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Abstract

Ordered disjunctions have been introduced as a simple, yet
expressive approach for representing preferential knowledge
by means of logic programs. The semantics for the resulting
language is based on the answer-set semantics, but comes in
different variants, depending on the particular interpretation
of preference aggregation associated to the ordered disjunc-
tion connective. While in standard answer-set programming
the question of when a program is to be considered equivalent
to another received increasing attention in recent years, this
problem has not been addressed for programs with ordered
disjunctions so far. In this paper, we discuss the concept of
strong equivalence in this setting. We introduce differentver-
sions of strong equivalence for programs with ordered dis-
junctions and provide model-theoretic characterisations, ex-
tending well-known ones for strong equivalence between or-
dinary logic programs. Furthermore, we discuss the relation-
ships between the proposed notions and study their computa-
tional complexity.

Introduction
During the last decade,answer-set programming(ASP) has
become an increasingly acknowledged tool for declarative
knowledge representation and reasoning (Gelfond & Lif-
schitz 1988; Marek & Truszczyński 1999; Niemelä 1999;
Baral 2002). A main advantage of ASP is that it is based on
solid theoretical foundations while being able to model com-
monsense reasoning in an arguably satisfactory way. The
availability of efficient solvers has furthermore stimulated
its use in practical applications in recent years. This de-
velopment had quite some implications on ASP research.
For example, increasingly large applications require features
for modular programming. Another issue is the fact that in
applications, ASP code is often generated automatically by
so-calledfrontends, calling for optimisation methods which
remove redundancies, as also found in database query op-
timisers. For these purposes, the fairly recently suggested
notion ofstrong equivalencefor ASP (Lifschitz, Pearce, &
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Valverde 2001; Turner 2003) can be used. Intuitively, two
programsP andQ are strongly equivalent iff, for any pro-
gramR, P ∪R andQ∪R have the same answer sets. To put
it another way, two ASP programs are strongly equivalent
if they can be used interchangeably in any context (accord-
ingly, the programR above is also referred to as thecontext
program). This gives a handle on showing the equivalence
of ASP modules. Moreover, if a program is strongly equiv-
alent to a subprogram of itself, then one can always use the
subprogram instead of the original program, yielding poten-
tial for optimisation.

Among the different lines of ASP research, many exten-
sions of the basic formalism have been proposed—an impor-
tant one is the modelling of preferences in ASP (Delgrande
et al. 2004). Strongly rooted in the research of nonmono-
tonic formalisms, the ability to specify preferences is ac-
knowledged to be particularly beneficial to ASP, since they
constitute a very natural and effective way of resolving in-
determinate solutions.

A recent means of representing preferences is ASP with
ordered disjunctions(Brewka 2002; Brewka, Niemelä, &
Syrjänen 2004). The basic idea is to augment the syntax
by a designated operator “×” to form ordered disjunctions.
Programs of this form (calledlogic programs with ordered
disjunctions, or LPODs) can be evaluated in a standard way
or with respect to different preferential semantics which take
the occurrences of this new operator into account. The sys-
tem psmodels(Brewka, Niemelä, & Syrjänen 2004) serves
as a computational engine for these semantics. Applica-
tions of logic programs with ordered disjunctions include
policy languages (Bertino, Mileo, & Provetti 2005), plan-
ning (Zepedaet al. 2005), and game theory (Foo, Meyer,
& Brewka 2004). Also, extended ASP formalisms, like CR-
Prolog (Balduccini & Mellarkod 2003), have been enhanced
with ordered disjunctions.

In this paper, we examine how the inclusion of prefer-
ences in the form of ordered disjunctions affects equiva-
lence, and in particular strong equivalence of ASP. To this
end, we introduce different notions of strong equivalence
for LPODs. The distinguishing aspects of these notions
are (i) whether the context programs are arbitrary LPODs
or just ordinary programs, i.e., whether the context may
change preferential information, and (ii) whether the seman-
tics is taken in terms of standard answer sets or preferred an-



swer sets. Following Brewka, Niemelä, & Syrjänen (2004),
we study three different preference strategies, viz. Pareto-,
inclusion-, and cardinality-based relations (identified using
the lettersp, i, andc, respectively). More formally, we in-
troduce the following relations: for all LPODsP andQ,

• P ≡s Q holds iff the standard answer sets ofP andQ
coincide under any extension by ordinary programs;

• P ≡s,× Q holds iff the standard answer sets ofP andQ
coincide under any extension by LPODs;

• P ≡σ
s Q holds iff theσ-preferred answer sets ofP andQ

coincide under any extension by ordinary programs (for
σ ∈ {p, i, c}); and

• P ≡σ
s,× Q holds iff the σ-preferred answer sets ofP

andQ coincide under any extension by LPODs (forσ ∈
{p, i, c}).

For all of these notions we provide novel model-theoretic
characterisations and we discuss relations among them. Fur-
thermore, the notions coincide for ordinary programs, so
they properly generalise the usual concept of strong equiv-
alence. Interestingly, the two relations on standard answer
sets,≡s and≡s,×, coincide and can be characterised in a
similar fashion as strong equivalence for ordinary programs.
That is to say, this characterisation uses a generalisationof
the concept of anSE-model(Turner 2003), based on a novel
notion of a reduct, extending the usual reduct as introduced
by Gelfond & Lifschitz (1988). For the two relations on pre-
ferred answer sets,≡σ

s and≡σ
s,×, it turns out that, for each

σ ∈ {p, i, c}, ≡σ
s,× is a proper subrelation of≡σ

s . Hence,
for all LPODs P , Q, P ≡σ

s,× Q implies P ≡σ
s Q, but

the converse direction does not hold in general. The model-
theoretic characterisations for these notions include theones
for ≡s but in addition require specific conditions (with re-
spect to the chosen preference strategy) on answer-sets can-
didates.

Our analysis about the relationships between the different
introduced equivalence notions actually provides a complete
picture. Moreover, we also discuss the computational com-
plexity of equivalence checking, showing that equivalence
checking for LPODs under the considered notions has the
same worst-case complexity as checking strong equivalence
for ordinary programs, viz. this task is co-NP-complete for
each equivalence notion.

Preliminaries
A logic program with ordered disjunction(LPOD) (Brewka,
Niemelä, & Syrjänen 2004) is a finite set of rules of the form

p1×· · ·×pk ← pk+1, . . . , pm,not pm+1, . . . ,not pn, (1)

where1 ≤ k ≤ m ≤ n, and eachpi (1 ≤ i ≤ n) is
an atom1 from a universeU ;2 PU denotes the set of all

1In contrast to previous work (Brewka 2002; Brewka, Niemelä,
& Syrjänen 2004), we do not consider strong negation for reasons
of simplicity.

2In general, we assume that this universe is fixed and suitably
large. Usually, we assume that the universe amounts to the set of
atoms occurring in the considered programs.

LPODs over universeU . Let r be a rule of form (1). We
call k the arity of r, and denote it byα(r). Furthermore,
r is normal if k = 1 and Horn if k = 1 and m = n.
We usehead(r) = {p1, . . . , pk} to denote theheadof r
andhead j(r) to denote thej-th element,pj , from the head
of r (for j > k, let head j(r) = pk). Moreover, we de-
fine body(r) = {pk+1, . . . , pm, not pm+1, . . . ,not pn},
called thebody of r, body+(r) = {pk+1, . . . , pm}, and
body−(r) = {pm+1, . . . , pn}. Thej-th option(1 ≤ j ≤ k)
of r is defined as

r[j] = pj ← pk+1, . . . , pm,not pm+1, . . . ,not pn,

not p1, . . . ,not pj−1.

We will also write a ruler of form (1) asp1 × · · · × pk ←
body(r) whenever convenient, andr[j] as head j(r) ←
body(r),not head1(r), . . . ,not head j−1(r).

For a programP , atoms(P ) is given by
⋃

r∈P

(
head(r)∪

body+(r) ∪ body−(r)
)
. Furthermore, we say thatP is over

V if atoms(P ) ⊆ V . A program isnormal, or a logic pro-
gram (LP)simpliciter, if each rule in it is normal. A pro-
gram isHorn if each rule in it is Horn. Asplit programof
an LPOD is obtained by replacing each rule by one of its
options. Clearly, any split program is normal, and a normal
program is the unique split program of itself. The set of all
split programs of an LPODP is denoted asSP(P ).

