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1. INTRODUCTION

In the last decade, the approach to reduce finding solutions of a problem to find-
ing “models” of a logical theory has gained increasing importance as a declar-
ative problem solving method. The idea is that a problem at-hand is encoded
to a logical theory such that the models of this theory correspond to solutions
of the problem in a way such that from an arbitrary model of the theory, the
corresponding solution can be extracted efficiently. Given that the mappings
can be computed in polynomial time, this facilitates polynomial-time problem
solving modulo the computation of a model of the constructed logical theory for
which an efficient solver may be used. An example of a fruitful application of
this approach is Kautz and Selman [1992], which showed that planning prob-
lems can be competitively solved by encodings to the classical propositional
satisfiability problem (SAT) and running efficient SAT solvers. Encodings of
planning problems to nonclassical logics, in particular to nonmonotonic logic
programs, were later given in Subrahmanian and Zaniolo [1995], Dimopoulos
et al. [1997], Lifschitz [1999], and Eiter et al. [2004]. Because of the features of
nonmonotonic negation, such programs allow for a more natural and succinct
encoding of planning problems than classical logic, and thus are attractive from
a declarative point of view.

Given this potential, encoding problems to nonmonotonic logic programs un-
der the answer set semantics [Gelfond and Lifschitz 1991, 1988], now known as
answer set programming (ASP) [Provetti and Son 2001], has been considered
in recent years for a broad range of other applications, including (amongst oth-
ers) knowledge-base updates [Zhang and Foo 1998; Inoue and Sakama 1999;
Alferes et al. 2000; Eiter et al. 2001], linguistics [Erdem et al. 2003], security
requirements engineering [Giorgini et al. 2004], and symbolic model check-
ing [Heljanko and Niemelä 2001]. Many of these applications are realized via
dedicated languages (see, e.g., Eiter et al. [2003]) using ASP solvers as back-
ends in which a specified reasoning task is translated into a corresponding
logic program. Thus, an ever-growing number of programs is automatically
generated, leaving the burden of optimizations to the underlying ASP system.

Despite the high sophistication of current ASP solvers like Simons et al.
[2002], Leone et al. [2002], Lin and Zhao [2002], and Anger et al. [2001], their
current support for optimizing the programs is restricted in the sense that
optimizations are mainly geared towards on-the-fly model generation. In an ad
hoc manner, program optimization aims at simplifying an input program such
that the resulting program has the same answer sets. This is heavily exploited
in the systems Smodels [Simons et al. 2002] and DLV [Leone et al. 2002], for
instance, when variables are eliminated from programs via grounding.
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However, such optimization can only be applied to the entire program. Local
simplifications in parts of the program may not be correct at the global level,
since by the nonmonotonicity of answer set semantics, adding the same rules
to equivalent programs may lead to programs with different models. This par-
ticularly hampers offline optimization of programs to which at runtime further
rules are added, which is important in different respects. Regarding code reuse,
for instance, a program may be used as a “subprogram” or “expanded macro”
within the context of another program (e.g., to nondeterministically choose an
element from a set), and be thusly utilized in many applications. On the other
hand, a problem encoding in ASP usually consists of two parts: a generic prob-
lem specification and instance-specific input (e.g., 3-colorability of a graph in
general and a particular graph); here, an offline simplification of the generic
part is desirable, regardless of the concrete input at runtime.

As widely understood and pointed out by several authors [Lifschitz et al.
2001; Eiter and Fink 2003a; Osorio et al. 2001], this calls for stronger notions
of equivalence; compare with, for example, Lifschitz et al. [1999], which already
uses a strong notion of equivalence for studying modular translations. As dis-
cussed next, there are different ways to access this problem, depending on the
actual context of application and optimization. Accordingly, different notions
of equivalence may serve as a theoretical basis for optimization procedures. In
this article, we present the first systematic and thorough exploration of differ-
ent notions of equivalence for answer set semantics with respect to semantical
characterizations and computational complexity. It provides a theoretical un-
derpinning for advanced methods of program optimization and for enhanced
ASP application development, as well as a potential basis for the development
of ASP debugging tools. In the following, we recall some notions of equiva-
lence that have been considered for answer set semantics, illustrated with some
examples.

