework for specifying parameterised
notions of program correspondence, allowing both answer-
set projection as well as the specification which kind of
context class should be used for the program comparison.
This framework thus generalises not only strong and uni-
form equivalence but alsorelativisedversions thereof [18]
(where “relativised” means that the alphabet of the context
class is an additional parameter).

The systemcc⊤ was developed as a checker for the
type of correspondence problems which were the main fo-
cus of the analysis of Eiteret al.[7], viz. for correspondence
problems generalising strong equivalence. The main ap-
proach ofcc⊤ to verify these kinds of problems is to reduce
them to the satisfiability problem of quantified propositional
logic.1 Such a reduction approach is motivated by two as-
pects: (i) the high complexity of the considered problems—
lying on the fourth level of the polynomial hierarchy—
makes it in general presumably infeasible to compute them
by means of answer-set solvers, yet efficient encodings to
quantified propositional logic are possible, and (ii) the ex-
istence of sophisticated solvers for quantified propositional
logic.

In this paper, we discuss an extension ofcc⊤ for check-
ing further classes of correspondence problems from the
framework of Eiteret al. [7], viz. problems generalising
uniform equivalence. These kinds of problems were re-
cently analysed in previous work [14] and are calledpropo-
sitional query equivalence problems(PQEPs) andproposi-
tional query inclusion problems(PQIPs) (the names stem
from taking a database point of view in which programs are

1Recall that quantified propositional logic is an extension of ordinary
propositional logic allowing quantifications over atomic formulas. Fol-
lowing custom, we refer to formulas of quantified propositional logic as
quantified Boolean formulas(QBFs).

considered as queries over databases). Like for their strong
pendants, checking PQEPs and PQIPs is computationally
hard, lying on the third level of the polynomial hierarchy,
therefore a similar reduction approach to QBFs is viable.
Indeed, such reductions are described in previous work [14],
and the new component ofcc⊤ is based on these reduc-
tions, which we review in this paper.

The overall architecture ofcc⊤ is depicted in Figure 1.
It takes as input two programs,P andQ, as well as the con-
text setA and the projection setB. This input is then trans-
formed into a QBF which can then handed to QBF solvers.
Validity of the resulting QBF reflects the outcome of the
original problem, which holds when, for any setR ⊆ A
of facts, the answer sets ofP ∪ R andQ ∪ R projected to
B coincide (in case of a PQEP) or when the answer sets
of P ∪ R projected toB are included in the answer sets of
Q ∪R projected toB (in case of a PQIP).2 Since the QBFs
generated bycc⊤ are not in a particular normal form, for
solvers requiring normal-form QBFs, a corresponding nor-
maliser,qst [19], is needed.

In complementing the reductions given by Oetschet
al. [14], we provide refined reductions for PQEPs and
PQIPs which use less variables than the original ones. Fur-
thermore, we discuss simplified transformations for special
problem classes. All these transformations have been im-
plemented in an extension ofcc⊤. We round off our dis-
cussion by reporting about a preliminary experimental eval-
uation of the extension ofcc⊤ using different state-of-the-
art QBF solvers.

2. Preliminaries

Answer-set semantics. We are concerned withproposi-
tional disjunctive logic programs(DLPs) which are finite
sets of rules of form

a1 ∨ · · · ∨al ← al+1, . . . , am, not am+1, . . . , not an, (1)

2In the notions generalising strong equivalence,R would be a program
overA.

wheren≥m≥ l≥ 0, all ai are propositional atoms from
some fixed universeU , and “not” denotesdefault negation.
Rules of forma ← arefactsand are usually written with-
out the symbol “←”. We denote byAt(P) the set of all
atoms occurring in a programP , and say thatP is overA
if At(P) ⊆ A. PA refers to the set of all programs overA,
and2A to the set of all facts overA. By aninterpretationwe
understand a set of atoms, and, as usual, an interpretation is
a modelof a ruler iff it satisfies the head ofr whenever it
satisfies the body ofr. The notion of a model extends to
programs in the usual way and is denoted byI |= P . Fol-
lowing Gelfond and Lifschitz [8], an interpretationI is an
answer setof a programP iff it is a minimal model of the
reductP I , resulting fromP by (i) deleting all rules con-
taining a default negated atomnot a such thata ∈ I, and
(ii) deleting all default negated atoms in the remaining rules.
The collection of all answer sets of a programP is denoted
byAS(P).

Program correspondence. We use the following nota-
tions in the sequel: For an interpretationI and a setS of
interpretations,S|I is defined as{Y ∩ I | Y ∈ S}. For a
singleton setS = {Y }, we also writeY |I instead ofS|I .
Furthermore, for setsS,S′ of interpretations, an interpreta-
tion B, and⊙ ∈ {⊆, =}, we defineS⊙B S′ asS|B⊙S′|B .

Some basic equivalence notions are defined as follows:
Two programsP and Q are (i) ordinarily equivalentiff
AS(P) = AS(Q); (ii) uniformly equivalent[6] iff, for each
setF of facts,AS(P ∪F) = AS(Q∪F); and (iii) strongly
equivalent[11] iff, for each programR, AS(P ∪ R) =
AS(Q ∪R).

