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Abstract

In this paper, we propose a formal framework for specify-
ing rule replacements in nonmonotonic logic programs within
the answer-set programming paradigm. Of particular interest
are replacement schemas retaining specific notions of equiv-
alence, among them the prominent notions of strong and uni-
form equivalence, which have been introduced as theoretical
tools for program optimization and verification. We derive
some general properties of the replacement framework with
respect to these notions of equivalence. Moreover, we gen-
eralize results about particular replacement schemas which
have been established for ground programs to the non-ground
case. Finally, we report a number of complexity results which
address the problem of deciding how hard it is to apply a re-
placement to a given program. Our results provide an impor-
tant step towards the development of effective optimization
methods for non-ground answer-set programming, an issue
which has not been addressed much so far.

Introduction
Answer-set programming (ASP) has emerged as an impor-
tant paradigm for declarative problem solving, and pro-
vides a host for many different application domains on
the basis of nonmonotonic logic programs (Baral 2003;
Gelfond & Leone 2002; Woltran 2005). The increasing in-
terest in ASP lead also to the investigation of semantic com-
parisons of programs in ASP, giving rise to the introduc-
tion of different notions of program equivalence (Lifschitz,
Pearce, & Valverde 2001; Eiter, Fink, & Woltran 2005;
Eiter et al. 2005) and program correspondence (Pearce &
Valverde 2004b; Eiter, Tompits, & Woltran 2005). Such
comparison relations are essential for program-optimization
tasks, where equivalence-preserving modifications are of
primary interest—in particular, rewriting rules, which al-
low to perform local changes in programs, are fundamental.
Many such rules have been proposed in a propositional set-
ting for different notions of equivalence (cf., e.g., Brass &
Dix (1999) and Osorio, Navarro, & Arrazola (2001)).

Noticeably, except for the recent work put forth by Lin
& Chen (2005), rewriting rules in the context of ASP have
been considered more ad hoc rather than systematically, and
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were aimed at propositional programs only. However, from
a practical point of view, almost all programs use variables,
and thus rewriting rules for this setting are essential.

In this paper, we address this issue and consider replace-
ments for non-ground programs, according to which a subset
of rules in a given program P may be exchanged with some
other rules, possibly depending on a condition on P . For a
simple example, consider an encoding of the three-coloring
problem for graphs, which represents graphs using predi-
cates node and edge and contains (among others) the two
rules

r(X) ∨ b(X) ← edge(a,X),node(a), (1)
node(X),not g(X),

r(Y ) ∨ b(Y ) ∨ g(Y ) ← node(Y ). (2)
As our results show, Rule (1) is redundant in any program
P which also contains Rule (2), i.e., we can replace (1) and
(2) simply by (2). Similarly, we can replace (2) in P by its
possible three “head-to-body” shifts, where all atoms in the
head except one are moved to the body and negated, provid-
ing Rule (2) is head-cycle free in P .

Our contributions can be briefly summarized as follows.
• We study replacements and replacement schemas in a

general framework, paying attention to different natu-
ral types of replacements and analyzing relations be-
tween them. In particular, we describe conditions under
which replacements necessarily preserve strong equiva-
lence (Lifschitz, Pearce, & Valverde 2001).

• We lift in this framework well-known replacement rules
from the propositional case to the setting with vari-
ables. We focus hereby on rules discussed by Brass &
Dix (1999) as well as by Eiter et al. (2004), and general-
ize some of the results by Lin & Chen (2005). However,
we also discuss some novel replacement rules.

• Finally, we consider the computational complexity of
applying specific replacement schemas, where we ob-
tain bounds ranging from LOGSPACE up to PSPACE-
completeness. These results provide a handle for deciding
about efficient replacements in online and offline program
optimization.
Our results extend and complement recent results about

program equivalence to the relevant application setting. Fur-
thermore, they provide a theoretical foundation for opti-
mization techniques which in part are used ad hoc in ASP



solvers. We focus on safe programs in our development,
which is the pre-eminent setting for the currently available
ASP solvers (like, e.g., DLV (Leone et al. 2002) or Smod-
els (Simons, Niemelä, & Soininen 2002)), but this is no real
restriction in general.

For the sake of presentation, the proofs of most results
are relegated to an appendix, which also contains ancillary
notation and characterizations not required in the main body
of the paper.

Preliminaries
Logic programs are formulated in a language L containing
a set A of predicate symbols, a set V of variables, and a set
C of constants (also called the domain of L). Each predicate
symbol has an associated arity n ≥ 0. An atom (over L)
is an expression of form p(t1, . . .,tn), where p is a predicate
symbol fromA of arity n and ti ∈ C ∪V , for 1 ≤ i ≤ n. An
atom is ground if no variable occurs in it.

A (disjunctive) rule (over L), r, is an ordered pair of form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm,

where a1, . . . , an, b1, . . . , bm are atoms (n ≥ 0, m ≥ k ≥ 0,
n + m > 0), and “not” denotes default negation. The head
of r is given by H(r) = {a1, . . . , an}, and the body of r is
B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. We also use
B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. We
call r a fact if m = 0 and n = 1 (in which case “←” is usu-
ally omitted). Moreover, r is safe if each variable occurring
in H(r) ∪ B−(r) also occurs in B+(r), and r is ground if
all atoms occurring in it are ground.

By a program (over L) we understand a finite set of rules
(over L). We assume in what follows that rules are always
safe. The set of variables occurring in an atom a (resp., a
rule r, a program P ) is denoted by Va (resp., Vr, VP ). Fur-
thermore, the set of all constants occurring in P is called
the Herbrand universe of P , symbolically CP . If no con-
stant appears in P , then CP = {c}, for an arbitrary constant
c. Moreover, Cr denotes all constants occurring in a rule r.
The set of all predicates occurring in P is denoted by AP .
As usual, the Herbrand base, BP , of a program P is the set
of all ground atoms constructed from AP and CP .

Given a rule r and a set of constants C ⊆ C, we define
grd(r, C) as the set of all rules rϑ, obtained from r by ap-
plying all possible substitutions ϑ : Vr → C to r. More-
over, for any program P , the grounding of P with respect to
C is given by grd(P,C) =

⋃
r∈P grd(r, C). In particular,

grd(P, CP ) is referred to as the grounding of P simpliciter,
written grd(P ).

By an interpretation we understand a set of ground atoms.
A ground rule r is satisfied by an interpretation I , symbol-
ically I |= r, iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and
B−(r) ∩ I = ∅. I satisfies a ground program P , symbol-
ically I |= P , iff I |= r, for each r ∈ P . The Gelfond-
Lifschitz reduct (Gelfond & Lifschitz 1991) of a ground pro-
gram P with respect to an interpretation I is given by

P I = {H(r)← B+(r) | r ∈ P, I ∩B−(r) = ∅}.

A set I ⊆ BP is an answer set of P iff I is a subset-minimal
set satisfying grd(P )I . The set of all answer sets of P is
denoted by AS(P ).