An interpretationI, i.e., a set of atoms,satisfiesa rule
r, symbolically I |= r, iff I ∩ head(r) 6= ∅ whenever
body+(r) ⊆ I and I ∩ body−(r) = ∅ jointly hold. An
interpretationI satisfies an LPODP , symbolicallyI |= P ,
iff I |= r, for eachr ∈ P . I is then also called a (classical)
modelof P .

The reduct(Gelfond & Lifschitz 1988) of an LPP rela-
tive toan interpretationI is defined byP I = {head(r) ←
body+(r) | r ∈ P, body−(r) ∩ I = ∅}. The smallest inter-
pretation satisfying a Horn programP is denoted byCn(P ).
An interpretationI is ananswer setof a normal programP
if Cn(P I) = I. The answer sets of an LPODP are defined
as the collection of all answer sets of its split programs.3

We useAS (P ) for denoting the set of all answer sets ofP .
Hence,AS (P ) = {I | ∃P ′ ∈ SP(P ) : I ∈ AS (P ′)}. In
order to distinguish the answer sets as introduced here to the
preferred answer sets defined below, we call elements from
AS(P ) also thestandardanswer sets ofP .

Let r be a rule of arityk. An interpretationI satisfiesr
to degreej, in symbolsI |=j r, for 1 ≤ j ≤ k, if I |= r[j]
and for all1 ≤ i < j, I 6|= r[i]. Note thatI |=1 r also holds
if the body ofr is not satisfied byI. Intuitively, satisfying
a rule to degree1 means that there is “no better way” to
satisfy it. We also usedI(r) to denote the degree to which
r is satisfied underI. This concept gives rise to program
partitions, formed by rules which are satisfied to the same
degree. Given a programP , an interpretationI, and a degree
j, we denote these partitions byPI [j] = {r ∈ P | I |=j r}.

In contrast to Brewka, Niemelä, & Syrjänen (2004), we
define the concept of preferences in a more general way:

3Brewka, Niemelä, & Syrjänen (2004) provide an alternative
definition of answer sets for LPODs based on a reduct. We intro-
duce a different notion of a reduct for our purposes later, however.



While in (Brewka, Niemelä, & Syrjänen 2004) preferences
(of different kinds) are always defined with respect to a pro-
gram, we would like to abstract from programs and refer
to a “type” of preference without fixing the program. A
preference schema(or preference, for short) is a mapping
σ : PU → 22U×2U

assigning each LPODP over universeU
a preference relationσ between interpretations overU , de-
noted by>σ

P . We call>σ
P also aninstanceof preferenceσ.

We now define four preference schemata,ǫ, p, i, and,
c, respectively referring to theempty, a Pareto-based, an
inclusion-based, and acardinality-basedpreference. Their
instances,>ǫ

P , >p
P , >i

P , and>c
P , are as follows: LetI, J be

(classical) models of a programP . Then,

• I >ǫ
P J never holds,

• I >p
P J iff there is a ruler ∈ P such thatdI(r) < dJ(r),

and for nor ∈ P , dI(r) > dJ(r),

• I >i
P J iff there is ak such thatPI [k] ⊃ PJ [k], and for

all j < k, PI [j] = PJ [j],

• I >c
P J iff there is ak such that|PI [k]| > |PJ [k]|, and

for all j < k, |PI [j]| = |PJ [j]|.

Given a preferenceσ, an interpretationI is aσ-preferred
answer setof an LPODP I ∈ AS(P ) and there is no
J ∈ AS(P ) such thatJ >σ

P I. Intuitively, theσ-preferred
answer set of an LPODP are the standard answers sets of
P which are maximal with respect to>σ

P . The set of allσ-
preferred answer sets of an LPODP is denoted byASσ(P ).
We observe thatAS ǫ(P ) = AS(P ).

Note that, for the preferences defined above,I >ǫ
P J

trivially implies I >p
P J , I >p

P J implies I >i
P J , and

I >i
P J implies I >c

P J , for any programP . Hence,
AS c(P ) ⊆ AS i(P ) ⊆ ASp(P ) ⊆ AS(P ). There are
programs for which all subset-relations are proper, as the
following example demonstrates.

Example 1 Consider the following programP (we label
rules with ordered disjunctions for easier reference):

a← not b,not c; b← not a,not c;
c← not a,not b; z ← b; z ← c;
ra : b× d← a; rb : c× e× f ← a;
rc : a× b× c← z; rd : c× b← z.

The standard answer sets ofP are A1 = {a, d, e}, A2 =
{a, d, f}, A3 = {b, z}, andA4 = {c, z}, with the following
rule-satisfaction degrees:

1 2 3
A1 P \ {ra, rb} {ra, rb} ∅
A2 P \ {ra, rb} {ra} {rb}
A3 P \ {rc, rd} {rc, rd} ∅
A4 P \ {rc} ∅ {rc}

We have thatA4 >c
P A2, A4 >c

P A3, andA4 >c
P A1,

and thereforeAS c(P ) = {A4}. We also haveA1 >i
P A2,

A4 >i
P A3, but A4 6>i

P A1 and A3 6>i
P A1, hence

AS i(P ) = {A1, A4}. But then we haveA4 6>
p
P A3

(dA4
(rd) < dA3

(rd), but dA4
(rc) > dA3

(rc)) and also
A2 6>

p
P A3 andA1 6>

p
P A3. In addition,A1 >p

P A2 holds,
and thereforeAS p(P ) = {A1, A3, A4}.

We conclude this section with a discussion of different
equivalence notions. Two LPODs,P and Q, are said to
be (ordinarily) equivalent, denotedP ≡ Q, iff AS (P ) =
AS(Q), andσ-equivalent, denotedP ≡σ Q, iff ASσ(P ) =
ASσ(Q), for any preferenceσ. Two LPsP1 and P2 are
strongly equivalent(Lifschitz, Pearce, & Valverde 2001),
denotedP1 ≡s P2, iff, for any LP P , AS(P1 ∪ P ) =
AS(P2 ∪ P ). Following Turner (2003), strong equivalence
between LPs can be characterised as follows: LetP be an
LP (overU ) andX, Y sets of atoms such thatX ⊆ Y ⊆ U .
The pair(X, Y ) is anSE-model(overU ) of P if Y |= P
and X |= PY . By SE (P ) we denote the set of all SE-
models ofP . Then, for any LPsP1 andP2, P1 ≡s P2 iff
SE(P1) = SE (P2).

Defining a Reduct for LPODs
As noted above, we now provide a definition of a reduct
which properly extends the usual one due to Gelfond & Lif-
schitz (1988), and which allows us to characterise answer
sets of LPODs just in the same way as answer sets of LPs.

Definition 1 Let P be an LPOD andI an interpretation.
Then,P I is given by

{head j(r)← body+(r) | r ∈ P, I ∩ body−(r) = ∅,

I |=j r
}
∪

{
headα(r)(r)← body+(r) | r ∈ P, I 6|= r}.

In other words, for a ruler = p1 × · · · × pk ← body(r), we
take the positive part,pj ← body+(r), of thej-th option of
r to build the reductP I , in caseI ∩ body−(r) = ∅ andr is
satisfied to degreej by I; if r is not satisfied byI (note that
in this caseI∩body−(r) = ∅ holds as well), we take the pos-
itive part of the least option, i.e.,headα(r)(r) ← body+(r).
Therefore, all rulesr ∈ P with I ∩ body−(r) 6= ∅ are not
taken into account in the construction ofP I , which is in
accordance with the original concept of a program reduct.
In particular, for a normal programP , our definition of a
reduct coincides with the usual notion of a reduct, since, for
any normal ruler, we have thatr = r[1], and thusI |= r iff
I |=1 r, hencer ∈ P I iff I ∩ body−(r) = ∅. Thus,P I as
defined in the background for LPs, is properly generalised to
LPODs by Definition 1. The difference to the reductP I

× as
defined by Brewka, Niemelä, & Syrjänen (2004) is that rules
r from P with I 6|= r are not necessarily present inP I

×.
We furthermore note that the reduct as defined by Brewka,

Niemelä, & Syrjänen (2004) differs from the original no-
tion of a reduct as defined by Gelfond & Lifschitz (1988)
on some normal programs, while the reduct of Definition 1
does not. For example, for the programP = {a ← b}, we

haveP
{b}
× = ∅, while P {b} = {a ← b} according to Defi-

nition 1 and Gelfond & Lifschitz (1988). Also, observe that
{b} |= P

{b}
× while {b} 6|= P , a scenario that cannot occur

with the reduct of Definition 1. Indeed, this is a consequence
of the general property stated next.