In abstracting from these notions, Eiteret al. [7] in-
troduced the notion of acorrespondence problemwhich
allows to specify (i) acontext, i.e., a class of programs
used to be added to the programs under consideration, and
(ii) the relation that has to hold between the answer sets
of the extended programs. The concrete formal realisa-
tion is as follows. A correspondence problem (overU) is
a quadrupleΠ = (P, Q, C, ρ), whereP, Q ∈ PU are pro-
grams,C ⊆ PU is a class of programs (thecontext class
of Π), andρ ⊆ 22

U

× 22
U

is a binary relation over sets
of interpretations.Π is said tohold iff, for each program
R ∈ C, (AS(P ∪ R),AS(Q ∪ R)) ∈ ρ. By instantiating
C andρ, different equivalence notions from the literature
can be expressed. In particular,P andQ are (i) strongly
equivalent iff(P, Q,PU , =U) holds, (ii) uniformly equiva-
lent iff (P, Q, 2U , =U) holds, (iii) strongly equivalent rela-
tive to A [18], for A ⊆ U , iff (P, Q,PA, =U) holds, and
(iv) uniformly equivalent relative toA [18], for A ⊆ U , iff
(P, Q, 2A, =U) holds.

Some important further kinds of correspondence prob-
lems that generalise the above ones are those of form
(P, Q,PA,⊙B) and of form(P, Q, 2A,⊙B), respectively,

for ⊙ ∈ {⊆, =}, takingprojectionto a dedicated setB of
output atoms into account. The former kinds of problems
were analysed by Eiteret al. [7] while the latter ones by
Oetschet al. [14]. Here, we are interested in those latter
kinds of problems and, like in previous work [14], we call
problems of form(P, Q, 2A,⊆B) propositional query in-
clusion problems, orPQIPsfor short, and problems of form
(P, Q, 2A, =B) propositional query equivalence problems
or PQEPs.

A pair (X, Y) with X ⊆ A andY ⊆ U is called acoun-
terexample3 for a PQIP(P, Q, 2A,⊆B) iff Y ∈ AS (P∪X)
and noY ′ with Y ′|B = Y |B is contained inAS(Q ∪ X).
Hence, a PQIPΠ has a counterexample iffΠ does not
hold [14].

Example 1 ConsiderP = {a ∨ b ←; a ← c}, Q =
{a ← not b; b ← not a; c ← a}, andB = {a, b}. Since
AS(P) = {{a}, {b}} andAS(Q) = {{a, c}, {b}}, we get
AS(P)|B = AS(Q)|B = {{a}, {b}}. Now, forA = B,
(P, Q, 2A,⊆B) holds, while forA′ = {a, b, c} the PQIP
Π = (P, Q, 2A′

,⊆B) does not hold. This is witnessed by
({b, c}, {a, b, c}) which is the unique counterexample(over
{a, b, c}) for Π. ♦

For a PQEPΠ = (P, Q, 2A, =B), the PQIPsΠ→ =
(P, Q, 2A,⊆B) andΠ← = (Q, P, 2A,⊆B) are calledas-
sociatedwith Π. Obviously, a PQEPΠ holds iff bothΠ→

andΠ← hold. We extend the definition of a counterexam-
ple to PQEPs and call a pair(X, Y) a counterexample for a
PQEPΠ if (X, Y) is a counterexample forΠ→ or Π←.

Concerning complexity, as shown previously [14], given
programsP, Q ∈ PU , setsA, B ⊆ U of atoms, and
⊙ ∈ {⊆, =}, deciding whether(P, Q, 2A,⊙B) holds is
ΠP

3 -complete. Moreover, the problem isΠP
2 -complete in

caseB = U . Both hardness results hold even for arbitrary
but fixedA.

Quantified propositional logic. The complexity results
above show that PQIPs and PQEPs can be efficiently re-
duced toquantified propositional logic, an extension of
classical propositional logic in which formulas are permit-
ted to contain quantifications over propositional variables.
Similar to predicate logic,∃ and ∀ are used as symbols
for existential and universal quantification, respectively.
Such formulas are also calledquantified Boolean formulas
(QBFs); we denote them by upper-case Greek letters.

For an interpretationI and a QBFΦ, the relationI |= Φ
is defined analogously as in classical propositional logic,
with the additional conditions thatI |= ∃p Ψ iff I |=
Ψ[p/⊤] or I |= Ψ[p/⊥], andI |= ∀p Ψ iff I |= Ψ[p/⊤]
andI |= Ψ[p/⊥], for Φ = Qp Ψ with Q ∈ {∃, ∀}, where

3Note that in our previous work [14] we used “explicit counterexample”
instead of “counterexample”.