In order to compare programs, we shall make use of dif-
ferent equivalence relations. In particular, for a class S
of programs we define, for every program P, P ′ over L,
P ≡S P ′ iff, for each P ′′ ∈ S,AS(P∪P ′′) = AS(P ′∪P ′′)
holds. By instantiating the parameter set S, we obtain the
following well-known notions:

• ordinary equivalence, symbolically ≡o, by setting S =
{∅};

• uniform equivalence, symbolically≡u, by setting S as the
class of all finite sets of ground facts in language L; and

• strong equivalence, symbolically ≡s, by setting S as the
set of all programs over L.

Note that P ≡o P ′ iff AS(P ) = AS(P ′).
We say that a binary relation ρ implies a binary relation ρ′

iff ρ ⊆ ρ′. Obviously, we have that ≡s implies ≡u, and ≡u

implies ≡o.
For further details about strong and uniform equiva-

lence between non-ground programs, we refer to Eiter et
al. (2005).

Replacements
Definition 1 A replacement is a triple % = (φ,M,N),
where φ is a unary predicate ranging over programs, called
the proviso of %, and M , N are sets of rules.

We say that % is applicable to a program P , or P is %-
eligible, if M ⊆ P and φ(P ) holds. The result of P under %
is %[P ] = (P \M) ∪N , in case % is applicable to P .

Definition 2 Let ≡ be an equivalence relation. A replace-
ment % is ≡-preserving if P ≡ %[P ], for any %-eligible pro-
gram P .

Observe that any ≡s-preserving replacement is also ≡u-
preserving, and any ≡u-preserving replacement is also ≡o-
preserving.

Definition 3 Let % = (φ,M,N) be a replacement. Then, %
is called

• independent, if for every program P , φ(P ) holds,
• monotone, if for all programs P, P ′, if φ(P ) and P ⊆ P ′,

then φ(P ′), and
• closed under intersection, if for all programs P, P ′, if

φ(P ) and φ(P ′), then φ(P ∩ P ′).

We sometimes identify the proviso of an independent re-
placement by the designated predicate >(P ), which is true
for every program P . As well, an independent replace-
ment (φ,M,N) may also be identified with the pair (M,N).
Note that any independent replacement is also monotone and
closed under intersection.

For illustration, consider a replacement % = (φ, {r}, ∅),
with r denoting a concrete rule, say, e.g., q(X1, X2, X3)←
q(X1, X2, X3), and φ(P ) holds for any program P . Then,
% is applicable to each program P with r ∈ P , and, in these
cases, we get %[P ] = P \{r}. Indeed, % is an independent re-
placement. As we will see later on, % is also ≡s-preserving.

In what follows, we show some general properties for re-
placements. In particular, the next property is central.



Theorem 1 Let≡ be any equivalence relation implying≡o.
Then, any monotone replacement % is ≡s-preserving, when-
ever % is ≡-preserving.

Proof. Towards a contradiction, let % = (φ,M,N) be
a monotone ≡-preserving replacement which is not ≡s-
preserving. From the latter, we get that there exists some
%-eligible program P such that P 6≡s %[P ]. Hence, there ex-
ists a program P ′ such that AS(P ∪P ′) 6= AS(%[P ]∪P ′).
Without loss of generality, we can assume that (P∩P ′) = ∅.
Now, since % is monotone and P is %-eligible, P ∪ P ′ is %-
eligible as well. By hypothesis, % is ≡-preserving, and thus
P ∪ P ′ ≡ %[P ∪ P ′] holds. This implies ordinary equiva-
lence, i.e., AS(P ∪ P ′) = AS(%[P ∪ P ′]). Since M ⊆ P
and (P ∩ P ′) = ∅, we obtain

%[P ∪ P ′] = ((P ∪ P ′) \M) ∪N

= (P \M) ∪ P ′ ∪N

= ((P \M) ∪N) ∪ P ′

= %[P ] ∪ P ′.

Thus, AS(P ∪ P ′) = AS(%[P ] ∪ P ′), a contradiction to
AS(P ∪ P ′) 6= AS(%[P ] ∪ P ′). 2

Theorem 2 An independent replacement (M,N) is ≡s-
preserving iff M ≡s N .

Proof. Let % = (M,N) be independent. The only-if di-
rection is by definition when applying % to M itself. For
the if-direction, suppose that % is not ≡s-preserving, i.e.,
there exists a program P with M ⊆ P such that P 6≡s P ′,
where P ′ = (P \ M) ∪ N . Hence, for some program
Q, AS(P ∪ Q) 6= AS(P ′ ∪ Q). In other words, for
P ′′ = (P \M)∪Q, we getAS(M ∪P ′′) 6= AS(N ∪P ′′).
Consequently, M 6≡s N . 2

Replacement Schemas
So far, we only considered concrete replacements guided by
fixed sets M , N of rules. However, in general, one wants
to collect sets of replacements into a single replacement
schema. This can be realized as follows:

Definition 4 A replacement schema,R, is a partial function
mapping pairs (M,N) of programs into a unary predicate
R(M,N). The domain ofR is denoted by dom(R).

A replacement (φ,M,N) is an instance ofR if (M,N) ∈
dom(R) and φ = R(M,N). The set of all instances of R
is denoted by inst(R).

We say that R is applicable to a program P , or P is R-
eligible, if there exists some % ∈ inst(R) which is applica-
ble to P . We refer to the result %[P ] of P under an instance
% ∈ inst(R) as a result of P underR. Furthermore,R?[P ]
denotes the set {%[P ] | % ∈ inst(R)}.

With an abuse of notation, we also write R[P ] to refer to a
result of P under R. The operator R?[·] is used to compare
replacement schemas as follows.

Definition 5 Two replacement schemas, R1 and R2, are
equipollent iff, for each program P ,R?

1[P ] = R?
2[P ].

Properties for replacements are easily generalized to re-
placement schemas as follows:

Definition 6 A replacement schema R is said to be ≡-pre-
serving (resp., independent, monotone, intersection-closed)
if each instance of R is ≡-preserving (resp., independent,
monotone, intersection-closed).

Note that for an independent replacement schema R, we
may identify inst(R) with dom(R). Furthermore, the re-
sults about replacements, as given by Theorems 1 and 2,
carry over in a straightforward way to replacement schemas
as well.

We are now prepared to give examples of particular re-
placement schemas. We start with a generalization of a con-
cept considered by Brass & Dix (1999) for the propositional
case.

Definition 7 The replacement schema TAUT is given as
follows:

• dom(TAUT) = {({r}, ∅) | r is a rule with H(r) ∩
B+(r) 6= ∅};

• TAUT(M,N) = >, for every (M,N) ∈ dom(TAUT).

The instances of TAUT are then all replacements of the
form (>, {r}, ∅), where H(r) ∩B+(r) 6= ∅.