Notions of Equivalence. A notion of equivalence which is feasible for the
issues discussed previously is strong equivalence [Lifschitz et al. 2001; Turner
2001]: Two logic programs P1 and P2 are strongly equivalent if by adding any
set of rules R to both P1 and P2, the resulting programs P1 ∪ R and P2 ∪ R are
equivalent under the answer set semantics, that is, have the same answer sets.
Thus, if a program P contains a subprogram Q which is strongly equivalent
to a program Q ′, then we may replace Q by Q ′, in particular, if the resulting
program is simpler to evaluate than the original.

Example 1.1. The programs P1 = {a ∨ b} and Q1 = {a ∨ b; a ← not b} are
strongly equivalent. Intuitively, the rule a ← not b in Q is redundant, since
under answer set semantics a will be derived from the disjunction a ∨ b if b is
false. On the other hand, the programs P2 = {a ∨ b} and Q2 = {a ← not b; b ←
not a} are not strongly equivalent: P2∪{a ← b; b ← a} has the answer set {a, b},
which is not an answer set of Q2 ∪ {a ← b; b ← a}. Indeed, it is well-known
that no disjunction-free program is strongly equivalent to P2 [Turner 2003].

Note that strong equivalence is, in general, suitable as a theoretical basis
for local optimization. However, it is a very restrictive concept. There are two
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fundamental options to weaken it and obtain less restrictive notions. On the
one hand, one can restrict the syntax of possible program extensions R, or, on
the other, one can restrict the set of atoms occurring in R.

The first approach leads us to to the well-known notion of uniform equiva-
lence [Sagiv 1988; Maher 1988]. Two logic programs P1 and P2 are uniformly
equivalent if by adding any set of facts F to both P1 and P2, the resulting
programs P1 ∪ F and P2 ∪ F have the same set of answer sets. That strong
equivalence and uniform equivalence are different concepts is illustrated by
the following simple example.

Example 1.2. It can be checked that the programs P2 and Q2 from Exam-
ple 1.1, while not strongly equivalent, are uniformly equivalent. We note that by
adding the constraint ← a, b to them, the resulting programs P3 = {a ∨ b; ←
a, b} and Q3 = {a ← not b; b ← not a; ← a, b}, which both express exclu-
sive disjunction of a and b, are strongly equivalent (and hence also uniformly
equivalent).

This example may suggest that disjunction is an essential feature to make a
difference between strong and uniform equivalence. In fact, this is not the case,
as shown by the following example.

Example 1.3. Let P4 = {a ← not b; a ← b} and Q4 = {a ← not c; a ← c}.
Then, it is easily verified that P4 and Q4 are uniformly equivalent. However,
they are not strongly equivalent: For P4 ∪ {b ← a} and Q4 ∪ {b ← a}, we have
that S = {a, b} is an answer set of Q4 ∪ {b ← a}, but not of P4 ∪ {b ← a}.

As for program optimization, compared to strong equivalence, uniform equiv-
alence is more sensitive to a modular structure of logic programs, which natu-
rally emerges by splitting them into layered components that receive input from
lower layers by facts and, in turn, may output facts to a higher layer [Lifschitz
and Turner 1994; Eiter et al. 1997]. In particular, it applies to the typical ASP
setting outlined earlier, in which a generic problem specification component
receives problem-specific input as a set of facts.

However, as mentioned before, a different way to obtain weaker equivalence
notions than strong equivalence is to restrict the alphabet of possible program
extensions. This is of particular interest whenever one wants to exclude dedi-
cated atoms from program extensions. Such atoms may play the role of internal
atoms in program components and are considered not to appear anywhere else
in the complete program P . This notion of equivalence was originally suggested
by Lin [2002], but not further investigated. We will formally define strong equiv-
alence relative to a given set of atoms A of two programs P and Q as the test
of whether, for all sets of rules S over a given set of atoms A, P ∪ S and Q ∪ S
have the same answer sets.