Ψ[p/φ] denotes the QBF resulting fromΨ by replacing each
free occurrence ofp in Ψ by φ (an occurrence of an atom
p is free in a QBFΦ if it does not occur in the scope of a
quantifierQp in Φ). A QBF Φ is true underI iff I |= Φ,
otherwiseΦ is false underI. A QBF is satisfiableiff it is
true under at least one interpretation. A QBF isvalid iff it is
true under any interpretation. Note that aclosedQBF, i.e., a
QBF without free variable occurrences, is either true under
any interpretation or false under any interpretation.

Given a finite setP of atoms,QP Ψ stands for any QBF
Qp1Qp2 . . . QpnΨ such thatP = {p1, . . . , pn}. A QBF Φ
is said to be inprenex normal form(PNF) iff it is closed
and of the formQnPn . . . Q1P1 φ, wheren ≥ 0, φ is a
propositional formula, andQi ∈ {∃, ∀} such thatQi 6=
Qi+1 for 1 ≤ i ≤ n − 1. Moreover, ifφ is in conjunctive
normal form, thenΦ is in prenex conjunctive normal form
(PCNF), and ifφ is in disjunctive normal form, thenΦ is
in prenex disjunctive normal form(PDNF). A QBFΦ =
QnPn . . . Q1P1 φ is also referred to as an(n, Qn)-QBF.

Any closed QBFΦ is easily transformed into an equiv-
alent QBF in prenex normal form such that each quantifier
occurrence fromΦ corresponds to a quantifier occurrence
in the prenex normal form. In general, there are differ-
ent ways to obtain an equivalent prenex QBF (cf. Eglyet
al. [4] for more details on this issue). Well-known complex-
ity results for the evaluation problem of QBFs [16] indicate
that PQIPs and PQEPs can be efficiently reduced to(3, ∀)-
QBFs. These reductions are the central theoretical basis for
our system and are discussed in detail in the next section.

3. System specifics

We now discuss details of the new extension ofcc⊤ for
verifying PQIPs and PQEPs. The overall architecture of
cc⊤ was already outlined in the introduction and depicted
in Figure 1. Originally,cc⊤ was developed as an imple-
mentation for verifying correspondence problems of form
(P, Q,PA,⊙B), for⊙ ∈ {⊆, =} [12]. The syntax to spec-
ify programs incc⊤ corresponds to the basicDLV syntax.4

Furthermore, the tool is entirely developed inANSI C, us-
ing LEX and YACC for the parser, and publicly available
(including the source code); it can be downloaded from the
Web at

http://www.kr.tuwien.ac.at/research/ccT.

The section is organised as follows. First, we review the
basic encodings for mapping PQIPs and PQEPs into QBFs,
as developed in previous work [14]. Afterwards, we pro-
vide an alternative reduction and discuss its outcome on
special instances of correspondence problems. Finally, we
give some details on how to apply the system.

4Seehttp://www.dlvsystem.com/ for more information about
DLV.

3.1. Translating query problems

In what follows, we make use of sets of globally new
atoms in order to refer to different assignments of the same
atoms within a single formula. More formally, given a setV
of atoms, we assume (pairwise) disjoint copiesV i = {vi |
v ∈ V }, for everyi ≥ 1. Furthermore, we introduce the
following abbreviations:

1. (V i ≤ V j) =
∧

v∈V (vi → vj);

2. (V i < V j) = (V i ≤ V j) ∧ ¬(V j ≤ V i); and

3. (V i = V j) = (V i ≤ V j) ∧ (V j ≤ V i).

Observe that the latter is equivalent to
∧

v∈V (vi ↔ vj).
These operators allow to compare different subsets of

atoms from a common setV under subset inclusion, proper-
subset inclusion, and equality, respectively. Formally, we
have that, givenX, Y ⊆ V , an interpretationI with I|V i =
X i andI|V j = Y j is (i) a model ofV i ≤ V j iff X ⊆ Y ,
(ii) a model ofV i < V j iff X ⊂ Y , and (iii) a model of
V i = V j iff X = Y .

We use superscripts as a general renaming schema for
formulas and rules. That is, for eachi ≥ 1, αi expresses the
result of replacing each occurrence of an atomv in α by vi,
whereα is any formula or rule. For a ruler of form (1), we
defineH(r) = a1 ∨ · · · ∨ al, B+(r) = al+1 ∧ · · · ∧ am,
and B−(r) = ¬am+1 ∧ · · · ∧ ¬an. We identify empty
disjunctions with⊥ and empty conjunctions with⊤.

Proposition 1 ([17]) Let P be a program withAt(P) =
V , I an interpretation, andX, Y ⊆ V such that, for some
i, j ≥ 0, I|V i = X i andI|V j = Y j . Then,X |= PY iff
I |= P 〈i,j〉, where

P 〈i,j〉 =
∧

r∈P

(

(B+(ri) ∧B−(rj))→ H(ri)
)

.

Example 2 Consider the programQ = {a ← not b; b ←
not a}. Then, for instance,Q〈1,2〉 is given by(¬b2 → a1)∧
(¬a2 → b1), and we have that{a2, b2} ∪X1 is a model of
Q〈1,2〉, for eachX1 ⊆ {a1, b1}, reflecting the fact that any
interpretationX is a model of the reductQ{a,b}. ♦

With these building blocks at hand, we can state the fol-
lowing encoding, as introduced by Oetschet al. [14].