For example, let P = {p(X) ← p(X), q(Y ); q(X) ←
p(Y ), q(X); p(a)}. Then, TAUT[P ] refers either to

P ′ = {p(X)← p(X), q(Y ); p(a)}

or to
P ′′ = {q(X)← p(Y ), p(X); p(a)}.

Hence, TAUT?[P ] = {P ′, P ′′}. In any case, applying
TAUT twice, we get TAUT[TAUT[P ]] = {p(a)}.

As an example of a non-monotone replacement schema
we define local shifting, LSH, extending a similar schema
introduced in the propositional case by Eiter et al. (2004).

The idea underlying local shifting has already been men-
tioned in the introduction. Formally, we need the follow-
ing concepts: The (positive) dependency graph, GP , of a
ground program P is given by the pair (BP , EP ), where
(a, b) ∈ EP iff there exists a rule r ∈ P such that a ∈ H(r)
and b ∈ B+(r). An atom a positively depends on b in P
iff there exists a path from a to b in GP . A ground rule r is
head-cycle free (HCF) in P iff no distinct atoms a, b ∈ H(r)
mutually positively depend on each other in P .

For an arbitrary program P (not necessarily ground), a
rule r ∈ P is HCF in P iff, for each finite C ⊆ C and each
r′ ∈ grd(r, C), r′ is HCF in grd(P,C).

Definition 8 The replacement schema LSH is given as fol-
lows:

• dom(LSH) consists of all pairs ({r}, Nr), where

1. r is a rule such that, for each ϑ : Vr → C, |H(rϑ)| > 1,
2. Nr = {h← B(r),not (H(r) \ h) | h ∈ H(r)};1 and

• for every (M,N) ∈ dom(LSH), LSH(M,N) = φ, where
φ(P ) holds iff r is HCF in P and M = {r}.

1For a set S = {a1, . . . , an} of atoms, not S denotes the ex-
pression not a1, . . . , not an.



Note that LSH is, e.g., not applicable to the program
P = {r} with r = p(X1) ∨ p(X2) ← q(X1, X2), since
ϑ, mapping X1 and X2 to the same constant c, yields
|H(rϑ)| = |{p(c)}| = 1.

We mention that LSH is intersection-closed, but neither
monotone nor independent. Equivalence-preserving proper-
ties for TAUT and LSH will be provided in the next section.

Equivalence-Preserving Replacement Schemas
This section collects a number of concrete replacement
schemas. In particular, we generalize ideas from proposi-
tional ASP, where such replacements have been stipulated
by Brass & Dix (1999) and further investigated and devel-
oped by several authors (Osorio, Navarro, & Arrazola 2001;
Lin & Chen 2005; Wang & Zhou 2005; Eiter et al. 2004).

We proceed as follows. First, we consider ≡s-preserving
replacement schemas. Then, we deal with monotone re-
placement schemas—in particular, we relate our framework
to the one discussed by Lin & Chen (2005). Finally, we con-
sider replacement schemas which are not ≡s-preserving but
≡u- or ≡o-preserving.

Independent Replacement Schemas
We already gave an independent replacement schema above,
namely TAUT. A very similar schema is CONTRA, de-
fined below. Like TAUT, CONTRA has been introduced
in the propositional setting by Brass & Dix (1999), and, with
respect to equivalence notions, studied further by Eiter et
al. (2004) and Osorio, Navarro, & Arrazola (2001).

Definition 9 The replacement schema CONTRA is given
by setting dom(CONTRA) = {({r}, ∅) | r is a rule with
B+(r) ∩ B−(r) 6= ∅} and CONTRA(M,N) = >, for
every (M,N) ∈ dom(CONTRA).

However, an alternative way to capture the nature of
TAUT and CONTRA is the following:

Definition 10 The schemas ϑ-TAUT and ϑ-CONTRA are
given as follows:
• dom(ϑ-TAUT) = {({r}, ∅) | r is a rule such that, for

each ϑ : Vr → C, H(rϑ) ∩B+(rϑ) 6= ∅};
• dom(ϑ-CONTRA) = {({r}, ∅) | r is a rule such that,

for each ϑ : Vr → C, B+(rϑ) ∩B−(rϑ) 6= ∅}; and
• R(M,N) = >, for every (M,N) ∈ dom(R), with R ∈
{ϑ-TAUT, ϑ-CONTRA}.

Theorem 3 The following properties hold:

1. TAUT and CONTRA are ≡s-preserving;
2. TAUT and ϑ-TAUT are equipollent; and
3. CONTRA and ϑ-CONTRA are equipollent.

We finally give four more replacement schemas which
generalize corresponding replacement rules given in the lit-
erature for ground programs. In particular, the ground
pendants of schemas RED− and NONMIN have been in-
troduced by Brass & Dix (1999), the ground version of
S-IMPL is due to Wang & Zhou (2005), and that of SUB
is discussed by Lin & Chen (2005).

Definition 11 The schemas R ∈ {RED−,S-IMPL,SUB,
NONMIN} are given as follows:

• dom(R) consists of all pairs ({r, s}, {s}), where r, s are
rules, such that
– forR = RED−, H(s) ⊆ B−(r) and B(s) = ∅, and
– for R ∈ {S-IMPL,SUB,NONMIN}, there exists a

ϑ : Vs → Vr ∪ Cr such that B+(sϑ) ⊆ B+(r) and
∗ for R = S-IMPL, there is some A ⊆ B−(r) with

H(sϑ) ⊆ H(r) ∪A and B−(sϑ) ⊆ B−(r) \A,
∗ for R = SUB, H(sϑ) ⊆ H(r) ∪ B−(r) and

B−(sϑ) ⊆ B−(r), and
∗ for R = NONMIN, H(sϑ) ⊆ H(r) and B−(sϑ) ⊆

B−(r); and
• R(M,N) = >, for every (M,N) ∈ dom(R).

Observe that the safety condition of rules implies that
RED− is only applicable in case s is a ground disjunctive
fact. This is the reason why, in contrast to the other three
schemas, there is no need for ϑ in the definition for RED−.

The four schemas introduced above stand in the following
relationships to each other:
• if RED− or NONMIN is applicable to a program P , then

S-IMPL is applicable to P , and
• if S-IMPL is applicable to a program P , then SUB is

applicable to P .
Hence, the schema SUB is the most unconstrained among
the four, being applicable whenever any of the other three is.
Theorem 4 The replacement schemas RED−, NONMIN,
S-IMPL, and SUB are all ≡s-preserving.

Like for TAUT and CONTRA, also the above replace-
ment schemas can be defined in an alternative way, by ex-
plicitly referring to all groundings of the rules involved. We
leave a further discussion of this point to a full version of
this paper.