Lemma 1 For each LPODP and each interpretationI,
I |= P iff I |= P I .

Proof. (⇒) FromI |= P , we have, for eachr ∈ P , I |= r,
and thusI |=j r, for some degreej. Thus, for eachr ∈ P ,



we have eitherI ∩ body−(r) 6= ∅ or I |= head j(r) ←
body+(r), andI |= P I follows.

(⇐) If I 6|= P , then there exists somer ∈ P such that
body+(r) ⊆ I andI ∩ (head(r) ∪ body−(r)) = ∅. This
implies body+(r) ⊆ I andI ∩ head(r) = ∅. Hence, for
any1 ≤ i ≤ α(r), I 6|= head i(r) ← body+(r). This holds,
in particular, fori = α(r) and sincepα(r) ← body+(r) is
contained inP I , we getI 6|= P I . 2

Lemma 2 LetP be an LPOD,S ∈ SP(P ), andI an inter-
pretation. Then,I |= S impliesI |= P .

Proof. SupposeI 6|= P . Hence, there exists a ruler ∈ P
such thatbody+(r) ⊆ I andI ∩ (head (r)∪ body−(r)) = ∅.
SinceS ∈ SP(P ), the j-th option ofr, r[j], is contained
in S, for somej. Sincebody+(r[j]) = body+(r), and
(head(r[j])∪body−(r[j])) ⊆ (head(r)∪body−(r)), we get
body+(r[j]) ⊆ I andI ∩ (head(r[j]) ∪ body−(r[j])) = ∅,
thusI 6|= S. 2

Now we can use our notion of reduct to characterise the
standard answers of an LPOD.

Theorem 3 Let P be an LPOD andI an interpretation.
Then,I ∈ AS(P ) iff I = Cn(P I).

Proof.(⇐) AssumeI = Cn(P I), and consider the program
S which contains, for each ruler ∈ P thej-th option,r[j],
of r if I |=j r for some1 ≤ j ≤ k, and theα(r)-th option
of r otherwise. By construction,S ∈ SP(P ) andP I = SI .
SinceI = Cn(P I) by hypothesis, we getI = Cn(SI), and
thusI ∈ AS(P ).

(⇒) From I ∈ AS(P ) we get that there exists a split
programS ∈ SP(P ) such thatI = Cn(SI). We show that
I = Cn(P I). FromI |= SI (and sinceS is an LP) we know
I |= S. By Lemma 2,I |= P , and thus, by Lemma 1, we get
I |= P I . It remains to show that for eachJ ⊂ I, J 6|= P I .
So, fix someJ ⊂ I. We knowJ 6|= SI , i.e.J 6|= {r[j]}I , for
somej-th option of a ruler ∈ P . FromJ 6|= {r[j]}I , we get
I ∩ body−(r) = ∅, I ∩ {head1(r), . . . , head j−1(r)} = ∅,
body+(r) ⊆ J , andhead j(r) /∈ J . But head j(r) ∈ I has to
hold, otherwiseI 6|= S. But then, we havebody+(r) ⊆ I,
since J ⊂ I, I ∩ body−(r) = ∅, head j(r) ∈ I and
I ∩ {head1(r), . . . , head j−1(r)} = ∅. Therefore, by
definition,I |=j r, and sinceI ∩ body−(r) = ∅, we get that
head j(r) ← body+(r) is contained inP I . Consequently,
J 6|= P I . 2

We also mention a basic property, which one expects from
a reduct, and which clearly holds by the definition which
defines a reduct rule by rule.

Proposition 4 For any LPODP , Q, and any interpretation
I, (P ∪Q)I = P I ∪QI .

Non-preferential Strong Equivalence
In this section, we extend the concept of strong equivalence
to LPODs by comparing their standard answer sets. As we

will see later, this notion is also underlying (preferential)
strong equivalence which relies on comparisons of preferred
answer sets. However, already for standard strong equiva-
lence we can, in principle, distinguish between two possible
scenarios for the types of programs which are considered as
context of the comparison. In fact, we distinguish between
a non-preferential context, which refers to any normal pro-
gram, or an arbitrary context which also includes the entire
class of LPODs.

Definition 2 Let P and Q be two LPODs. Then,P and
Q arestandard strongly equivalent for non-preferential con-
text, symbolicallyP ≡s Q, iff, for any LPR, (P ∪ R) ≡
(Q ∪ R). P andQ are standard strongly equivalent (for ar-
bitrary context), symbolicallyP ≡s,× Q, iff, for any LPOD
R, (P ∪R) ≡ (Q ∪R).

In order to characterise these strong-equivalence notions
between LPODs, we define the notion of an SE-model for
LPODs in the same way as done for LPs, but using our new
notion of a reduct.

Definition 3 A pair (X, Y ) of interpretations withX ⊆ Y
is an SE-modelof an LPODP iff Y |= P andX |= P Y .
The set of all SE-models of an LPODP is denoted by
SE(P ).

Our generalised notion for LPODs shares some impor-
tant property with the traditional notion of SE-models for
LPs—in particular, the following one, which easily follows
from Proposition 4 and the fact the satisfaction is defined in
a standard way.

Proposition 5 For all LPODs P , Q, SE (P ) ∩ SE (Q) =
SE(P ∪Q).

The next result shows that the extended concept of an
SE-model characterises both LPOD- and LP-strong equiv-
alence. Thus, the latter two notions coincide.

Theorem 6 For all LPODs P, Q, the following statements
are equivalent:(1) P ≡s,× Q; (2) P ≡s Q; (3) SE (P ) =
SE(Q).

Proof.The proof proceeds basically along the lines of the
corresponding proof by Turner (Turner 2003). Recall that
following Theorem 3, for any LPODP , I ∈ AS(P ) iff
I |= P and noJ ⊂ I satisfiesJ |= P I .
(1)⇒ (2): Follows by definition.
(2)⇒ (3): Suppose, without loss of generality,(X, Y ) ∈
SE(P ) \ SE (Q).

Case 1:X = Y . Then,Y |= P andY 6|= Q. Clearly,
Y ∈ AS(P ∪ {y ←| y ∈ Y }) butY /∈ AS (Q ∪ {y ←| y ∈
Y }).

Case 2:X ⊂ Y and(Y, Y ) ∈ SE (P ) ∩ SE (Q). Take

R = {x← | x ∈ X} ∪ {p← q | p, q ∈ Y \X}.

Then,Y |= Q ∪ R, and, for eachZ ⊂ Y with X 6= Z,
Z 6|= RY = R. SinceX 6|= QY , by hypothesis(X, Y ) /∈
SE(Q), we obtain that noU ⊂ Y satisfiesU |= (Q ∪R)Y .
Consequently,Y ∈ AS(Q ∪ R). On the other hand,X |=
PY by hypothesis, andX |= RY is easily checked, since
R = RY . But then,X |= P Y ∪ RY = (P ∪ R)Y . Hence,



Y /∈ AS(P ∪ R). In both cases we used an LPR to show
AS(P ∪R) 6= AS (Q ∪R), henceP 6≡s Q.
(3) ⇒ (1). Suppose there exists an LPODR such that
AS(P ∪ R) 6= AS(Q ∪ R). Without loss of generality,
assume thatY ∈ AS(P ∪R) \AS(Q∪R). We getY |= P
andY |= R, and thus have two cases forY /∈ AS(Q ∪ R).
First, Y 6|= Q. We immediately get(Y, Y ) /∈ SE (Q) and
are done, since(Y, Y ) ∈ SE (P ) holds in view ofY |= P .
So supposeY |= Q but someX ⊂ Y satisfies(Q ∪ R)Y .
Then,X |= QY and we obtain(X, Y ) ∈ SE (Q). On the
other hand, sinceX |= RY , we haveX 6|= P Y , otherwise
X |= PY ∪ RY = (P ∪ R)Y , which contradicts the
assumptionY ∈ AS(P ∪ R). From X 6|= P Y , we get
(X, Y ) /∈ SE (P ). 2

By definition, it is clear that standard strong equivalence
implies standard equivalence between LPODs. The example
given next shows that such an implication does, in general,
not hold forσ-equivalence, whereσ ∈ {p, i, c}.

