
An Implementation for Recognizing Rule Replacements
in Non-ground Answer-Set Programs�

Thomas Eiter, Patrick Traxler, and Stefan Woltran

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter, traxler, stefan}@kr.tuwien.ac.at

1 Introduction

Answer-set programming (ASP) has emerged as an important paradigm for declarative
problem solving, and provides a host for many different application domains on the
basis of nonmonotonic logic programs. The increasing popularity in ASP has raised
also the interest in semantic comparisons of programs in ASP [3, 4], which are nowa-
days recognized as a theoretical basis for program optimization, where equivalence-
preserving modifications are of primary interest; in particular, rewriting rules which
allow to perform a local change in a program are important. Many such rules have
been considered in the propositional setting (cf., e.g., [1, 6]) but just recently have been
extended to the practicably important case of non-ground programs [2].

For illustration, consider rules from an encoding of the 3-colorability problem:

b(X) ∨ b(a) ← edge(X, a),node(X), not r(X), not g(a), not g(X) (1)

r(Y) ∨ b(Y) ∨ g(Y) ← node(Y). (2)

Results from [2] show that (i) the first rule is redundant and can be deleted in any pro-
gram which contains the second rule; (ii) the entire program fragment can be rewritten
into a program without disjunctions, which is equivalent for any graph specification.

In this paper, we present theoretical foundations and a practical realization for rec-
ognizing these two particular replacements, which are rule subsumption and local shift-
ing. We describe a tool which scans an input program and indicates which rules can
be deleted (via subsumption) and which rules apply to local shifting. As a back-end
inference engine for these recognition tasks, we make use of ASP-solvers, themselves.
We report first experimental evaluations, showing that our approach is feasible.

2 Replacements in Answer-Set Programming

Our objects of interest are disjunctive logic programs formulated in a language over a
set A of predicate symbols, a set V of variables, and a set C of constants (also called
the domain). Atoms, rules, and programs are defined as usual and we use, for a rule r,
H(r) to denote the set of atoms in the head of r, B(r) to denote the set of literals in
the body of r, and B+(r) (resp., B−(r)) to refer to the set of positive (resp., negative)
atoms in B(r). Let e be an atom, rule, or a program. The set of variables occurring in

� This work was partially supported by the Austrian Science Fund (FWF) under project P18019.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 477–480, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

478 T. Eiter, P. Traxler, and S. Woltran

e is denoted by Ve, and e is called ground iff Ve = ∅. Similarly, we use Ce to refer to
the set of constants occurring in e. Given a rule r and a set of constants C ⊆ C, we
define grd(r, C) as the set of all rules rϑ obtained from r by all possible substitutions
ϑ : Vr → C. The semantics of logic programs is given in terms of answer sets as
usual. AS(P) denotes the set of all answer sets of a program P . Programs P1, P2 are
called strongly (resp., uniformly) equivalent iff, for each set S of rules (resp., facts),
AS(P1 ∪ S) = AS(P2 ∪ S). For further details we refer to [3].

We consider here two forms of replacements, rule subsumption and local shifting,
cf. [2]. The former is based on the following observation, generalizing a result in [5].

Proposition 1. Let P be a program, and r, s be different rules in P , such that there
exists a substitution ϑ : Vs → Vr ∪Cr satisfying H(sϑ) ⊆ H(r)∪B−(r) and B(sϑ) ⊆
B(r). Then, P is strongly equivalent to P \ {r}.

The aim of local shifting is motivated by the elimination of disjunctions. For an arbitrary
program P , a rule r ∈ P is called head-cycle free (HCF) in P iff, for each finite C ⊆ C,
all r′ ∈ grd(r, C) are head-cycle free in grd(P, C); for details, see [2].

Proposition 2. Let P be a program and r ∈ P , such that for each ϑ : Vr → C,
|H(rϑ)| = |H(r)|, and r is HCF in P . Then, P is uniformly equivalent to P \{r}∪r→,
where1 r→ = {h ← B(r), not(H(r) \ {h}) | h ∈ H(r)}.

In our example from the introduction, it can be shown that (1) is subsumed by (2) by
setting ϑ(X) = Y . As well, both rules are HCF within the fragment, but (1) does not
apply for local shifting since under ϑ(X) = a, its head reduces to a single element.
Next, we recapitulate the complexity of detecting rules for subsumption or shifting.