Monotone Replacement Schemas
For monotone replacement schemas, there is an interesting
relation to independent replacement schemas as follows:
Theorem 5 Any replacement schema which is monotone,
closed under intersection, and ≡s-preserving is equipollent
to an independent replacement schema.
Proof. Let R be a replacement schema which is mono-
tone, closed under intersection, and ≡s-preserving. Con-
sider some % ∈ inst(R) with % = (φ,M,N). Since %
is monotone and closed under intersection, there exists a
unique program, P0, such that φ(P ′) holds for each P ′ ⊇ P0

but φ(P ′′) does not hold for any P ′′ ⊂ P0. Obviously,
%′ = (>,M ∪P0, N ∪(P0 \M)) then satisfies %[P ] = %′[P ]
for every program P . It follows that the replacement schema
R′, defined by setting dom(R′) = {(M ∪ P0, N ∪ (P0 \
M)) | (M,N) ∈ dom(R)} and R′(M,N) = >, for every
(M,N) ∈ dom(R′), is equipollent to R. Moreover, R′ is
clearly independent. 2

In recent work, Lin & Chen (2005) captured certain
classes of strongly equivalent propositional programs by
considering problems of the following form:

Given rules r1, . . . , rk, u1, . . . , um, v1, . . . , vn, is the
program {r1, . . . , rk, u1, . . . , um} strongly equivalent
to {r1, . . . , rk, v1, . . . , vn}?



Such a problem is referred to as a k-m-n-problem. The
main focus of Lin and Chen’s work is to find computation-
ally effective, necessary and sufficient conditions, for small
k,m, n, making a k-m-n-problem true. In general, any con-
dition that guarantees a positive answer to a k-m-n-problem,
for fixed k, m, and n, obviously yields a monotone replace-
ment schema. Moreover, the conditions given by Lin &
Chen (2005) for particular problem classes additionally en-
force that the corresponding schema is closed under inter-
section. In fact, Theorem 5 constitutes a generalization of
observations made by Lin & Chen (2005).

We next deal with properties for 0-1-0-problems. To this
end, we introduce the following replacement schemas.

Definition 12 Schemas LC0-1-0 and ϑ-LC0-1-0 are given as
follows:

• dom(LC0-1-0) = {({r}, ∅) | r is a rule with B+(r) ∩
(H(r) ∪B−(r)) 6= ∅};

• dom(ϑ-LC0-1-0) = {({r}, ∅) | r is a rule such that, for
each ϑ : Vr → C, B+(rϑ) ∩ (H(rϑ) ∪ B−(rϑ)) 6= ∅};
and

• R(M,N) = >, for every (M,N) ∈ dom(R), with R ∈
{LC0-1-0, ϑ-LC0-1-0}.

Obviously, the syntactic criterion of LC0-1-0 combines, in
a sense, the conditions for TAUT and CONTRA. This is
made precise as follows:

Theorem 6 LC0-1-0?[P ] = TAUT?[P ] ∪ CONTRA?[P ],
for any program P .

In view of this and previous results, the next theorem
comes at no surprise:

Theorem 7 LC0-1-0 is ≡s-preserving. As well, LC0-1-0 is
equipollent to ϑ-LC0-1-0.

As mentioned above, Lin & Chen (2005) are concerned
with conditions making k-m-n problems true, for small
k,m, n. The following proposition rephrases a result of that
endeavor:

Proposition 1 (Lin & Chen 2005) For any ground rule r,
{r} ≡s ∅ iff LC0-1-0 is applicable to {r}.

This result can be lifted to the non-ground case, yielding
a syntactic criterion when a single rule is redundant in a pro-
gram.

Theorem 8 For any rule r, {r} ≡s ∅ iff LC0-1-0 is applica-
ble to {r}.

Finally, we remark that the replacement schema SUB, in-
troduced in the previous section, is the generalization of an-
other condition given by Lin & Chen (2005) for proposi-
tional programs.

Non-Monotone Replacement Schemas
We already have introduced a non-monotone replacement
schema in Definition 8. It has the following properties.

Theorem 9 LSH is ≡u-preserving, but not ≡s-preserving.

We note that the fact that LSH is not ≡s-preserving al-
ready follows from an analogous result in the propositional
case (Eiter et al. 2004). However, to illustrate this property,
consider the following example in the non-ground setting:
Take P as consisting of the single rule r = p(X)∨ q(X)←
o(X,Y ). Clearly, r is HCF in P = {r}, and thus LSH
is applicable to P . However, for P ′ = LSH[P ], we have
P 6≡s P ′, which can be seen by considering, e.g.,

P ′′ = {p(Y )← q(Y ); q(X)← p(X); o(a, b)},

for which we get that AS(P ∪ P ′′) = {p(a), q(a), o(a, b)}
while AS(P ′ ∪ P ′′) = ∅.

We next introduce a ≡u-preserving replacement schema,
which, to the best of our knowledge, has not been consid-
ered before, even in a propositional setting. Note that in the
definition below, δ is required to be a (bijective) renaming
rather than a substitution.

Definition 13 The replacement schema FOLD is given as
follows:

• dom(FOLD) is the set of all pairs ({r, s}, {t}), where
r, s, t are rules and there exists a renaming δ and an atom
a ∈ B−(rδ) ∩ B+(s) such that H(rδ) = H(s) = H(t)
and (B(rδ) \ {not a}) = (B(s) \ {a}) = B(t);

• for every (M,N) ∈ dom(FOLD), FOLD(M,N) = φ,
where φ(P ) holds iff, for each head atom b in P , each
ϑa : Va → C and each ϑb : Vb → C, aϑa 6= bϑb, with a
as above.

Theorem 10 FOLD is ≡u-preserving, but it does not pre-
serve ≡s.

For illustration, consider

P = {p(X,X)← q(X),not o(X);

p(Y, Y )← q(Y ), o(Y )}.

We can apply FOLD to P since no atom of form o(·) oc-
curs in a head of P . The result of the replacement is P ′ =
FOLD[P ] = {p(Y, Y ) ← q(Y )}. By the theorem above,
P ≡u P ′. For instance, adding Q = {q(a)} yields AS(P ∪
Q) = AS(P ′ ∪ Q) = {p(a, a), q(a)}. On the other hand,
adding Q′ = {q(a); o(X) ← p(X,Y )} results in AS(P ∪
Q′) = ∅, while AS(P ′ ∪Q′) = {p(a, a), q(a), o(a)}. This
shows that FOLD is not ≡s-preserving; a corresponding
counterexample can also be constructed for the propositional
setting. Furthermore, FOLD is applicable to the program
P ∪ Q as well, but it is not applicable to P ∪ Q′. Since
Q′ ⊃ Q, we observe that FOLD is not monotone.

Finally, we briefly discuss a replacement schema which is
≡o-preserving but not ≡u-preserving. For the propositional
case, this replacement schema was first considered by Brass
& Dix (1999).

Definition 14 Schema RED+ is given as follows:

• dom(RED+) = {({r}, {t}) | r, t are rules such that
H(r) = H(t) and B(r) = B(t) ∪ {not a}}; and
• for every (M,N) ∈ dom(RED+), RED+(M,N) = φ,

where φ(P ) holds iff, for each head atom b in P , each
ϑa : Va → C, and each ϑb : Vb → C, aϑa 6= bϑb, with a
as above.