Example 2 Consider the programs

P = {c× a× b; c← a, b; d← c,not d},

Q = {c× b× a; c← a, b; d← c,not d}.

We compute the SE-models of these two programs. To
this end, let us first establish the interpretations (over
{a, b, c, d}) satisfyingP , and resp.,Q. Recall that the no-
tion of satisfaction does not take care of the actual order of
atoms in rule heads, and thus it is quite obvious thatP and
Q are satisfied by the same interpretations, viz.{a}, {b},
{a, d}, {b, d}, {a, c, d}, {b, c, d}, {c, d}, {a, b, c, d}. To see
that also the (non-total) SE-models ofP andQ coincide we
show thatP I = QI holds for each modelI from above. In
fact, there is only one rule which differs inP andQ, so we
have to check{c× a × b}I = {c × b × a}I , for each such
I. By definition of the reduct{c× a× b}I 6= {c× b × a}I

is only possible for interpretationsI containing{a, b} but
not c. However no such interpretation satisfies the two pro-
grams. Thus, we have shownP ≡s Q.

Moreover,AS(P ) = AS(Q) = {{a}, {b}}. But for each
preferenceσ ∈ {p, i, c}, the respective preference relations
include{a} >σ

P {b} and{b} >σ
Q {a}, yieldingASp(P ) =

AS i(P ) = AS c(P ) = {{a}} andAS p(Q) = AS i(Q) =
AS c(Q) = {{b}}. Hence,P 6≡σ Q, for σ ∈ {p, i, c}.

σ-Strong Equivalence for LP Context
We next consider strong equivalence for preferred answer
sets where the context is restricted to normal programs
(LPs). For this case, we provide a general characterisation
which applies to any preference relations satisfying some
basic criteria. As our three example types of preferences,p,
i, andc, satisfy these criteria, we thus obtain concrete char-
acterisations for these kinds of equivalence.

Definition 4 Let P andQ be LPODs andσ any preference
schema. Then,P and Q are σ-strongly equivalent for LP
contexts, in symbolsP ≡σ

s Q, iff, for each LPR, (P∪R) ≡σ

(Q ∪R).

Recall that(P ∪R) ≡σ (Q ∪R) denotes ordinary equiv-
alence between preferred answer sets, i.e.,ASσ(P ∪ R) =
ASσ(Q ∪R).

Before turning to our characterisations, we need a techni-
cal lemma.

Lemma 7 LetY, Z be models of an LPODP over atomsV
and let

R†
Y,Z = {a← not b; b← not a} ∪

{y ← a | y ∈ Y } ∪ {z ← b | z ∈ Z} ∪

{w← a, y′,not w | y′ ∈ V \ Y } ∪

{w← b, z′,not w | z′ ∈ V \ Z},

wherea, b, w are new atoms. Then,AS (P ∪R†
Y,Z) = {Y ∪

{a}, Z ∪ {b}}.

The proof is straightforward. Note that the constraint-like
rules usingw are required since the answer sets of LPODs
do not necessarily satisfy the anti-chain property.

The basic property underlying our characterisation is the
following:

Definition 5 A preferenceσ is LP-invariant iff, for each
LPOD P , each LPR, and each modelY, Z of P ∪ R, it
holds thatY >σ

P Z iff Y >σ
P∪R Z.

We are now prepared to characteriseσ-strong equivalence
for LP contexts for any preferenceσ which is LP-invariant.
Note that in the forthcoming result the pairs〈SE (P ), >σ

P 〉
are assigned to a single program, and thus do not depend on
the context of a particular comparison.

Theorem 8 For all LPODsP andQ, if σ is an LP invariant
preference, thenP ≡σ

s Q iff 〈SE (P ), >σ
P 〉=〈SE (Q), >σ

Q〉.

Proof. (⇒) First, supposeSE (P ) 6= SE (Q). By Theo-
rem 6, we knowP 6≡s Q. Hence, there exists an LPR such
that, without loss of generality,I ∈ AS(P∪R)\AS(Q∪R).
Let U = atoms(P ∪Q ∪R) and consider the program

R′ = R∪{w← I∪{not a | a ∈ U \I}}∪{w← not w},

wherew 6∈ U . Then,I ∪ {w} is the only answer set of
P ∪R′ and thus alsoσ-preferred, whileQ∪R′ possesses no
answer set and thus, in particular, noσ-preferred answer-set.
But then, sinceR′ is an LP,P 6≡σ

s Q.
Second, supposeSE (P ) = SE (Q) and>σ

P 6=>σ
Q. Since

SE(P ) = SE (Q), the classical models ofP andQ have to
coincide, and thus>σ

P 6=>σ
Q yields that there exist models

Y , Z of bothP andQ such that, without loss of generality,
Z >σ

P Y andZ 6>σ
Q Y . Moreover, letV = atoms(P ∪Q).

By Lemma 7,

{Y ∪ {a}, Z ∪ {b}} = AS(P ∪R†
Y,Z) = AS(Q ∪R†

Y,Z).

Now, sinceZ >σ
P Y anda, b /∈ P , Z ∪ {b} >σ

P Y ∪ {a} is
easily seen. Sinceσ is LP-invariant, and bothZ ∪ {b} and
Y ∪{a} are models ofP∪R†

Y,Z , we obtainZ∪{b} >σ

P∪R
†

Y,Z

Y ∪{a}. This showsY ∪{a} /∈ ASσ(P ∪R†
Y,Z). By similar

arguments, one can show thatY ∪ {a} ∈ ASσ(Q ∪R†
Y,Z).

SinceR†
Y,Z is an LP, we haveP 6≡σ

s Q.



(⇐) AssumeP 6≡σ
s Q and, without loss of generality,

Y ∈ ASσ(P ∪ R) \ ASσ(Q ∪ R) for some LPR. Clearly,
Y ∈ AS(P ∪ R) then holds, so in caseY /∈ AS(Q ∪ R)
we are done, since then, by definition,P 6≡s Q, and
consequentlySE (P ) 6= SE (Q), in view of Theorem 6. So
assumeY ∈ AS(Q ∪ R). Then, there exists aZ >σ

Q∪R Y

such thatZ ∈ AS(Q∪R). If Z /∈ AS (P ∪R) we are again
done since this yieldsP 6≡s Q, i.e., SE (P ) 6= SE (Q).
Hence,Y andZ are answer sets of bothP ∪ R andQ ∪ R.
Thus,Y andZ have to satisfy bothP andQ, as well asR.
Hence, we have that (i)Z 6>σ

P∪R Y (asY ∈ ASσ(P ∪ R))
and (ii) Z >σ

Q∪R Y (asY 6∈ ASσ(Q ∪ R)). Sinceσ is
LP-invariant, we obtainZ 6>σ

P Y while Z >σ
Q Y . This

shows>σ
P 6=>σ

Q. 2

Concerning our concrete preference relations, we first
show that they are indeed LP-invariant.

Lemma 9 Preferencesp, i, c, are all LP-invariant.

Proof. We have to show that for each LPODP , each LPR,
and each modelY, Z of P ∪R, Y >σ

P Z iff Y >σ
P∪R Z, for

σ ∈ {p, i, c}.
SinceR is an LP, for everyr ∈ R, we obtaindY (r) =

dZ(r) = 1 and RY [1] = RZ [1]. Moreover, for any
k > 1, it holds thatRY [k] = RZ [k] = 0, and hence
(P ∪ R)Y [k] = PY [k] and (P ∪ R)Z [k] = PZ [k]. It
follows that |(P ∪ R)Y [1]| = |PY [1]| + |RY [1]| and
|(P ∪ R)Z [1]| = |PZ [1]| + |RZ [1]|, and sinceRY [1] =
RZ [1],

|(P ∪R)Y [1]| > |(P ∪R)Z [1]| iff |PY [1]| > |PZ [1]|

and

|(P ∪R)Y [1]| = |(P ∪R)Z [1]| iff |PY [1]| = |PZ [1]|.

Consequently,Y >c
P Z iff Y >c

P∪R Z.
SinceRY [1] = RZ [1], also (P ∪ R)Y [1] = PY [1] ∪

RY [1] ⊃ (P ∪R)Z [1] = PZ [1] ∪RZ [1] iff PY [1] ⊃ PZ [1],
and(P ∪ R)Y [1] = (P ∪ R)Z [1] iff PY [1] = PZ [1]. Con-
sequently,Y >i

P Z iff Y >i
P∪R Z.