Finally, we introduce the notion of uniform equivalence relative to a given
set of atoms A as the property that for two programs P and Q and for all sets
F ⊆ A of facts, P ∪ F and Q ∪ F have the same answer sets. Note that rela-
tivized uniform equivalence generalizes the notion of equivalence of DATALOG
programs in deductive databases [Shmueli 1993]. There, DATALOG programs
are called equivalent if it holds that they compute the same outputs on any
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set of external atoms (i.e., atoms that do not occur in any rule head) given as
input. The next example illustrates that relativization weakens corresponding
notions of equivalence.

Example 1.4. Let P5 = {a ∨ b} and Q5 = {a ← not b; b ← not a; ← c}.
The programs P5 and Q5 have the same answer set, but are neither uniformly
nor strongly equivalent. In particular, it is sufficient to add the fact c. Then,
P5 ∪ {c} has answer sets {a, c}, {b, c}, while Q5 ∪ {c} has no answer set. How-
ever, if we exclude c from the alphabet of possible program extensions, uniform
equivalence holds. More specifically, P5 and Q5 are uniformly equivalent rela-
tive to any set of atoms A such that c /∈ A. Moreover, P5 and Q5 are not strongly
equivalent relative to any A which includes both a and b, or c, as before. The
reason is that adding a ← b and b ← a leads to different answer sets (compare
with Example 1.1).

Main Contributions. In this article, we study semantical and complexity
properties of the aforementioned notions of equivalence, where we focus on the
propositional case (to which first-order logic programs reduce by instantiation).
Our main contributions are briefly summarized as follows.

—We provide characterizations of uniform equivalence of logic programs. To
this aim, we build on the concept of strong-equivalence models (SE-models)
which have been introduced for characterizing strong equivalence [Turner 2003,
2001] in logic programming terms, resembling an earlier characterization of
strong equivalence in terms of equilibrium logic that builds on the intuitionis-
tic logic of here-and-there [Lifschitz et al. 2001]. A strong equivalence model of
a program P is a pair (X , Y ) of (Herbrand) interpretations such that X ⊆ Y , Y
is a classical model of P , and X is a model of the Gelfond-Lifschitz reduct PY

of P with respect to Y [Gelfond and Lifschitz 1991, 1988]. Our characteriza-
tions of uniform equivalence will elucidate the differences between strong and
uniform equivalence, as illustrated in the previous examples, such that they
immediately become apparent.

—For the finitary case, we provide a mathematical simple and appealing char-
acterization of a logic program with respect to uniform equivalence in terms of its
uniform equivalence models (UE-models), which is a special class of SE-models.
Informally, these SE-models (X , Y ) of a program P are UE-models such that X
either equals Y or is a maximal proper subset of Y . On the other hand, we show
that the uniform equivalence of infinite programs cannot be captured by any
class of SE-models in general. Furthermore, the notion of logical consequence
from UE-models, namely, P |=u Q , turns out to be interesting, since programs
P and Q are uniformly equivalent if and only if P |=u Q and Q |=u P holds.
Therefore, logical consequence (relative to UE-models) can be fruitfully used to
determine redundancies under uniform equivalence.

—By suitably generalizing the characterizations of strong and uniform equiv-
alence, and particularly of SE-models and UE-models, we also provide suitable
semantical characterizations for both relativized strong and uniform equiva-
lence. Our new characterizations thus capture all considered notions of equiv-
alence (including ordinary equivalence) in a uniform way. Moreover, we show
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that relativized strong equivalence shares an important property with strong
equivalence: Constraining possible program extensions to sets of rules of the
form A ← B , where A and B are atoms, does not lead to a different concept
(Corollary 4.3). The observation of Pearce and Valverde [2004b] that uniform
and strong equivalence are essentially the only concepts of equivalence ob-
tained by varying the logical form of program extensions therefore generalizes
to relative equivalence.

—Besides the general case, we consider various major syntactic subclasses
of programs, particularly Horn programs, positive programs, disjunction-free
programs, and head-cycle-free programs [Ben-Eliyahu and Dechter 1994], and
consider how these notions of equivalence relate among each other. For instance,
we establish that for positive programs, all these notions coincide, and therefore
only classical models of the programs have to be taken into account for equiva-
lence testing. Interestingly, for head-cycle-free programs, eliminating disjunc-
tions by shifting atoms from rule heads to the respective rule bodies preserves
(relativized) uniform equivalence, while affecting (relativized) strong equiva-
lence in general.