Note that RED+ is, to some extent, a simplification of
FOLD, where the second rule, s, of M having a positive in
its body is not mandatory anymore. As a consequence, the
equivalence notion preserved by RED+ is weaker.

Theorem 11 RED+ is ≡o-preserving, but it is not ≡u-pre-
serving.

As in the case of LSH, the fact that RED+ is not ≡u-
preserving follows immediately from a corresponding result
in the propositional case (Eiter et al. 2004).

Complexity of Applicability
In this section, we deal with the computational complexity
of the applicability problem for a given replacement schema
R, which is the task of determining whetherR is applicable
to a given program. For space reasons, we omit involved
proofs in Cavour of intuitive explanations.

Our first result concerns the schemas TAUT, CONTRA,
and RED−.

Theorem 12 The applicability problem for each of the
replacement schemas TAUT, CONTRA, RED− is in
LOGSPACE.

This result is easily established by observing that applica-
bility of these schemas can be checked for each rule (resp.,
pair of rules in case of RED−) independently by purely
syntactical checks. Each syntactic check can be realized in
a straightforward manner using tow pointers to the input,
which require logarithmic space.

The remaining independent replacement schemas, involv-
ing two rules, are more complex, however. Preparatory for
our result, a special case of the subsumption problem is use-
ful:

Lemma 1 Given two sets, A and B, of atoms (without func-
tion symbols), the problem of deciding whether A subsumes
B, i.e., whether there exists a substitution ϑ from the vari-
ables of A into the variables and constants of B such that
Aϑ ⊆ B, is NP-complete.

Proof. Membership is by guessing a substitution ϑ from the
variables of A into the variables and constants of B and by
checking in polynomial time whether Aϑ ⊆ B.

As for NP-hardness, consider a directed graph G over the
vertices {1, ..., n}. Define B = {e(r, g), e(g, r), e(r, b),
e(b, r), e(g, b), e(b, g)} and e(Xi, Xj) ∈ A iff (i, j) is an
edge in G. This establishes a polynomial-time constructible
reduction from the NP-hard 3-colorability problem into the
subsumption problem such that G is 3-colorable iff A sub-
sumes B. 2

Theorem 13 The applicability problem for each of the re-
placement schemas NONMIN, S-IMPL, and SUB is NP-
complete. NP-hardness holds even if the arities of the pred-
icates in the given program are bounded by a constant.

Proof. We first remark that it is sufficient to show member-
ship in NP for SUB and NP-hardness for NONMIN in or-
der to establish the result.

For showing the membership of checking SUB-eligibility
in NP, guess any pair of rules r, s in the given program P ,
as well as a corresponding substitution ϑ : Vs → Vr ∪ Cr.

Checking the conditions of SUB-eligibility then amounts to
simple syntactical checks which can be done in polynomial
time.

For the hardness part, consider a program P = {r, s}
consisting of two rules, where both rules are positive con-
straints, i.e., H(r) = H(s) = B−(r) = B−(s) = ∅. In
this particular case, P is NONMIN-eligible iff there exists
a substitution ϑ such that B+(sϑ) ⊆ B+(r), i.e., iff B+(s)
subsumes B+(r). Hence, even in this simplified case the
applicability problem amounts to the subsumption problem
which is NP-complete, as shown above. 2

We now turn to non-monotone replacements.

Theorem 14 The applicability problem for the replacement
schema LSH is PSPACE-complete. If each predicate in the
given program has its arity bounded by a constant, the prob-
lem is NLOGSPACE-complete.

Informally, the difficult part is solving the HCF test. It
can be shown that this test can be performed by taking only
a restricted number of groundings into account such that the
resulting dependency graph has a polynomial number of ver-
tices. Thus, the HCF test amounts to test reachability in an
implicitly represented graph, which is PSPACE-complete.
Taking also the LSH domain check into account, we re-
mark that this check can be performed independently and
essentially amounts to the problem of finding a most general
unifier for H(r). The latter problem is well-known to be
(at least) linear time solvable. Hence, we obtain PSPACE-
completeness for LSH-eligibility in the general case. Also
note that, in the practical relevant setting of programs hav-
ing bounded predicate arities, LSH-eligibility can be tested
in NLOGSPACE, and thus in polynomial time. Here, the
implicit graph can be effectively constructed using logarith-
mic workspace. Hardness follows by reducing the reacha-
bility problem in directed graphs to deciding whether a rule
r is HCF in P for propositional P , i.e., when all predicates
in AP have arity 0.

While LSH is computationally involving in the general
case, the other two non-monotone replacement schemas turn
out to be easier.

Theorem 15 The applicability problem for FOLD is poly-
nomially equivalent (under Turing-reductions) to the graph
isomorphism problem.

Here, computational hardness is located in the check
whether two rules in the given program yield an instance
of FOLD, rather than in the test involving the proviso. In-
deed, the problem of finding a bijective renaming δ allows
for a representation of graph isomorphism already if we re-
strict ourselves to programs over binary atoms. In turn, we
can show that FOLD-eligibility can be decided by a poly-
nomial number of tests for graph isomorphism. The graph-
isomorphism problem is in NP but it is not known to be
NP-complete or belonging to P.

Our final result provides a tractable case.

Theorem 16 The applicability problem for RED+ is LOG-
SPACE-complete.

RED+-eligibility for a program P can be decided by
checking whether there exists a negative atom a in P such



that for each atom b in a head of P , any of the substitu-
tions ϑa : Va → C and ϑb : Vb → C yields aϑa 6= bϑb.
These checks can be shown to be LOGSPACE-complete by
reducing undirected graph reachability to it, which very re-
cently has been shown to be LOGSPACE-complete (Rein-
gold 2005). Since there is a polynomial number of candidate
atoms a, and each check can be performed independently,
the result for RED+-eligibility follows.

Discussion and Conclusion
Our results on replacements provide a basis for program op-
timization by rewriting in the practicably important setting
of non-ground programs. While many rewriting rules have
been proposed for propositional programs, generalizations
to the non-ground case have not yet been considered in an
answer-set programming context. We have addressed this
issue considering safe programs. However, safety is not nec-
essarily required and, in many cases, unsafe rules can be
taken into account if their replacement does not change the
active domain of the program. We leave further details on
these issues for future work.

Applying replacements for program optimization requires
the program to be scanned for applicable replacements.
Depending on the considered replacement schema, this
test requires different computational effort, ranging from
tractable cases up to PSPACE complexity. Note that for
all schemas considered in this paper, the tests for applica-
bility are cheaper than the complexity of computing an an-
swer set (which is NEXPNP-hard in general for disjunctive
programs)—in fact, with the exception of LSH, these tests
are drastically cheaper. Thus, the schemas might be con-
sidered also for online optimization and not only for static
offline optimization.

An implementation of such a scan for replacements in
non-ground logic programs is currently under development,
and a first prototype system is already available at

http://www.kr.tuwien.ac.at/research/
eq/simpl/.