Since, for anyr ∈ R, dY (r) = dZ(r) if there is some
rule r′ ∈ P ∪ R such thatdY (r′) < dZ(r′), we obtain
r′ ∈ P . Moreover, for no ruler′′ ∈ R, dY (r′′) > dZ(r′′)
can hold. Consequently,Y >p

P Z iff Y >p
P∪R Z. 2

We thus obtain the following characterisation:

Theorem 10 For all LPODsP , Q,

• P ≡p
s Q iff 〈SE (P ), >p

P 〉 = 〈SE (Q), >p
Q〉,

• P ≡i
s Q iff 〈SE (P ), >i

P 〉 = 〈SE (Q), >i
Q〉,

• P ≡c
s Q iff 〈SE (P ), >c

P 〉 = 〈SE (Q), >c
Q〉.

Note that this allows also for even more flexible defini-
tions of strong equivalence notions as follows: For instance,
given two LP-invariant preferencesπ and π′, we can ask
whether, for each LPR, ASπ(P∪R) = ASπ′

(Q∪R) holds.
A possible application would be if one wants to apply a pro-
gram to a different preference relation without changing the
meaning under any new information (which itself does not
provide new preferential information).

σ-Strong Equivalence for Arbitrary Context
We next consider the case where LPODs can be possible
context programs. Hereby, it is not only necessary that>σ

agrees on all pairs of models, but also that all pairs of mod-
els that can become comparable with respect to>σ agree
when adding an appropriate LPOD. It is worthwhile noting
that this additional requirement applies to pairs of models
that are incomparable with respect to>σ. It turns out that
this requirement gives rise to quite different conditions for
differentσ.

Definition 6 Let P and Q be two LPODs. Then,P and
Q are σ-strongly equivalent for arbitrary contexts, symboli-
cally P ≡σ

s,× Q, iff, for any LPODR, (P ∪R) ≡σ (Q∪R).

The following result is straightforward.

Theorem 11 For any preferenceσ and LPODsP and Q,
P ≡σ

s,× Q impliesP ≡σ
s Q.

However, for each of the preference schemataσ ∈ {p,
i, c}, the converse of the above theorem does not hold. But,
as follows from our results below, adding a further condition
does ensure thatP ≡σ

s Q impliesP ≡σ
s,× Q. In the sequel,

when referring toσ-strong equivalence, we mean≡σ
s,×.

Pareto Preferred Strong Equivalence For the comparison
of Pareto-preferred answer sets, we note that the only way in
which two uncomparable models of a program can be made
answer sets and comparable by addition of an LPOD is when
they satisfy all rules to the same degree. To this end, we
define a relation identifying pairs of models that have this
property.

Definition 7 For any programP and interpretationsY, Z
over someU ⊇ atoms(P ), Y =p

P Z iff Y andZ are models
of P and for all r ∈ P , dY (r) = dZ(r).

Note that=p
P⊆ 2U × 2U , just like >p

P . We then obtain
the following characterisation:

As we show below≡p
s,× is then fully characterised by

comparing triples of the form〈SE (P ), >p
P , =p

P 〉.

Lemma 12 For all LPODs P and Q, if P ≡p
s,× Q, then

〈SE (P ), >p
P , =p

P 〉 = 〈SE (Q), >p
Q, =p

Q〉.

Proof. First observe that due to Theorem 10, if either
SE(P ) 6= SE (Q) or >p

P 6=>p
Q, thenP 6≡p

s Q. This means
that there exists an LPR such thatASp(P ∪R) 6= ASp(Q∪
R), and therefore alsoP 6≡p

s,× Q.
Now assume thatSE (P ) = SE (Q) and>p

P =>p
Q, but

that=p
P and=p

Q differ. That is, without loss of generality,
for two modelsY, Z, Y =p

P Z but Y 6=p
Q Z. So, for

eachr ∈ P , dY (r) = dZ(r), but there exists anr′ ∈ Q
such thatdY (r′) 6= dZ(r′), and without loss of generality,
let dY (r′) > dZ(r′). ConsiderR = R†

Y,Z ∪ {a × b},

with R†
Y,Z as in Lemma 7. Then,Y ′ = Y ∪ {a} and

Z ′ = Z ∪ {b} are the only standard answer sets of
P ∪ R and Q ∪ R. Since dY ′(a × b) < dZ′(a × b)
and dY ′(r) = dZ′(r), for eachr ∈ P ∪ R, we obtain
Y ′ >p

P∪R Z ′ and thusASp(P ∪ R) = {Y ′}. On the other
hand, sincedY (r′) > dZ(r′) holds, we obtainY ′ 6>p

Q∪R Z ′



andZ ′ 6>p
Q∪R Y ′. Therefore,ASp(Q ∪R) = {Y ′, Z ′} and

henceP 6≡p
s,× Q. 2

Lemma 13 For all LPODs P , Q, if 〈SE (P ), >p
P , =p

P 〉 =
〈SE (Q), >p

Q, =p
Q〉, thenP ≡p

s,× Q.

Proof. Assume〈SE (P ), >p
P , =p

P 〉 = 〈SE (Q), >p
Q, =p

Q〉,
and letR be an arbitrary LPOD. SinceSE (P ) = SE (Q), by
Theorem 6 we know thatAS (P ∪R) = AS(Q∪R). In the
following, consider arbitraryX, Y ∈ AS(P ∪R).

If X >p
P∪R Y holds, there is anr0 ∈ P ∪ R such

that dX(r0) < dY (r0) and for all r1 ∈ P ∪ R it holds
that dX(r1) ≤ dY (r1). If there is anr2 ∈ P such that
dX(r2) < dY (r2), thenX >p

P Y , and since>p
P is equal

to >p
Q, alsoX >p

Q Y andX >p
Q∪R Y . If there is no such

r2, thendX(r3) = dY (r3), for eachr3 ∈ P , and hence
X =p

P Y , and moreoverr0 ∈ R. Since=p
P is equal to=p

Q,
we obtainX >p

Q∪R Y also in this case.
Using a symmetric argument, we can show that

X >p
Q∪R Y impliesX >p

P∪R Y , and in totalX >p
P∪R Y

iff X >p
Q∪R Y . It follows thatAS p(P ∪R) = ASp(Q∪R),

and sinceR is arbitrary,P ≡p
s,× Q. 2

Lemmata 12 and 13 provide us with the following char-
acterisation:

Theorem 14 For all LPODs P and Q, P ≡p
s,× Q iff

〈SE (P ), >p
P , =p

P 〉 = 〈SE (Q), >p
Q, =p

Q〉.

Inclusion Preferred Strong Equivalence Different to the
situation of Pareto preference, adding rules under inclu-
sion preference may invalidate the relationship between two
models in one program, but not in the other one. Indeed,
this may happen if the inclusion relation holds at a different
degree in the two programs. More specifically, there may be
an incomparability on different satisfaction degrees for two
models on the two programs or an incomparability on some
satisfaction degree for two models on one program, while
there is no incomparability for the other program. A unified
criterion for these two situations is comparing the degree on
which two models are incomparable, and setting this degree
to a special value if no such degree exists. In the following
definition, we choose the value 0 as this special value, as
satisfaction degrees are always greater than 0.

Definition 8 For each LPODP , let δP : 2U × 2U → N be
the partial function defined on the models ofP such that for
modelsY andZ

δP (Y, Z) =

{
k if PY [k] 6⊆ PZ [k] and
∀j < k : PY [j] = PZ [j];

0 otherwise.

We first observe that if these partial functions coincide for
two programs, then also the respective preference relations
are equal.

Theorem 15 For all LPODsP andQ having the same mod-
els, ifδP = δQ then>i

P is equal to>i
Q.

Proof. Assume without loss of generality that there are two
modelsY, Z of P andQ such thatY >i

P Z but Y 6>i
Q Z.

Then, there is somek such thatPY [k] ⊃ PZ [k] and for
all j < k, PY [j] = PZ [j], while either (a) for alli > 0,
QY [i] = QZ [i] or (b) there is someh such thatQY [h] ⊂
QZ [h] andQY [g] = QZ [g], for all g < h.