Definition 1 Let Π = (P, Q, 2A,⊆B) be a PQIP,At(P ∪
Q) = V , andA, B ⊆ V . Then,

S[Π] = ΦΠ ∧ ∀V 4
(

(B4 = B1)→ ΨΠ

)

, where

ΦΠ = P 〈1,1〉 ∧ (A2 ≤ A1) ∧ ∀V 3

(

(

(A2 ≤ A3)∧

(V 3 < V 1)
)

→ ¬P 〈3,1〉
)

and

ΨΠ =
(

(

Q〈4,4〉 ∧ (A2 ≤ A4)
)

→ ∃V 5
((

(A2 ≤ A5)∧

(V 5 < V 4)
)

∧Q〈5,4〉
)

)

.

Table 1. Outcome of the different encodings of Π = (P, Q, 2A, ⊆B) from Example 1.

S [Π] T [Π]

ΦΠ ∧ ∀a
4
b
4
c
4
`

(a4
↔ a

1) ∧ (b4
↔ b

1) → ΦΠ ∧ ∀c
4

(((¬b
4
→ a

4) ∧ (¬a
4
→ b

4) ∧ (a4
→ c

4)∧ (((¬b
1
→ a

1) ∧ (¬a
1
→ b

1) ∧ (a1
→ c

4)∧
(a2

→ a
4) ∧ (b2

→ b
4)) → ∃a

5
b
5
c
5 (a2

→ a
1) ∧ (b2

→ b
1)) → ∃a

5
b
5
c
5

((a2
→ a

5) ∧ (b2
→ b

5)∧ ((a2
→ a

5) ∧ (b2
→ b

5)∧
(a5

→ a
4) ∧ (b5

→ b
4) ∧ (c5

→ c
4)∧ (a5

→ a
1) ∧ (b5

→ b
1) ∧ (c5

→ c
4)∧

¬((a4
→ a

5) ∧ (b4
→ b

5) ∧ (c4
→ c

5))∧ ¬((a1
→ a

5) ∧ (b1
→ b

5) ∧ (c4
→ c

5))∧
(¬b

4
→ a

5) ∧ (¬a
4
→ b

5) ∧ (a5
→ c

5)))
´

(¬b
1
→ a

5) ∧ (¬a
1
→ b

5) ∧ (a5
→ c

5)))

Observe that the free variables ofS[Π] are given byV 1∪
A2. Assignments toV 1 ∪A2 yield the counterexamples for
Π, in caseS[Π] is satisfied by those assignments.

Proposition 2 ([14]) Let Π = (P, Q, 2A,⊆B) be a PQIP,
At(P ∪ Q) = V , A, B ⊆ V , X ⊆ A, and Y ⊆ V .
Then,(X, Y) is a counterexample forΠ iff Y 1 ∪ X2 |=
S[Π]. Moreover, Π holds iff the closed QBFS[Π] =
∀V 1∀A2¬S[Π] is valid.

The extension of the encodings to PQEPs is done by
means of the associated PQIPs.

Proposition 3 ([14]) Let Π = (P, Q, 2A, =B) be a PQEP,
At(P ∪ Q) = V , A, B ⊆ V , X ⊆ A, andY ⊆ V . Then,
(X, Y) is a counterexample forΠ iff Y 1 ∪X2 |= S[Π→] ∨
S[Π←]. Moreover,Π holds iffS[Π] = ∀V 1∀A2(¬S[Π→] ∧
¬S[Π←]) is valid.

3.2. An alternative encoding and special
cases

We now introduce an adaption of the above encodings.
The benefit of the refined encodings is that the number of
universally quantified variables is reduced—in fact, in some
specific cases, one quantifier block even vanishes. This
guarantees adequacy (in the sense of Besnardet al.[1]) also
for special cases of query problems without projection.

The key observation for the subsequent adaption is that
we use afixed assignmentfor atoms, in view of the subfor-
mulaB4 = B1 of Definition 1. Hence, for the quantifier
block∀V 4, it is sufficient to take only atoms fromV 4 \B4

into account and replace all occurrences of atomsv4 ∈ B4

by v1 within the remaining part of the formula. The modi-
fied translation is given as follows.

Definition 2 Let Π = (P, Q, 2A,⊆B) be a PQIP,At(P ∪
Q) = V , andA, B ⊆ V . Then,

T [Π] = ΦΠ ∧ ∀(V
4 \B4)ΨΠ[B4/B1],

where ΦΠ and ΨΠ are defined as in Definition1 and
ΨΠ[B4/B1] denotes the QBF resulting fromΨΠ by replac-
ing all occurrences of atomsv4 ∈ B4 byv1.

For illustration, Table 1 depicts the different outcomes of
the two encodings for the PQIPΠ = (P, Q, 2A,⊆B) from
Example 1 withA = B = {a, b}.

Lemma 1 For any PQIPΠ, the QBFsS[Π] andT [Π] are
logically equivalent.

As an immediate consequence, we thus obtain the fol-
lowing results.