This tool scans an input program and outputs those rules
which are SUB-eligible (recall that SUB is the most general
independent replacement schema over two rules we have
considered here) or LSH-eligible. The concrete checks for
applicability are realized via polynomial-time computable
reductions to reasoning problems in ASP itself. Those re-
ductions are implemented in PERL and the resulting ASP-
tasks are relegated to DLV (Leone et al. 2002), which is thus
used as a black-box solver within this system. In particular,
we reduced the applicability problem for SUB to a conjunc-
tive query problem, matching the NP-completeness of the
implemented task. Furthermore, the applicability problem
for LSH is reduced to brave reasoning over Horn programs
(which is EXPTIME-complete, and thus mildly harder than
the encoded problem).

Finally, we mention some related and future work. Trans-
formations of logic programs have been extensively stud-
ied by Pettorossi & Proietti (1994; 1996; 1998), however in
the setting of (positive) logic programs including function
symbols. Hence, the focus in that work is different to ours
in the sense that the expressivity of functions is addition-

ally exploited in order to simplify the structure of programs.
Still, there are some issues (e.g., subsumption) common with
the ASP-setting we studied here, and future work calls for a
closer comparison between techniques used in (functional)
logic programming and ASP.

Further work also includes the extension of replace-
ment schemas to the framework of first-order equilibrium
logic (Pearce & Valverde 2004a), which generalizes logic
programs under the answer-set semantics to full logical the-
ories. Another direction of research is to investigate rela-
tions to recent work by Ferraris (2005), who showed that
strong equivalence is implicit with modular rewritings of
(propositional) programs that preserve equivalence.

Appendix: Proofs
Preparatory for the proofs below, we need some additional
concepts and characterizations.

In analogy to the Herbrand base of a program, we call the
set of all ground atoms over language L the Herbrand base
ofL, denoted BL. For a set A ⊆ A of predicate symbols and
a set C ⊆ C of constants, we write BA,C to denote the set
of all ground atoms constructed from the predicate symbols
from A and the constants from C.

Following Eiter et al. (2005), we briefly recall some
important characterizations for deciding different kinds of
equivalence.

Let P be a program, I, J ⊆ BA,C interpretations, and
C ⊆ C. Then, the triple (J, I)C is an SE-model of P iff
(i) J ⊆ I , (ii) I |= grd(P,C), and (iii) J |= grd(P,C)I .
Furthermore, given C ⊆ C, we define

SEC(P ) = {(J, I)C | (J, I)C is an SE-model of P},

and SE (P ) =
⋃

C⊆C SEC(P ).
The following result captures the key property of SE-

models and extends a related characterization for proposi-
tional programs due to Turner (2003):

Proposition 2 (Eiter et al. 2005) Given programs P and
P ′, the following statements are equivalent:

• P ≡s P ′.
• SE (P ) = SE (P ′).
• For each finite C ⊆ C, SEC(P ) = SEC(P ′).

In order to capture uniform equivalence, we introduce the
concept of UE-models, again following Eiter et al. (2005).

Let P be a program and (J, I)C ∈ SE (P ). Then, (J, I)C

is a UE-model of P iff, for every SE-model (J ′, I)C of P ,
J ⊂ J ′ implies J ′ = I . We write UEC(P ) to refer to the
set {(J, I)C | (J, I)C is an UE-model of P}.

Proposition 3 (Eiter et al. 2005) For all programs P and
P ’, P ≡u P ′ iff, for each finite C, UEC(P ) = UEC(P ′).

To ease notion, we usually write SEC(r) (resp., UEC(r))
instead of SEC({r}) (resp., UEC({r})).

A rule or a program is called propositional iff it con-
tains only predicate symbols of arity 0 (i.e., propositional
atoms). Let A0 ⊆ A be a set of such atoms. SE-models for
propositional programs reduce simply to pairs (J, I) with
J ⊆ I ⊆ A0 (Turner 2003). Accordingly, UE-models for
propositional programs are then obtained from SE-models



as in the non-ground case above. With a slight abuse of no-
tation, we denote by SE (P ) the set of all SE-models of a
propositional program P , and UE (P ) refers to the set of all
UE-models of P .

In what follows, we shall implicitly consider a bijective
mapping between ground atoms over L and propositional
atoms A0. We extend this mapping to rules, programs, and
interpretations. This allows us to make use of known re-
sults for propositional programs by applying them to ground
programs. In fact, most of the following proofs on proper-
ties of replacements rely on reducing these properties to the
groundings of the considered programs.

In order to avoid a re-definition of specific replacement
schemas whose domains are intended to comprise proposi-
tional programs only, but to distinguish between the ground
setting (which amounts to propositional programs) and the
non-ground setting, we shall make use of the following no-
tion:

Definition 15 Let ≡ be an equivalence notion. A replace-
ment % is called ≡prp-preserving if P ≡ %(P ), for each
ground %-eligible program P . Analogously, a replacement
schema R is ≡prp-preserving if each of its instances is
≡prp-preserving.

We sometimes refer to a replacement schema R as being
in its ground setting, or we talk about a ground restriction of
R, in case we consider R applied to ground programs only.
This allows us to ease the definition of replacement schemas
in such situations—in particular, avoiding the handling of
variables.

Proof of Theorem 3
Since both TAUT and CONTRA are independent, we use
Theorem 2 to show the two replacement schemas are ≡s-
preserving.

For each (M,N) ∈ inst(TAUT) ∪ inst(CONTRA), it
holds that N = ∅ and M = {r}, and thus we have to show,
for each such M , M ≡s ∅. Note that any (J, I)C with J ⊆
I ⊆ BA,C is an SE-model of the empty program.

Towards a contradiction, suppose there is some ({r}, ∅) ∈
inst(TAUT) ∪ inst(CONTRA) such that {r} 6≡s ∅. By
Proposition 2, there exists some finite C ⊆ C and some
I, J ⊆ BA,C such that J ⊆ I and (J, I)C /∈ SEC(r).

First, suppose that I is not a model of grd(r, C), i.e., there
exists a substitution ϑ : Vr → C such that I 6|= rϑ. Thus,
we have that (a) B+(rϑ) ⊆ I , (b) I ∩ B−(rϑ) = ∅, and
(c) I ∩ H(rϑ) = ∅. If ({r}, ∅) ∈ inst(TAUT), then there
exists an atom a ∈ B+(r) ∪ H(r). But from this, aϑ ∈
B+(rϑ) ∩ H(rϑ) follows, and we get that Conditions (a)
and (c) cannot jointly hold. If ({r}, ∅) ∈ inst(CONTRA),
we have an atom a ∈ B+(r) ∩ B−(r), and aϑ occurs in
both B+(rϑ) and B−(rϑ). It follows that (a) and (b) cannot
jointly hold.