Proposition 3. Given a program P and r ∈ P . Deciding whether (i) r is subsumed by
some other rule s ∈ P is NP-complete; (ii) r is HCF in P is PSPACE-complete.

3 The Implemented System

For our implementation we use reductions to ASP itself to decide the problems un-
der consideration (for details, see [7]). In particular, we provide a linear reduction for
subsumption into the conjunctive query problem which is NP-complete, matching the
intrinsic complexity of the encoded task. In the case of local shifting, we map (in
polynomial time) this problem to that of querying a definite Horn program, which is
EXPTIME-complete and thus just mildly harder than the encoded problem.

Encodings. We reduce the test whether a rule r is subsumed by a rule s as a (Boolean)
conjunctive query problem (F, q), i.e., deciding, given a rule q = b ← a1, ..., am

together with a set F of ground facts, whether the unique answer set of F ∪{q} contains
b. Given two rules r, s, we construct a set Fr of facts and a query qs as follows, where
for any rule r, r′ (resp., r′′) denotes the result of replacing each predicate symbol p in

1 For a set S = {s1, . . . , sn} of atoms, not S abbreviates not s1, . . . , not sn.

An Implementation for Recognizing Rule Replacements 479

r by a new symbol p′ (resp., p′′), and the substitution γ : V → C maps each variable V
to a corresponding constant cV , which does not occur in r, s:

Fr = H(rγ) ∪ B−(rγ) ∪ B+(r′γ) ∪ B−(r′′γ);
qs = b ← H(s), B+(s′), B−(s′′).

Theorem 1. Rule r is subsumed by rule s iff the query problem (Fr, qs) holds.

Concerning local shifting, let, for a program P , C∗ ⊇ CP be a domain of size |C∗| =
4·|CP |, k be the maximal predicate-arity in P , let h, d, p and q be new predicate symbols
with arities α(d) = 1, α(h) = 2, and α(p) = α(q) = 2k + 2, and let “ ” be a new
constant symbol. Define for two atoms a = a′(t1, . . . , tm) and b = b′(s1, . . . , sl) with
m, l ≤ k, and π ∈ {p, q}, the rule

π[a, b] := π(a′, t1, . . . , tm, , . . . , , b′, s1, . . . , sl, , . . . ,) ← D, (3)

such that b′ appears as the (k + 2)nd argument in π, the ’s fill up π properly, and D
denotes a sequence of d(X)′s, for all variables X occurring in a or b. For a program P
and a set of rules Q ⊆ P , we define the definite Horn program

P ∗
Q = {d(c) | c ∈ C∗} ∪ {q[a, b] | a, b ∈ H(r), a �= b, r ∈ Q} ∪

{p[a, b] | a ∈ H(s), b ∈ B+(s), s ∈ P, H(s) �= ∅, B+(s) �= ∅} ∪
{p(x, z) ← p(x, y), p(y, z);
h(x, y) ← p(x, y), p(y, x), q(x, y); h(x, x) ← q(x, x)};

where x (resp., y, z) denotes a sequence of k + 1 distinct variables Xi (resp., Yi, Zi).

Theorem 2. For any program P and Q ⊆ P , each r ∈ Q is HCF in P iff no atom
h(·, ·) is contained in the (unique) answer set of P ∗

Q.

Hence, we are able to test whether a single rule r is HCF in P (via querying P ∗
{r}) or

whether P entirely is HCF (via querying P ∗
P). Moreover, inspecting atoms h(·, ·) in the

answer set of P ∗
Q, indicates which pair of atoms prevent rules in Q from being shifted.

System Description. The system relies on two basic steps, (i) the computation of the
reductions to programs as sketched above, and (ii) the call of an ASP-solver in order to
run these programs. Both reductions together with the invocation of DLV2 are realized
via perl scripts. The input program is required to be in DLV-format. Invoking simplify
program.dl, where the file program.dl contains our example program, yields:

Scanning for Rule Subsumption...

b(X) v b(a):-edge(X,Y),node(X),not r(X),not g(a),not g(X).