Theorem 1 Let Π = (P, Q, 2A,⊆B) be a PQIP,At(P ∪
Q) = V , A, B ⊆ V , X ⊆ A, andY ⊆ V . Then,(X, Y) is
a counterexample forΠ iff Y 1 ∪X2 |= T [Π]. Moreover,Π
holds iff the closed QBFT[Π] = ∀V 1∀A2¬T [Π] is valid.

Theorem 2 Let Π = (P, Q, 2A, =B) be a PQEP,At(P ∪
Q) = V , A, B ⊆ V , X ⊆ A, and Y ⊆ V . Then,
(X, Y) is a counterexample forΠ iff Y 1 ∪X2 |= T [Π→]∨
T [Π←]. Moreover,Π holds iffT[Π] = ∀V 1∀A2(¬T [Π→]∧
¬T [Π←]) is valid.

Obviously, these encodings, as well as the ones from the
previous section, are (i) always linear in the size ofP , Q, A,
andB, and (ii) possess at most two quantifier alternations
in any branch of the formula tree. The latter shows that any
such encoding is easily translated into a(3, ∀)-QBF. Thus,
the complexity of evaluating these QBFs is not harder than
the complexity of the encoded decision problems, which
shows adequacy in the sense of Besnardet al. [1].

We proceed with a discussion how our new reduction can
be simplified for special cases. Recall that by a proper pa-
rameterisation of a PQIP (resp., PQEP) also some important
special cases of correspondence checking can be realised.
All simplifications outlined below have been implemented
in our extension ofcc⊤.

Ordinary inclusion with projection. For problems of
form (P, Q, 2A,⊆B) with A = ∅ we get that all terms
(Ai ≤ Aj) are trivially true and can therefore be elimi-
nated. Also, the free variables ofT [Π] reduce toV 1. We

obtain thatT [Π] is equivalent to

(

P 〈1,1〉 ∧ ∀V 3
(

(V 3 < V 1)→ ¬P 〈3,1〉
)

)

∧

∀(V 4 \B4)
(

Q〈4,4〉 → ∃V 5((V 5 < V 4) ∧

Q〈5,4〉)
)

[B4/B1].

Still, on each branch of the formula tree there are at most
two quantifier alternations witnessing theΠP

3 -complexity
of this special case.

Relativised uniform inclusion. Next, we analyse spe-
cial settings without projection, i.e., problems of form
(P, Q, 2A,⊆B) with B = U . Further special cases are then
obtained by settingA = ∅ andA = U , respectively. In
view of of theΠP

2 -complexity result for problems without
projection, we expect that the number of quantifier alterna-
tions in the resulting QBFs decreases by one. In fact,T [Π]
simplifies to

ΦΠ ∧
(

Q〈1,1〉 → ∃V 5
(

(A2 ≤ A5)∧

(V 5 < V 1) ∧Q〈5,1〉
)

)

.
(2)

Observe that the quantifier block∀(V 4 \B4) vanishes since
V \ B = ∅. Thus, all atomsv4 in the encoding are re-
placed byv1. The structure of the formula now matches the
ΠP

2 -complexity result for relativised uniform inclusion. In-
terestingly, QBF (2) issatisfiability equivalentto the even
simpler formula

T ◦[Π] = ΦΠ ∧ (Q〈1,1〉 → ((V 2 < V 1) ∧Q〈2,1〉),

where the quantifier block∃V 5 is removed as well. Ob-
serve that satisfiability equivalence of the two formulas en-
tails thatT ◦[Π] does no longer encodeall counterexamples.
However, the simplification inT ◦[Π] does not influence the
number of quantifier alternations.

Uniform inclusion. For the case of (plain) uniform in-
clusion, i.e., problems of the form(P, Q, 2A,⊆B) with
A = B = U , no further simplification is obtained com-
pared to (2), except that each occurrence ofAi is now given
by V i. As uniform inclusion is a special case of relativised
uniform inclusion, also this QBF is satisfiability equivalent
to T ◦[Π].

Ordinary inclusion. Finally, concerning ordinary inclu-
sion, i.e., problems of the form(P, Q, 2A,⊆B) with A = ∅
andB = U , we observe similar effects as in the encod-
ing for ordinary inclusion with projection. In particular,all
terms(Ai ≤ Aj) can be eliminated becauseA = ∅. Also,

the free variables ofT [Π] reduce toV 1. Hence,T [Π] is
equivalent to

(

P 〈1,1〉 ∧ ∀V 3
(

(V 3 < V 1)→ ¬P 〈3,1〉
)

)

∧
(

Q〈1,1〉 → ∃V 5((V 5 < V 1) ∧Q〈5,1〉)
)

.

The QBF is true under interpretationY 1 if Y ∈ AS(P) but
Y 6∈ AS (Q). Note that the structure of the closed QBF
T[Π], given by∀V 1(¬T [Π→] ∧ ¬T [Π←]), then witnesses
theΠP

2 -membership of ordinary equivalence.
As ordinary equivalence is a special case of relativised

uniform equivalence, we can obtain a further simplification
in terms ofT ◦[Π]. Indeed,T ◦[Π] reduces here to

(

P 〈1,1〉 ∧ ∀V 3
(

(V 3 < V 1)→ ¬P 〈3,1〉
)

)

∧
(

Q〈1,1〉 → ((V 2 < V 1) ∧Q〈2,1〉)
)

.