Second, suppose J is not a model of grd(r, C)I . The
argumentation follows a similar pattern as before, i.e., there
exists a ϑ : Vr → C such that J is not a model of {rϑ}I ,
and thus {rϑ}I 6= ∅. Moreover, it holds that (d) B+(rϑ) ⊆
J and (e) J ∩ H(rϑ) = ∅. For the case that ({r}, ∅) ∈
inst(TAUT) we get a contradiction as above. If ({r}, ∅) ∈
inst(CONTRA), there is some a ∈ B+(r) ∩ B−(r), and

thus aϑ ∈ B+(rϑ) ∩ B−(rϑ). But I ∩ B−(rϑ) = ∅ and
J ⊆ I , so B+(rϑ) 6⊆ J , contradicting Condition (d).

We thus proved Part 1 of the theorem. It remains to show
Parts 2 and 3. We show only Part 2 in what follows; the
proof of Part 3 is similar.

We have to show that TAUT and ϑ-TAUT are equipol-
lent, i.e., that TAUT?[P ] = ϑ-TAUT?[P ], for every pro-
gram P .

Fix some program P . That TAUT?[P ] ⊆ ϑ-TAUT?[P ]
holds is an immediate consequence of the fact that for every
({r}, ∅) ∈ inst(TAUT), a ∈ H(r) ∩ B+(r) implies aϑ ∈
H(rϑ) ∩B+(rϑ), for all ϑ : Vr → C.

Now suppose that P is not TAUT-eligible. Then, H(r)∩
B+(r) = ∅, for each r ∈ P . Take some r ∈ P and a
ground substitution ϑ mapping each variable X in r to a
new distinct constant cX (this is possible since we assume
an infinite universe). Then, for any a ∈ H(r) and any b ∈
B+(r), we get aϑ 6= bϑ, since, by assumption, either a and
b have different predicate symbols or differ at some variable
occurrence. This shows that there exists a substitution such
that H(rϑ)∩B+(rϑ) = ∅. Since this holds for all r ∈ P , we
get that P is not ϑ-TAUT-eligible as well. Consequently,
ϑ-TAUT?[P ] ⊆ TAUT?[P ].

Proof of Theorem 4
We only show that SUB is ≡s-preserving; the correspond-
ing results for RED−, NONMIN, and S-IMPL are then
trivial consequences, since for any program P and any
R ∈ {RED−,NONMIN,S-IMPL}, it holds thatR?(P ) ⊆
SUB?(P ), whenever P is applicable toR.

We use a different strategy here than in the proof of The-
orem 3; however, we make use of Theorem 2 again: We
show that for each (M,N) ∈ inst(SUB), M ≡s N holds,
by considering the relations grd(M,C) ≡s grd(N,C), for
any finite C ⊆ C, in view of Proposition 2. For the latter, we
show that a sequence of applications of the ground restric-
tion of SUB to the program grd(M,C) eventually results
in grd(N,C). To this end, we make use of the following
result:

Proposition 4 (Lin & Chen 2005) SUB is ≡prp

s -preserv-
ing.

So let (M,N) = ({r, s}, {s}) be an instance of SUB, and
fix some finite C ⊆ C. We show grd(M,C) ≡s grd(N,C).

By definition of SUB, there exists some ϑ : Vs → Vr∪Cr
such that H(sϑ) ⊆ H(r) ∪ B−(r) and B(sϑ) ⊆ B(r). We
write grd(M,C) as follows:

grd(M,C) = grd(s, C) ∪ {rθ, sϑθ | θ : Vr → C},

with ϑ from above. Now, the ground restriction of SUB is
applicable to {rθ, sϑθ}, for each substitution θ. By Propo-
sition 4, we are allowed to apply SUB step-by-step to each
set {rϑ, sϑθ} ⊆ grd(M,C) and replace it by {sϑθ}. The
resulting program is (i) strongly equivalent to grd(M,C),
and (ii) exactly matches grd(N,C) = grd({s}, C), since,
for each θ, sϑθ ∈ grd({s}, C).

Proof of Theorem 8
The only-if direction is an immediate consequence of our re-
sults about TAUT and CONTRA, as well as of Theorem 6.



For the if-direction, we first show that, for P = {r}, P ≡s

∅ implies {rϑ} ≡s ∅, for every ϑ : Vr → C.
Towards a contradiction, assume P ≡s ∅ but {rϑ} 6≡s ∅,

for some ϑ : Vr → C,C ⊆ C. Then, there exist inter-
pretations I, J ⊆ BA,C such that (J, I)C ∈ SE (∅) and
(J, I)C 6∈ SE ({rϑ}). By Proposition 2, we can assume that
C is finite. Hence, since (J, I)C ∈ SE (∅), the hypothesis
that {r} ≡s ∅ implies that (J, I)C ∈ SE ({r}). However,
since rϑ ∈ grd(r, C), we have that I |= rϑ and J |= rϑI ,
i.e. (J, I)C ∈ SE ({rϑ}), a contradiction.

So, we have shown that {r} ≡s ∅ implies {rϑ} ≡s ∅,
for every ϑ : Vr → C. Therefore, by Proposition 1, {rϑ}
is LC0-1-0-applicable for every ϑ : Vr → C. By defini-
tion, this implies that {r} is ϑ-LC0-1-0-eligible, and thus
LC0-1-0-eligible as well.

Proof of Theorem 9
First, we need an auxiliary result which deals with a weaken-
ing of replacements and which is also used for further proofs
below.

Lemma 2 Let % = (φ,M,N) be an ≡-preserving replace-
ment with SE (M) ⊆ SE (N) and M being classically
equivalent to N . Then, for any M ′ ⊆ M , %′ = (φ,M,N ∪
M ′) is ≡-preserving. Furthermore, for M ′ = M , %′ is ≡s-
preserving.

We also exploit the following result for the ground case:

Proposition 5 (Eiter et al. 2004) LSH is ≡prp

u -preserving.

We now commence with the proof of Theorem 9. We
show that for any instance % of LSH and each %-eligible pro-
gram P , P ≡u %[P ] holds.

Consider some % ∈ inst(LSH) and some %-eligible pro-
gram P . In view of Proposition 3, we show that, for each
finite C ⊆ C, UEC(P ) = UEC(%[P ]), i.e., grd(P,C) ≡u

grd(%[P ], C) (note that grd(P,C) and grd(%[P ], C) are fi-
nite programs). From this, we conclude that each % ∈
inst(LSH) is ≡u-preserving. Consequently, LSH is ≡u-
preserving.

So, let C ⊆ C be finite, % ∈ inst(LSH), and P %-eligible.
By definition, % is of the form (φ, {r}, Nr). We show that
grd(P,C) ≡u grd(%[P ], C).

Let P ′ = P \M . Then,

grd(P,C) = grd(P ′, C) ∪ {rθ | θ : Vr → C}.

Let rθ0, . . . , rθn be all groundings of r with respect to C,
and define, for each 0 ≤ i ≤ n + 1,

Pi = grd(P ′, C) ∪ {rθj | i ≤ j ≤ n} ∪
i−1⋃

k=0

Nrθk.