We observe thatδP (Y, Z) = k > 0 while in case (a),
δQ(Y, Z) = 0 holds, and in case (b),δQ(Y, Z) = 0
also holds, since0 < δQ(Y, Z) < h cannot hold as
the respective sets are equal,δQ(Y, Z) = h cannot hold
becauseQY [h] ⊂ QZ [h], and δQ(Y, Z) > h cannot
hold either asQY [h] 6= QZ [h]. Therefore, in either case
δP (Y, Z) 6= δQ(Y, Z). 2

Towards our characterisation of≡i
s,×, we note the follow-

ing ancillary result:

Corollary 16 Given LPODsP and Q, if 〈SE (P ), δP 〉 =
〈SE (P ), δQ〉, thenP ≡i

s Q.

Proof. By Theorem 15 and Theorem 10.2

As we show below≡i
s,× is then fully characterised by

comparing pairs of the form〈SE (P ), δP 〉.

Lemma 17 For all LPODs P and Q, if P ≡i
s,× Q, then

〈SE (P ), δP 〉 = 〈SE (Q), δQ〉.

Proof. Suppose〈SE (P ), δP 〉 6= 〈SE (Q), δQ〉. If
SE(P ) 6= SE (Q) by Theorem 10P 6≡i

s Q. This means that
there exists an LPR such thatAS i(P ∪R) 6= AS i(Q∪R),
and therefore alsoP 6≡i

s,× Q.
So let us examine the situation ifSE (P ) = SE (Q) and

(again without loss of generality) for two modelsY andZ
of P andQ, k = δP (Y, Z) < δQ(Y, Z) = ℓ.

If k = 0 we differentiate two cases: (i)∀j > 0 : PY [j] =
PZ [j] and (ii) ∃i : PY [i] ⊂ PZ [i] and∀h < i : PY [h] =
PZ [h]. Sinceℓ = δQ(Y, Z) we have either (a)QY [ℓ] ⊃
QZ [ℓ] or (b) bothQY [ℓ] * QZ [ℓ] andQY [ℓ] + QZ [ℓ]. So
if (i) and (a) thenY 6>i

P Z andY >i
Q Z, if (ii) and (a) then

Z >i
P Y andY >i

Q Z, and if (ii) and (b) thenZ >i
P Y and

Z 6>i
Q Y . In these cases we obtainP 6≡i

s Q by Theorem 10
and hence (as discussed above)P 6≡i

s,× Q.
If (i) and (b) thenY 6>i

P Z, Z 6>i
P Y andY 6>i

Q Z,

Z 6>i
Q Y but we construct an LPODR∗ = R†

Y,Z ∪ R∗
ℓ

where

R∗
ℓ = {v ← ci,not v | 1 ≤ i < ℓ}∪
{c1 × · · · × cℓ−1 × a× b}

wherec1, . . . , cℓ−1, v are symbols that do not occur inP or
Q. Using Lemma 7 we obtain thatAS (P ∪R∗) = AS(Q∪
R∗) = {Y ′, Z ′}, whereY ′ = Y ∪ {a} andZ ′ = Z ∪ {b}.

Now for all degreesg < ℓ, both(P ∪ R∗)Y ′ [g] = (P ∪
R∗)Z′ [g] and(Q∪R∗)Y ′ [j] = (Q∪R∗)Z′ [j] hold, whereas
(P ∪ R∗)Y ′ [ℓ] ⊃ (P ∪ R∗)Z′ [ℓ] henceY ′ >i

P∪R∗ Z ′, but
(Q ∪ R∗)Y ′ [ℓ] * (Q ∪ R∗)Z′ [ℓ] and (Q ∪ R∗)Y ′ [ℓ] +
(Q ∪ R∗)Z′ [ℓ] hence neitherY ′ >i

Q∪R∗ Z ′ nor Z ′ >i
Q∪R∗

Y ′. ThereforeAS i(P ∪ R∗) = {Y ′} 6= AS i(P ∪ R∗) =
{Y ′, Z ′} andP 6≡i

s,× Q.



For k > 0, we construct an LPODR = R†
Y,Z ∪ Rk,

similar toR∗, where

Rk = {v ← ci,not v | 1 ≤ i < k}∪
{r+ : c1 × · · · × ck−1 × b× a | PY [k] ⊃ PZ [k]}∪
{r− : c1 × · · · × ck−1 × a× b | PY [k] 6⊃ PZ [k]},

with c1, . . . , ck−1, v being symbols that do not occur inP
or Q, andR†

Y,Z as in Lemma 7. Again, we first observe that
AS(P ∪R) = AS(Q∪R) = {Y ′, Z ′}, whereY ′ = Y ∪{a}
andZ ′ = Z ∪ {b}.

Suppose thatPY [k] ⊃ PZ [k]. Then,dY ′(r+) = k + 1
anddZ′(r+) = k, therefore neither(P ∪ R)Y ′ [k] ⊆ (P ∪
R)Z′ [k] nor (P ∪ R)Y ′ [k] ⊇ (P ∪ R)Z′ [k]. Note also that
(P ∪ R)Y ′ [j] = (P ∪ R)Z′ [j] for all j < k, so neither
Y ′ >i

P∪R Z ′ nor Z ′ >i
P∪R Y ′ holds. If PY [k] 6⊃ PZ [k],

then sinceδP (Y, Z) = k alsoPY [k] 6⊆ PZ [k]. It follows that
(P∪R)′Y [k] 6⊃ (P∪R)′Z [k] and(P∪R)′Y [k] 6⊆ (P∪R)′Z [k].
Hence also in this case neitherY ′ >i

P∪R Z ′ nor Z ′ >i
P∪R

Y ′ holds. In any case we therefore obtainAS i(P ∪ R) =
{Y ′, Z ′}.

Now recall that by hypothesisδQ(Y, Z) > k, thus
QY [k] = QZ [k] but now due tor+, (Q ∪ R)Z′ [k] ⊃
(Q ∪ R)Y ′ [k], i.e., we haveZ ′ >i

Q∪R Y ′. Hence,

AS i(Q ∪R) = {Z ′}, and thusP 6≡i
s,× Q. 2

Lemma 18 For all LPODs P and Q, if 〈SE (P ), δP 〉 =
〈SE (Q), δQ〉 thenP ≡i

s,× Q.

Proof. By Theorem 15 we know that>i
P is equal to>i

Q and
by Corollary 16 we knowP ≡i

s Q.
Let R be an arbitrary LPOD. By Theorem 6 we know

P ≡s Q, and thusAS(P ∪R) = AS(Q∪R). Now consider
arbitraryX, Y ∈ AS(P ∪R). We show thatX >i

P∪R Y iff
X >i

Q∪R Y , from whichP ≡i
s,× Q then follows.

AssumeX >i
P∪R Y . Hence, there exists ak such that

(P ∪ R)X [k] ⊃ (P ∪ R)Y [k] and, for eachj < k, (P ∪
R)X [j] = (P ∪ R)Y [j], i.e.,PX [j] = PY [j] andRX [j] =
RY [j].

First, supposePX [k] ⊃ PY [k] andRX [k] ⊇ RY [k]. This
means thatX >i

P Y and thusX >i
Q Y . We also have

δP (X, Y ) = k. SinceδP = δQ, alsoδQ(X, Y ) = k and
therefore eitherQX [k] ⊃ QY [k] or QX [k] * QY [k] and
QX [k] * QY [k]. The latter, however, would contradict
X >i

Q Y , and so we knowQX [k] ⊃ QY [k] and hence
X >i

Q∪R Y .
Second, supposeRX [k] ⊃ RY [k] andPX [k] = PY [k].

Hence, δP (X, Y ) > k or δP (X, Y ) = 0. So also
δQ(X, Y ) > k or δQ(X, Y ) = 0, which implies that for
eachj ≤ k, QX [j] = QY [j] (while QX [j] ⊂ QY [j] could
hold in case ofδQ(X, Y ) = 0, that meansY >i

Q X and
by Theorem 15Y >i

P X and hence alsoX 6>i
P∪R Y

which would contradict the initial assumptionX >i
P∪R Y ).

It follows that (Q ∪ R)X [k] ⊃ (Q ∪ R)Y [k], as well as
(Q ∪ R)X [j] = (Q ∪ R)Y [j], for eachj < k. Hence,
X >i

Q∪R Y .

Symmetrically, we can show thatX >i
Q∪R Y implies

X >i
P∪R Y . 2

Lemmata 17 and 18 provide us with the following char-
acterisation.