Hence, we have shown that all special cases withB = U
have in common that the encodingsT[·] simplify to QBFs
with at most one quantifier alternation in each branch of the
formula, witnessing theΠP

2 -membership of those problems.

4. Experiments

In this section, we present a preliminary experimental
evaluation of our implementation. The goal of the exper-
iments is to clarify the interplay of different QBF solvers,
different encodings, and different problem settings in terms
of run-time performance. In the spirit of previous exper-
iments withcc⊤ [12], we use the reduction from QBFs
to PQIPs given by theΠP

3 -hardness proof for deciding
PQIPs [14]. This provides us with a class of random bench-
mark problems forcc⊤ which captures the inherent hard-
ness of the problem. More precisely, the method is as fol-
lows:

1. generate a random(3, ∀)-QBFΦ in PDNF;

2. reduceΦ to a PQIPΠ = (P, Q, 2A,⊆B) such thatΠ
holds iff Φ is valid [14];

3. applycc⊤ to derive the corresponding encodingΨ for
Π.

Our benchmark set consists of 1000 instances. The ran-
domly generated QBFs of Step 1 contain 24 different atoms
each. From those 24 atoms, each quantifier block bounds
8 of them. Each term in the PDNF contains 4 atoms which
are selected by random from the 24 atoms and are negated
with probability 0.5. The whole formula consists of 38
terms. From the 1000 instances, 506 evaluate to true and
494 evaluate to false. Thus, the ratio between true and false
instances is close to1. Therefore, having easy-hard-easy

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

qproquantorsempropqube-bj

se
co

nd
s

S-empty
T-empty

S-half-full
T-half-full

S-full
T-full

Figure 2. Median running times for different
solvers, encodings, and problem settings.

patterns in mind, we suppose the benchmark set to be lo-
cated in a rather hard region. From eachΦ, we construct a
PQIPΠ = (P, Q, 2A,⊆B) such thatΦ is true iff Π holds.
It is important to notice thatP , Q, andB are determined by
the reduction but the contextA can be chosen arbitrarily.

For our experiments, we use three different settings,
namely the empty contextA = ∅, the full contextA = U ,
and an in-between setting∅ ⊆ A ⊆ U . For the last setting,
each atom occurring in one of the two programsP andQ
is in A with probability0.5. We consider both encodings
from PQIPs to QBFs,S[·] andT[·], together with the three
settings for the context. The QBFs stemming fromS[·] pos-
sess 197 atoms each for the empty context; 221 atoms (on
average) for the half-full context; and 246 atoms for the full
context. For QBFs fromT[·], the respective numbers are
189, 213, and 238.

We compare the QBF solverssemprop [10] (release
24/02/02),qube-bj [9] (v1.2), quantor [2] (release
25/01/04), andqpro [5]. We selected these solvers be-
cause they proved to be competitive in previous QBF eval-
uations and yielded only correct results on our benchmarks.
The solversqpro, qube-bj, andsemprop are based on
the standard DPLL decision procedure extended by special
learning techniques whereasquantor implements a com-
bination of resolution and variable expansion. All solvers
exceptqpro require the input to be in prenex conjunc-
tive normal form. Thus, for those solvers, an intermediate
prenexing step is necessary. In general, this prenexing step
is not deterministic and differentprenexing strategies[4]
are possible. However, for our instances, the structure of the
prenex is fixed in such a way that avoiding an increase of the
number of quantifier alternations during the transformation
to PNF can only be accomplished by placing each quanti-
fier into a uniquely determined quantifier block of the target
(3, ∀)-QBF. It is worth mentioning that for both translations

cc⊤ encodes thecomplementary problem, i.e., generates
QBFs of form¬S[·] or ¬T[·] if projection is used. The rea-
son is to avoid an additional quantifier alternation after the
transformation to PCNF—details are discussed in previous
work [13].

After that prenexing step, QBFs fromS[·] consist (on av-
erage) of 1035 clauses over 632 atoms (for the empty con-
text), 1203 clauses over 728 atoms (for the half-full con-
text), and 1378 clauses over 828 atoms (for the full context).
ForT[·], the numbers are: 1003 clauses over 608 atoms (for
the empty context), 1171 clauses over 704 atoms (for the
half-full context), and 1346 clauses over 802 atoms (for the
full context).

All experiments were carried out on a 3.0 GHz Dual Intel
Xeon workstation, with 4 GB of RAM and Linux version
2.6.8.

Figure 2 summarises the results of the comparison. The
different QBF solvers, encodings (S[·], T[·]), and settings
for the context (empty, half-full, full, respectively) aregiven
on the abscissa, and the median running times in seconds
are depicted on the ordinate.