Then, the ground restriction of LSH is applicable to Pi,
for any 0 ≤ i ≤ n, by choosing %i = (φ, {rθi}, Nrθi

).
Indeed, in view of the condition that for each ϑ : Vr → C,
|H(rϑ)| > 1 must hold, a fortiori it holds for θi, and thus
rθi is properly disjunctive. Moreover, by hypothesis that r
is HCF in P , we have, for any finite C ⊆ C and each r′ ∈
grd(r, C), that r′ is HCF in grd(P,C). Hence, rθi is HCF
in grd(P,C). Note that rθi is then HCF in Pi as well, since
shifting does not change the positive dependency graph. We

have two cases: First, if rθi ∈ grd(P ′, C), i.e., if the rule is
also contained in the remaining grounding, then we just add
Nrθi to Pi. The resulting program is then Pi+1 and since
it can be verified that, for any disjunctive rule r, SE (r) ⊆
SE (Nr), we get by Lemma 2, Pi ≡s Pi+1, which implies
Pi ≡u Pi+1. Second, if rθi /∈ grd(P ′, C), we in fact apply
%i. By Proposition 5, Pi ≡u %i[Pi]. Moreover, %i[Pi] =
Pi+1. Hence, we have shown for each 0 ≤ i ≤ n, that Pi ≡u

Pi+1. Observing finally that P0 = grd(P,C) and Pn+1 =
grd(%[P ], C), we arrive at grd(P,C) ≡u grd(%[P ], C).

Proof of Theorem 10
As in the proofs before, we first start with a corresponding
result for the ground case.

Lemma 3 FOLD is ≡prp

u -preserving.

Proof. Let ({r, s}, {t}) ∈ dom(FOLD) such that r, s, t are
propositional rules and let a be an atom with a ∈ B−(r) ∩
B+(s). We show that, for any propositional program P such
that a does not occur in rule heads of P , the programs P ′ =
P ∪ {r, s} and P ′′ = P ∪ {t} satisfy UE (P ′) = UE (P ′′).
We have the following observations:

1. {r, s} and {t} have the same classical models; from this
we immediately get that, for each propositional interpre-
tation I , (I, I) ∈ UE (P ′) iff (I, I) ∈ UE (P ′′);

2. for any program Q without a in its head and for any
propositional interpretation I with a ∈ I , it holds that
(I, I) ∈ UE (Q) implies (I \ {a}, I) ∈ UE (Q) (this ob-
servation thus applies to both P and P ′′);

3. for each I with a /∈ I , it holds that (J, I) ∈ SE ({r, s}) iff
(J, I) ∈ SE ({t}); basically, this follows from the follow-
ing facts: (i) each J ⊆ I is a model of {r}I , since a /∈ J
but a ∈ B+(r), and (ii) {s}I = {t}I , by definition.

It follows that UE (P ′) = UE (P ′′), and thus P ′ ≡u P ′′,
in view of Proposition 3. By the construction of P ′ and
P ′′ = %[P ′], which is obtained from any replacement % =
(φ, {r, s}, {t}) ∈ inst(FOLD), we conclude that FOLD is
≡prp

u -preserving. 2

Also observe that SE ({r, s}) ⊆ SE (t) holds for any pair
({r, s}, {t}) ∈ dom(FOLD).

We proceed with the proof of Theorem 10. Having now
Lemma 3 at hand, we can use a similar strategy as done in
the previous results. That is, we show that, for any instance
% of FOLD and each %-eligible program P , P ≡u %[P ].

So, let % = (φ, {r, s}, {t}) be an instance of FOLD, along
with a renaming δ and an atom a as in Definition 13. Then,
φ(P ) holds for any P such that, for each head atom b in P ,
each ϑa : Va → C, and each ϑb : Vb → C, aϑa 6= bϑb.

Let P be a %-eligible program and P ′ = P \ {r, s}. We
show, for each finite C ⊆ C, grd(P,C) ≡u grd(%[P ], C),
i.e., UEC(P ) = UEC(%[P ]). By Proposition 3, P ≡u %[P ]
follows, and thus, by definition, % is ≡u-preserving.

Taking the renaming δ into account, we have that

grd(P,C) = grd(P ′, C) ∪ {rθ, sθ | θ : VP → C}

= grd(P ′, C) ∪ {rδθ, sθ | θ : Vs → C}.



Let θ0, . . . , θn be all substitutions from Vs to C as used
above and define, for each 0 ≤ i ≤ n + 1,

Pi = grd(P ′, C)∪{rδθj , sθj | i ≤ j ≤ n}∪

{tθk | 0 ≤ k < i}.

Note that the ground restriction of FOLD is applicable
to Pi, for each 0 ≤ i ≤ n, and Pi+1 is among the pos-
sible results of FOLD applied to Pi. More precisely, for
each Pi we replace the two rules rδθi and sθi by tθi, and
if {rδθi, sθi} ∩ grd(P ′, C) 6= ∅, we take the correspond-
ing weakened replacement, as in Lemma 2 (using the fact
that {rδθi, sθi} is classically equivalent to {tθi}). Hence,
in either case we end up with Pi+1. By definition, aθi ∈
B−(rδθi) ∩ B+(sθi), H(rδθi) = H(sθi) = H(tθi), and
B(rδθi) \ {not aθi} = B(sθi) \ {aθi} = B(tθi). Now, aθi

does not occur in any head of Pi, which is guaranteed by
the condition for φ(P ). By Lemma 3, we then get, for each
0 ≤ i ≤ n, Pi ≡u Pi+1. This concludes the proof, since
P0 = P and Pn+1 = %[P ].

Proof of Theorem 11
We again make use of a corresponding result for the ground
case.

Proposition 6 (Brass & Dix 1999) The schema RED+ is
≡prp

o -preserving.

Also observe that, for each ({r}, {t}) ∈ dom(RED+),
SE (r) ⊆ SE (t) holds.

We show that for any instance % of RED+ and any %-
eligible program P , P ≡o %[P ]. Consider an instance
% = (φ, {r}, {t}) of RED+ and some atom a such that
a ∈ B−(r) and B(t) = B(r)\{not a}. By definition, φ(P )
holds if, for each head atom b in P , each ϑa : Va → C, and
each ϑb : Vb → C, aϑa 6= bϑb.

Let P ′ = P \ {r}, and consider

grd(P ) = grd(P ′, CP ) ∪ {rθ | θ : Vr → CP }

As before, we successively replace each rule from {rθ | θ :
Vr → CP } by the corresponding rule tθ (possibly keep-
ing rθ within the program, whenever rθ ∈ grd(P ′, CP )).
By hypothesis that P is %-eligible, the ground restriction
of RED+ is applicable to each program in this sequence.
By Lemma 2 and Proposition 6, one shows that each of this
steps retains ordinary equivalence. Therefore, we get that
P ≡o %[P ].
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