Theorem 19 For all LPODs P and Q, P ≡i
s,× Q iff

〈SE (P ), δP 〉 = 〈SE (Q), δQ〉.

Cardinality Preferred Strong Equivalence The remain-
ing equivalence notion to consider is≡c

s,×. Here, the fact
that thenumberof rules appearing in the context program
is of relevance for making an interpretation preferred over
another one, makes things more involving and cumbersome.
We therefore omit proofs here. In any case, we can make
use of similar concepts as before.

Definition 9 For each LPODP , let∆P : 2U×2U×N→ Z
be the partial function defined on the models ofP such that
for modelsY , Z andn ∈ N,

∆P (Y, Z, n) = |PY [n]| − |PZ [n]|.

Different to theδ functions for inclusion preference, the
condition∆P = ∆Q does not imply>c

P =>c
Q (for LPODs

P andQ). Our characterisation therefore also needs to in-
clude a comparison of these two relations.

Theorem 20 For all LPODsP andQ, we have thatP ≡c
s,×

Q iff 〈SE (P ), >P , ∆P 〉 = 〈SE (Q), >Q, ∆Q〉.

Some Properties
We now discuss some properties of the introduced equiva-
lence relations. First, we give a full picture on the relation-
ship between the different concepts. Afterwards, we analyse
the computational complexity of checking program equiva-
lence.

Relationships We already know from Theorem 6 that≡s

and≡s,× coincide. Moreover, as a consequence of Theo-
rems 6, 10, and 11, we obtain the following result:

Theorem 21 For everyσ ∈ {p, i, c} and every LPODP, Q,
P ≡σ

s,× Q impliesP ≡s,× Q (or, equivalently,P ≡s Q).

From Theorem 10 we also know thatP ≡σ
s Q implies

P ≡s Q, for eachσ ∈ {p, i, c}. The converse, however,
does not hold. In fact, Example 2 shows that LP-strong
equivalence≡s between LPODs does not even imply (or-
dinary) σ-equivalence≡σ. Moreover, for any preference
σ ∈ {p, i, c}, we have thatP ≡σ

s,× Q implies P ≡σ
s Q,

but, as already noted above, in neither case the converse
holds. Finally, if we compare only LPs, not surprisingly
all strong-equivalence notions introduced in our work col-
lapse to standard strong equivalence between normal logic
programs, although preference information may be added in
the context. This indeed shows that each notion is a general-
isation of standard strong equivalence as introduced by Lif-
schitz, Pearce and Valverde (Lifschitz, Pearce, & Valverde
2001).

Proposition 22 For all normal programsP, Q and every
σ ∈ {p, i, c}, the following statements are equivalent:
(1) P ≡s Q, (2) P ≡s,× Q, (3) P ≡σ

s Q, (4) P ≡σ
s,× Q.
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Figure 1: Relationships between equivalence notions.

As for the remaining relationships, Figure 1 provides a
complete picture concerning the different equivalence no-
tions. Implications between relations hold precisely in case
there is an arc in the transitive closure of the graph in Fig-
ure 1. For illustration, we first give an example showing that
P ≡i

s,× Q does not implyP ≡p
s Q, from which in turn we

get thatP ≡i
s,× Q does not implyP ≡p

s,× Q andP ≡i
s Q

does not implyP ≡p
s Q. Then, we also give an example

thatP ≡c
s,× Q does neither implyP ≡p

s Q nor P ≡i
s Q.

Counterexamples for the remaining three relations are omit-
ted here for space reasons.

Example 3 Consider the following two programs:

P = {r1 : c× a× b; a← c; b← c; c← a, b},

Q = {r1 : c× a× b; r2 : c× c× b× a; a← c;

b← c; c← a, b}.

Both programs have the same models,{a}, {b}, {a, b, c},
and SE-models,SE (P ) = SE (Q) = {({a}, {a}), ({b},
{b}), ({a, b, c}, {a, b, c})}. The rule-satisfaction degrees of
the models ofP andQ are as follows:

P 1 2 3
{a} P \ {r1} {r1} ∅
{b} P \ {r1} ∅ {r1}
{a, b, c} P ∅ ∅

Q 1 2 3 4
{a} Q \ {r1, r2} {r1} ∅ {r2}
{b} Q \ {r1, r2} ∅ {r1, r2} ∅
{a, b, c} Q ∅ ∅ ∅

We then obtain the following inclusion relations:

{a}>i
P {b}

{a, b, c}>i
P {a}

{a, b, c}>i
P {b}

{a}>i
Q{b}

{a, b, c}>i
Q{a}

{a, b, c}>i
Q{b}

So,>i
P =>i

Q. Moreover, we have:

δP ({a}, {b})=2
δP ({a, b, c}, {a})=1
δP ({a, b, c}, {b})=1

δQ({a}, {b})=2
δQ({a, b, c}, {a})=1
δQ({a, b, c}, {b})=1

From this it follows thatP ≡i
s,× Q holds. On the other

hand, we obtain the following the Pareto relations.

{a}>p
P {b}

{a, b, c}>p
P {a}

{a, b, c}>p
P {b}

{a}6>p
Q{b}

{b}6>p
Q{a}

{a, b, c}>p
Q{a}

{a, b, c}>p
Q{b}

So,>p
P 6=>p

Q, and henceP 6≡p
s Q.

Example 4 Consider the following programs:

P = {r1 : c× d; r2 : c× b× a; r3 : c× c× d;

d← a; d← b; a← c; b← c; c← a, b},

Q = {r2 : c× b× a; r4 : c× a× b; r5 : c× b× a× d;

d← a; d← b; a← c; b← c; c← a, b},

Both programs have the same models,{a, d}, {b, d},
{a, b,c, d}, and SE modelsSE (P ) = SE (Q) =
{({a, d}, {a, d}), ({b, d}, {b, d}), ({a, b, c, d},{a, b, c, d})}.
The rule satisfaction degrees of the models ofP andQ are
as follows:

P 1 2 3
{a, d} P \ {r1, r2, r3} {r1} {r2, r3}
{b, d} P \ {r1, r2, r3} {r1, r2} {r3}
{a, b, c, d} P ∅ ∅

Q 1 2 3
{a, d} Q \ {r2, r4, r5} {r4} {r2, r5}
{b, d} Q \ {r2, r4, r5} {r2, r5} {r4}
{a, b, c, d} Q ∅ ∅

The following is easy to see.

{b, d}>c
P {a, d}

{a, b, c, d}>c
P {a, d}

{a, b, c, d}>c
P {b, d}

{b, d}>c
Q{a, d}

{a, b, c, d}>c
Q{a, d}

{a, b, c, d}>c
Q{b, d}

So>c
P =>c

Q. Moreover, we have:

∆1

P ({a, d}, {b, d})=0
∆2

P ({a, d}, {b, d})=−1
∆3

P ({a, d}, {b, d})=1
∆1

P ({a, b, c, d}, {a, d})=3
∆2

P ({a, b, c, d}, {a, d})=−1
∆3

P ({a, b, c, d}, {a, d})=−2
∆1

P ({a, b, c, d}, {b, d})=3
∆2

P ({a, b, c, d}, {b, d})=−2
∆3

P ({a, b, c, d}, {b, d})=−1

∆1

Q({a, d}, {b, d})=0
∆2

Q({a, d}, {b, d})=−1
∆3

Q({a, d}, {b, d})=1
∆1

Q({a, b, c, d}, {a, d})=3
∆2

Q({a, b, c, d}, {a, d})=−1
∆3

Q({a, b, c, d}, {a, d})=−2
∆1

Q({a, b, c, d}, {b, d})=3
∆2

Q({a, b, c, d}, {b, d})=−2
∆3

Q({a, b, c, d}, {b, d})=−1

SoP ≡c
s,× Q holds. However, we observe the following

inclusion relations.



{b, d}>i
P {a, d}

{a, b, c, d}>i
P {a, d}

{a, b, c, d}>i
P {b, d}

{a, d}6>i
Q{b, d}

{b, d}6>i
Q{a, d}

{a, b, c, d}>i
Q{a, d}

{a, b, c, d}>i
Q{b, d}

Therefore,>i
P 6=>i

Q, and as a consequence,P 6≡i
s Q. More-

over, we also observe that the following Pareto relations
hold.