—We thoroughly analyze the computational complexity of deciding (rela-
tivized) uniform equivalence and relativized strong equivalence, as well as the
complexity of model checking for the corresponding model-theoretic character-
izations. We show that deciding the uniform equivalence of programs P and
Q is �P

2 -complete in the general propositional case, and thus harder than de-
ciding strong equivalence of P and Q , which is coNP-complete [Pearce et al.
2001; Lin 2002; Turner 2003]. Relativized notions of equivalence have the same
complexity as uniform equivalence in general (�P

2 -completeness). These results
reflect the intuitive complexity of equivalence checking using the characteri-
zations we provide. Furthermore, we consider the problems for subclasses and
establish coNP-completeness results for important fragments, including pos-
itive and head-cycle-free programs, thus obtaining a complete picture of the
complexity landscape, which is summarized in Table II. Some of the results ob-
tained are surprising; for example, checking relativized uniform equivalence of
head-cycle-free programs is easier than deciding relativized strong equivalence.
For an overview and discussion of the complexity results, we refer to Section 6.

—Finally, we address extensions of our results with respect to modifications in
the language of propositional programs, namely, the addition of strong negation
or nested expressions, as well as disallowing constraints. Moreover, we briefly
discuss the general DATALOG case.

Our results extend recent results on strong equivalence of logic programs,
and pave the way for optimization of logic programs under answer set semantics
by exploiting strong equivalence, uniform equivalence, or relativized notions
thereof.

Related Work. While strong equivalence of logic programs under answer set
semantics has been considered in a number of papers [Cabalar 2002; de Jongh
and Hendriks 2003; Lin 2002; Lifschitz et al. 2001; Osorio et al. 2001; Pearce
et al. 2001; Turner 2003, 2001; Pearce 2004; Pearce and Valverde 2004a, in-
vestigations on uniform equivalence just started with preliminary parts of this
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work [Eiter and Fink 2003a]. Recent papers on program transformations [Eiter
et al. 2004a, 2004b] already take both notions into account. In the case of DAT-
ALOG, uniform equivalence is a well-known concept, however. Sagiv [1988],
who coined the name, has studied the property in the context of definite Horn
DATALOG programs where he showed decidability of uniform equivalence test-
ing, which contrasts the undecidability of equivalence testing for DATALOG
programs [Shmueli 1993]. Also, Maher [1988] considered uniform equivalence
for definite general Horn programs (with function symbols) and reported un-
decidability. Moreover, both Sagiv [1988] and Maher [1988] showed that uni-
form equivalence coincides, for the respective programs, with Herbrand logical
equivalence. Maher also pointed out that for DATALOG programs, this result
has been independently established by Cosmadakis and Kanellakis [1986]. Fi-
nally, a general notion of equivalence has also been introduced by Inoue and
Sakama [2004]. In their framework, called update equivalence, one can exactly
specify a set of arbitrary rules which may be added to the programs under
consideration and, furthermore, a set of rules which may be deleted. However,
for such an explicit enumeration of rules for program extension, or respectively,
modification, it seems to be much more complicated to obtain simple semantical
characterizations.

The mentioned papers on strong equivalence mostly concern logical charac-
terizations. In particular, the seminal work by Lifschitz et al. [2001] showed
that strong equivalence corresponds to equivalence in the nonclassical logic of
here-and-there. De Jongh and Hendriks [2003] generalized this result by show-
ing that strong equivalence is characterized by equivalence in all intermediate
logics lying between here-and-there (upper bound) and the logic KC of weak
excluded middle [Kowalski 1968] (lower bound), which is axiomatized by intu-
itionistic logic together with the schema ¬ϕ ∨¬¬ϕ. In addition, Cabalar [2002]
presents another multivalued logic known as L3, which can be employed to
decide strong equivalence in the same manner. However, the most popular se-
mantical characterization was introduced by Turner [2003, 2001]. He abstracts
from the Kripke semantics as used in the logic of here-and-there, resulting in the
aforementioned SE-models. Approaches to implement strong equivalence can
be found in Eiter et al. [2004b], Janhunen and Oikarinen [2004], and Pearce
et al. [2001]. Complexity characterizations of strong equivalence were given
by several authors [Pearce et al. 2001; Lin 2002; Turner 2003]. Our work re-
fines and generalizes this work by considering (relativized) strong equivalence
also for syntactic fragments, which previous work did not pay much attention
to. In addition, we present a new syntactical criterion to retain strong equiv-
alence when transforming head-cycle-free programs to disjunction-free ones,
complementing work on program transformations [Eiter et al. 2004a, 2004b;
Osorio et al. 2001; Pearce and Valverde 2004b]. Recent work by Pearce and
Valverde [2004b] addresses strong equivalence of programs over disjoint al-
phabets which are synonymous under structurally defined mappings.