A very interesting observation is that the alternative en-
coding T[·] does not achieve faster running times for all
solvers, although it uses less variables. Forqpro and
qube-bj, QBFs from T[·] are solved—as one would
expect—faster. This is not the case forsemprop and
quantor, wheresemprop solves QBFs fromS[·] slightly
faster andquantor solves such QBFs much faster (the bar
for quantorwith full context and encodingT[·] illustrates
that the median value is above 100).

The next interesting point is the connection between run-
ning time and context parameterisation. The non-normal-
form solver qpro achieves best results for the empty
context but rather poor results for the full context. For
qube-bj the contrary is true, however, i.e., it achieves best
results for the full context but poor results for the empty
context—a quite surprising observation. Finally, the most
robust solver in this aspect issemprop. Recall that each
of the derived PQIPs(P, Q, 2A,⊆B) either holds for anyA,
or does not hold for anyA. The assignments of atoms from
X1 in our encodings which “guess” context-program can-
didates are thus completely irrelevant for the truth value of
the QBFs. Now, asqpro does not implement any heuristics
concerning the selection of atoms, it is no longer surpris-
ing that running times scale exponentially when the context
gets larger. The heuristics realised insemprop seem to
avoid that too much time is spend on finding assignments
for those “decoy” variables. On the other hand,qube-bj
suffers from the absence of those variables.

Figures 3–6 provide some deeper insights concerning
the running-time behaviour of the non-normal-form solver
qpro and the normal-form solverssemprop, qube-bj,
andquantor, respectively. For those figures, the abscissa

0

200

400

600

800

1000

 0.1 1 10 100

in
st

an
ce

s

seconds

qpro

S-empty
S-half-full

S-full
T-empty

T-half-full
T-full

Figure 3. Run-time distribution for qpro.

0

200

400

600

800

1000

 0.1 1 10 100

in
st

an
ce

s

seconds

semprop

S-empty
S-half-full

S-full
T-empty

T-half-full
T-full

Figure 4. Run-time distribution for semprop.

gives the running time in seconds (scaled logarithmically)
and the ordinate gives the number of solved problem in-
stances. This means that for each running time in the data
we depict how many instances were solved with running
time less or equal to that time. The different curves corre-
spond to the different combinations of the chosen encoding
and context parameterisation. For better legibility, differ-
ent symbols are attached to the curves. Figure 3 is a good
illustration of howqpro benefits from the alternative en-
coding: the respective curves forS[·] andT[·] are running
in parallel. The similarity of the median running times for
semprop in Figure 2 extends to quite similar curves in Fig-
ure 4 for the whole distribution. Note that symmetric curves
(with respect to the median) on a logarithmically scaled axis
imply skewed distribution of the data, i.e., low deviation for
instances with running times below the median and high de-
viation for instances with running times above the median.
Figure 3 provides some insight into the rather odd behaviour
of qube-bj on this set of problem instances. While the
curves for full and half-full context are rather similar, the
curves for the empty context are standing out and illustrate

0

200

400

600

800

1000

 0.1 1 10 100

in
st

an
ce

s

seconds

qube-bj

S-empty
S-half-full

S-full
T-empty

T-half-full
T-full

Figure 5. Run-time distribution for qube.

0

200

400

600

800

1000

 0.1 1 10 100

in
st

an
ce

s

seconds

quantor

S-empty
S-half-full

S-full
T-empty

T-half-full
T-full

Figure 6. Run-time distribution for quantor.

the higher effort forqube-bj to solve them. The sharp in-
clination of the curves forquantor (Figure 6) implies that
there is not much deviation in the data. Here, the running
times of most instances are close to the median. Moreover,
compared to the other systems, there are no instances with
short running times, more precisely shorter than 11 seconds.

For space reasons, we omit a deeper analysis of the
running times separated by true and false instances. The
tendance is that false instances are solved faster on aver-
age. However, for empty and half-full context,qube-bj
is faster on the true instances.

5. Conclusion

In this paper, we discussed an extension of the sys-
tem cc⊤ for deciding refined versions of uniform equiv-
alence and inclusion for disjunctive logic programs under
the answer-set semantics. Such correspondence problems
allow to restrict the alphabet of the context class and facil-
itate the removal of auxiliary atoms in the comparison—
two important concepts for program comparisons in prac-

tice. The tool is based on an efficient reduction to QBFs,
which itself is motivated by the high complexity of the cor-
respondence problems. While the theoretical basis was es-
tablished in previous work [14], we introduced alternative
encodings for PQIPs and PQEPs, and discussed simplifica-
tions realised within the new extension ofcc⊤. We com-
plemented our discussion with an analysis of experiments
with different QBF solvers which reveal interesting differ-
ences of the solvers depending on the particular problem
parameterisation and the choice of the encoding. Moreover,
our encodings also provide an interesting benchmark set for
QBF solvers, for which there are only a few structured prob-
lems with more than one quantifier alternation available.