[subsumed by r(Y) v b(Y) v g(Y) :- node(Y).]

Scanning for Local Shifting...

r(Y) v b(Y) v g(Y) :- node(Y).

indicating that Rule (1) from the program is subsumed by Rule (2), and that Rule (2)
can faithfully be rewritten to a set of non-disjunctive rules, cf. Proposition 2. All scripts
and further information are available at the system’s homepage (see below).

2 Available under http://www.dlvsystem.com.

http://www.dlvsystem.com

480 T. Eiter, P. Traxler, and S. Woltran

Experiments. For first results on our approach, we set up a test series available at

http://www.kr.tuwien.ac.at/research/eq/simpl/

The test for subsumption always involves a pair of rules, while the test for local shifting
has to take an entire program into account. Thus, we encode for the former different NP-
hards problems as pairs of rules such that subsumption holds iff the encoded problem
holds. For the latter we used various application programs (some from the web) and
tested whether disjunction can be eliminated in a uniform-equivalence preserving way.

Concerning subsumption, we encoded (i) graph 3-colorability and (ii) propositional
satisfiability. For (i), consider a graph G = (V, E) and let BE denote the sequence of
atoms e(Xi, Xj), where (vi, vj) ∈ E. Then the rule ← e(r, b), e(b, r), e(r, g), e(g, r),
e(b, g), e(g, b) is subsumed by the rule ← BE iff G is 3-colorable. Our system scales
well showing reasonable response times for problems generated from graphs containing
up to 40 nodes (depending on the number of nodes, but within a few seconds for 30
nodes). For (ii), consider a CNF φ over variables X1, . . . , Xn and represent each clause
c by a triple p(L1, L2, L3) where Li = X (resp., Li = X̄) if X (resp., ¬X) is the
i-th literal in c. Let pφ be the sequence representing φ in this way plus pairs v(X, X̄)
for all variables X occurring in φ. Then, ← p(1, 1, 1), p(1, 1, 0), p(1, 0, 1), p(1, 0, 0),
p(0, 1, 1), p(0, 1, 0), p(0, 0, 1), v(1, 0), v(0, 1) is subsumed by the rule ← pφ iff φ is
satisfiable. Also in this case, our implementation provides good response times (around
a few seconds) for a suite of uniform random 3-sat formulas taken from SATLIB.

Concerning the test for local shifting, we set up a suite of disjunctive programs col-
lected from different sources, including encodings for problems as Hamiltonian cycle,
strategic companies, or diagnosis. For all programs, our tool recognized all rules appli-
cable to local shifting rather fast (always within a second).

The presented work has to be seen as a starting point for a more general tool consid-
ered as support for programmers in terms of offline simplification of (possibly incom-
plete) programs. To the best of our knowledge, our implementation is the first realization
of such simplification methods working directly on non-ground programs.

References

1. S. Brass and J. Dix. Semantics of (Disjunctive) Logic Programs Based on Partial Evaluation.
Journal of Logic Programming, 38(3):167–213, 1999.

2. T. Eiter, M. Fink, H. Tompits, P. Traxler, and S. Woltran. Replacements in Non-Ground
Answer-Set Programming. In Proc. KR’06, pg. 340–351. AAAI Press, 2006.

3. T. Eiter, M. Fink, H. Tompits, and S. Woltran. Strong and Uniform Equivalence in Answer-Set
Programming: Characterizations and Complexity Results for the Non-Ground Case. In Proc.
AAAI’05, pg. 695–700. AAAI Press, 2005.

4. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

5. F. Lin and Y. Chen. Discovering Classes of Strongly Equivalent Logic Programs. In Proc.
IJCAI’05, pages 516–521, 2005.

6. M. Osorio, J. A. Navarro, and J. Arrazola. Equivalence in Answer Set Programming. In Proc.
LOPSTR’01, Selected Papers, vol. 2372 of LNCS, pg. 57–75. Springer, 2001.

7. P. Traxler. Techniques for Simplifying Disjunctive Datalog Programs with Negation. Master’s
thesis, Technische Universität Wien, Institut für Informationssysteme, 2006.

http://www.kr.tuwien.ac.at/research/eq/simpl/

	Introduction
	Replacements in Answer-Set Programming
	The Implemented System

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