{b, d}>p
P {a, d}

{a, b, c, d}>p
P {a, d}

{a, b, c, d}>p
P {b, d}

{a, d}6>p
Q{b, d}

{b, d}6>p
Q{a, d}

{a, b, c, d}>p
Q{a, d}

{a, b, c, d}>p
Q{b, d}

Therefore,>p
P 6=>p

Q, and as a consequence,P 6≡p
s Q.

Computational Complexity Checking whether two LPs
are strongly equivalent is well known to be co-NP-complete
(Lin 2002). It turns out that this complexity bound also holds
for the generalised notions studied here.

We start with some simple observations:

Lemma 23 Given interpretationsY , Z, and an LPODP ,
deciding any out of (i)Y >σ

P Z, for σ ∈ {p, i, c}, (ii) Y =p
P

Z, (iii) δP (Y, Z) = δQ(Y, Z), and (iv) ∆P (Y, Z, n) =
∆Q(Y, Z, n) is feasible in polynomial time.

Proof. For the relations>p
P and =p

P we can determine,
given an interpretationY and ruler, the degreedY (r) in
polynomial time; thus we can proceed rule by rule, and com-
pute for eachr ∈ P its degree w.r.t.Y andZ. Simple com-
parisons then are sufficient to decideY >p

P Z, and likewise,
Y =p

P Z.
For >i

P , one can check that for anyj, computingPY [j]
(and likewisePZ [j]) and thus decidingPY [j] ⊃ PZ [j] as
well as PY [j] = PZ [j] can be done in polynomial time.
Thus for decidingY >i

P Z, we can start withj = 1 and
check whetherPY [j] ⊃ PZ [j] or PY [j] = PZ [j] holds. In
the former case we return “true”, in the latter case we incre-
mentj and do the same check; otherwise, or ifj reached the
maximal arity of a rule inP , we return “false”.

For>c
P given somek, counting the the number of rules in

P satisfied to degreek under a given interpretationY , i.e.,
to establish|PY [j]| can be done in polynomial time. The
same algorithm as for>i

P shows thatY >c
P Z can thus be

decided in polynomial time as well.
For (iii), i.e., δP (Y, Z) = δQ(Y, Z), it is sufficient to see

that computingδ can be done in polynomial time. Once
again, we can use an algorithm which starts withj = 1 and
checksPY [j] 6⊆ PZ [j] or PY [j] = PZ [j]. In the former case
we returnj, in the latter case we incrementj and return to
the check, and otherwise we return0. We also return0 if j
reaches the maximal arity of rules inP . We do the same for
Q, and compare the values the two algorithms return. Obvi-
ously, all involved steps can be done in polynomial time.

Since, as noted earlier,|PY [j]| can be computed in
polynomial time, given an interpretationY and an integerj,
also (iv) can be determined in polynomial time.2

Theorem 24 Given LPODsP andQ, decidingP ≡̃ Q is
co-NP-complete for all ≡̃ ∈ {≡s,≡s,×,≡σ

s ,≡σ
s,×| σ ∈

{p, i, c}}.

Proof. Hardness follows from Lin (2002), together with
Proposition 22. Membership for≡s (and thus, for≡s,×)
between LPODs is easily seen via Theorem 6: In fact, for
the complementary problem, we can guess a pair(X, Y ) of
interpretations and check whether(X, Y ) is SE-model of
exactly one of the compared programs. SE-model-checking
is feasible in polynomial time—in particular, since the con-
struction of the reductP Y can be done in polynomial time
and since checkingY |= P and X |= P Y amounts
to classical model checking. This showsNP-membership
for the complementary problem. Thus, we obtain co-NP-
membership for≡s and≡s,×. Membership for≡σ

s and≡σ
s,×

(for σ ∈ {p, i, c}) involves tests additional to≡s, as we
show next. Since these additional tests are independent of
the check for≡s, co-NP-membership of the entire equiva-
lence test follows.

For≡σ
s (for σ ∈ {p, i, c}), we know from Theorem 10

that P ≡σ
s Q holds iff P ≡s Q and for each pairY, Z of

joint models ofP andQ, Y >σ
P Z iff Y >σ

Q Z. Hence,
to decide the complementary problem of the latter test, it is
sufficient to guess two interpretationsY , Z, check whether
both are models ofP andQ (this can be done in polynomial
time), and check that either (i)Y >σ

P Z andY 6>σ
Q Z; or

(ii) Y 6>σ
P Z andY >σ

Q Z. By Lemma 23 these four checks
can be done in polynomial time, and thus the complement of
checking whetherY >σ

P Z iff Y >σ
Q Z, for each pairY, Z

of models ofP andQ, is inNP. Thus≡σ
s (for σ ∈ {p, i, c})

is in co-NP.
For ≡p

s,×, we know from Theorem 14, thatP ≡p
s,× Q

iff 〈SE (P ), >p
P , =p

P 〉 = 〈SE (Q), >p
Q, =p

Q〉, i.e., P ≡p
s,×

Q iff P ≡p
s Q and =p

P is the same relation as=p
Q. We

have shown above thatP ≡p
s Q is in co-NP, and to see that

checking whether=p
P is equal to=p

Q is also in co-NP, the
same argumentation as above is sufficient, making use of the
corresponding result for checkingY =p

P Z from Lemma 23.
For≡i

s,×, we know from Theorem 14, thatP ≡i
s,× Q iff

(SE (P ), δP ) = (SE (Q), δQ), i.e., iff P ≡s Q andδP =
δQ. The first problem is already shown in co-NP. To decide
δP = δQ, we once more take the complementary problem,
guess modelsY, Z and check thatδP (Y, Z) 6= δQ(Y, Z). By
Lemma 23 this can be done in polynomial time.

Finally for ≡c
s,×, we know from Theorem 20, that

P ≡c
s,× Q iff (SE (P ), >P , ∆P ) = (SE (Q), >Q, ∆Q),

i.e., iff P ≡c
s Q and∆P = ∆Q. Again, the first problem is

already shown in co-NP, and to decide∆P = ∆Q, we once
more can make use of Lemma 23.2

Discussion
In this paper, we discussed different notions of strong equiv-
alence for logic programs with ordered disjunctions, extend-
ing the usual one for normal logic programs. Following
Brewka (2002) and Brewka, Niemelä, & Syrjänen (2004),



we studied Pareto-, inclusion-, and cardinality-based prefer-
ence relations and introduced corresponding equivalence no-
tions based on these strategies. We provided model-theoretic
characterisations and introduced to that end a novel notionof
a reduct for LPODs, leading to a direct generalisation of the
well-known characterisation of strong equivalence for LPs
by Turner (2003).

Although≡σ
s,×, for σ ∈ {p, i, c}, is arguably the most

direct generalisation of strong equivalence for normal pro-
grams, in the sense that it tests whether two LPODs have the
same preferred answer sets in any context, the other strong-
equivalence notions are nonetheless relevant—in fact,≡σ

s,×
can be characterised in terms of some of the other strong-
equivalence notions, provided that additional conditions
hold as well.

Concerning related work, to the best of our knowledge,
strong equivalence with respect to programs allowing for
a representation of preferences has been studied only by
Faber & Konczak (2006) (called “strong order equiva-
lence”). However, the formalism studied there differs con-
siderably from LPODs. Already syntactically, preferences
are specified among rules using a construct different from
rules. In LPODs, preferences are specified among atoms us-
ing an extended rule syntax. For this reason, also the seman-
tics of the formalisms are hardly comparable. Indeed, also
the characterisations of strong order equivalence obtained by
Faber and Konczak (Faber & Konczak 2006) are quite differ-
ent: For instance, the preferences expressed in two strongly
order equivalent programs have to be exactly equal. This
also implies that the rules upon which preferences are de-
fined must occur in both strongly order equivalent programs.
Therefore, one can never substitute a rule upon which a pref-
erence is expressed by another one without losing strong or-
der equivalence.

Interesting issues for future work include the consider-
ation of notions foruniform equivalencebetween LPODs.
We plan to apply the new equivalence notions to derive syn-
tactic program transformations (see, e.g. Eiteret al.; Ca-
balar, Pearce, & Valverde (2004; 2007), for transformations
in the context of LPs) for LPODs as a basis for LPOD op-
timisation. We recall that in “traditional” answer-set pro-
gramming, characterisations for strong equivalence paved
the way for characterising also weaker notions of equiva-
lence, which in turn provided more potential for optimising
programs. Thus, our work may serve as a starting point for
further work in this direction.
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