As related work, we mention the system DLPEQ [15]
for deciding ordinary equivalence, which is based on a re-
duction to logic programs, and the system SELP [3] for
checking strong equivalence, which is based on a reduc-
tion to classical logic quite in the spirit of our implemen-
tation approach. An open topic for future work is, on the
one hand, the extension of our work to more general classes
of programs and, on the other hand, research concerning
the equivalence of nonground programs. Also, we plan to
conduct experiments with more real-world oriented bench-
marks, like ones stemming from planning, diagnosis, and
scheduling domains. In fact, we are currently running an
extensive suite of experiments using different programs rep-
resenting specific diagnosing problems. These programs are
obtained from student data of a laboratory course on logic
programming at our university.

References

[1] P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Rep-
resenting Paraconsistent Reasoning via Quantified Proposi-
tional Logic. In Inconsistency Tolerance, volume 3300 of
LNCS, pages 84–118. Springer, 2005.

[2] A. Biere. Resolve and Expand. In7th International Con-
ference on Theory and Applications of Satisfiability Testing
(SAT 2004), volume 3542 ofLNCS. Springer, 2005.

[3] Y. Chen, F. Lin, and L. Li. SELP - A System for Studying
Strong Equivalence Between Logic Programs. InProceed-
ings of the 8th International Conference on Logic Program-
ming and Nonmonotonic Reasoning(LPNMR 2005), volume
3552 ofLNAI, pages 442–446. Springer, 2005.

[4] U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda.
Comparing Different Prenexing Strategies for Quantified
Boolean Formulas. InProceedings of the 6th International
Conference on the Theory and Applications of Satisfiability
Testing(SAT 2003). Selected Revised Papers, volume 2919
of LNCS, pages 214–228, 2004.

[5] U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in
Nonprenex Form. InProceedings of the 17th European Con-
ference on Artificial Intelligence(ECAI 2006), 2006.

[6] T. Eiter and M. Fink. Uniform Equivalence of Logic Pro-
grams under the Stable Model Semantics. InProceedings

of the 19th International Conference on Logic Program-
ming (ICLP 2003), volume 2916 ofLNCS, pages 224–238.
Springer, 2003.

[7] T. Eiter, H. Tompits, and S. Woltran. On Solution Corre-
spondences in Answer Set Programming. InProceedings of
the 19th International Joint Conference on Artificial Intelli-
gence(IJCAI 2005), pages 97–102, 2005.

[8] M. Gelfond and V. Lifschitz. Classical Negation in Logic
Programs and Disjunctive Databases.New Generation Com-
puting, 9:365–385, 1991.

[9] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjump-
ing for Quantified Boolean Logic Satisfiability.Artificial
Intelligence, 145:99–120, 2003.

[10] R. Letz. Lemma and Model Caching in Decision Proce-
dures for Quantified Boolean Formulas. InProceedings of
the 11th International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods(TABLEAUX
2002), volume 2381 ofLNCS, pages 160–175, 2002.

[11] V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equiva-
lent Logic Programs.ACM Transactions on Computational
Logic, 2(4):526–541, 2001.

[12] J. Oetsch, M. Seidl, H. Tompits, and S. Woltran. cc⊤: A
Tool for Checking Advanced Correspondence Problems in
Answer-Set Programming. InProceedings of the 15th Inter-
national Conference on Computing(CIC 2006), pages 3–10.
IEEE Computer Society Press, 2006.

[13] J. Oetsch, M. Seidl, H. Tompits, and S. Woltran. A
Tool for Advanced Correspondence Checking in Answer-
Set Programming. InProceedings of the 11th International
Workshop on Nonmonotonic Reasoning(NMR 2006). TU
Clausthal IfI Technical Report Series, 2006.

[14] J. Oetsch, H. Tompits, and S. Woltran. Facts do not Cease
to Exist Because They are Ignored: Relativised Uniform
Equivalence with Answer-Set Projection. InProceedings
of the 22nd National Conference on Artificial Intelligence
(AAAI 2007), pages 458–464. AAAI Press, 2007.

[15] E. Oikarinen and T. Janhunen. Verifying the Equivalence
of Logic Programs in the Disjunctive Case. InProceedings
of the 7th International Conference on Logic Programming
and Nonmonotonic Reasoning(LPNMR 2004), volume 2923
of LNCS, pages 180–193. Springer, 2004.

[16] L. J. Stockmeyer. The Polynomial-Time Hierarchy.Theo-
retical Computer Science, 3(1):1–22, 1976.

[17] H. Tompits and S. Woltran. Towards Implementations for
Advanced Equivalence Checking in Answer-Set Program-
ming. In Proceedings of the 21st International Conference
on Logic Programming(ICLP 2005), volume 3668 ofLNCS,
pages 189–203. Springer, 2005.

[18] S. Woltran. Characterizations for Relativized Notions of
Equivalence in Answer Set Programming. InProceedings of
the 9th European Conference on Logics in Artificial Intelli-
gence(JELIA 2004), volume 3229 ofLNCS, pages 161–173.
Springer, 2004.

[19] M. Zolda. Comparing Different Prenexing Strategies for
Quantified Boolean Formulas, 2004. Master’s Thesis, Vi-
enna University of Technology.