Structure of the Article. The remainder of this article is organized as fol-
lows. The next section recalls important concepts and fixes notation. After
that, in Section 3, we present our characterizations of uniform equivalence.
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We also introduce the notions of UE-model and UE-consequence and relate the
latter to other notions of consequence. Then, Section 4 introduces relativized
notions of equivalence, and we present our generalized characterizations in
model-theoretic terms. Section 5 considers two important classes of programs,
in particular, positive and head-cycle-free logic programs, which include Horn
and normal logic programs, respectively. Section 6 is devoted to a detailed anal-
ysis of complexity issues, while Section 7 considers possible extensions of our
results to nested logic programs and answer set semantics for programs with
strong negation (also allowing for inconsistent answer sets), as well as to DAT-
ALOG programs. Section 8 concludes the article and outlines issues for further
research.

2. PRELIMINARIES

We deal with disjunctive logic programs which allow use of the default negation
not in rules. A rule r is a triple 〈H(r), B+(r), B−(r)〉, where H(r) = {A1, . . . , Al },
B+(r) = {Al+1, . . . , Am}, B−(r) = {Am+1, . . . , An}, where 0 ≤ l ≤ m ≤ n and
Ai, 1 ≤ i ≤ n are atoms from a first-order language. Throughout, we use the
traditional representation of a rule as an expression of the form

A1 ∨ . . . ∨ Al ← Al+1, . . . , Am, not Am+1, . . . , not An.

We call H(r) the head of r, and B(r) = {Al+1, . . . , Am, not Am+1, . . . , not An} the
body of r. If H(r) = ∅, then r is a constraint. As usual, r is a disjunctive fact if
B(r) = ∅, and a nondisjunctive fact if B(r) = ∅ and l = 1, both also represented
by H(r) if it is nonempty, and by ⊥ (falsity) otherwise. A rule r is normal (or
nondisjunctive) if l ≤ 1; definite if l = 1; and positive if n = m. A rule is Horn
if it is normal and positive. A definite Horn rule is called unary iff its body
contains at most one atom.

A disjunctive logic program (DLP) P is a (possibly infinite) set of rules.
A program P is a normal logic program (NLP) (respectively, definite, pos-
itive, Horn, or unary) if all rules in P are normal (respectively, definite,
positive, Horn, unary). Furthermore, a program P is head-cycle-free (HCF)
[Ben-Eliyahu and Dechter 1994] if each each r ∈ P is head-cycle-free (in P ), that
is, if the dependency graph of P (defined as usual) where literals of form not A
are disregarded, has no directed cycle that contains two atoms belonging to
H(r).

In the rest of this article, we focus on propositional programs over a set
of atoms A, programs with variables reduce to their ground (propositional)
versions, as usual. The set of all atoms occurring in a program P is denoted by
Atm(P ).

We shall deal with further variations of the syntax, where either strong
negation is available or constraints are disallowed, in Section 7. There we shall
also briefly discuss how to apply our results to programs with nested expres-
sions [Lifschitz et al. 1999] or to nonground programs directly.

We recall the answer set semantics for DLPs [Gelfond and Lifschitz 1991]
which generalizes the answer set semantics for NLPs [Gelfond and Lifschitz
1988]. An interpretation I , viewed as subset of A, models the head of a rule r,
denoted I |= H(r), iff A ∈ I for some A ∈ H(r). It models B(r), that is, I |= B(r)
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iff: (i) each A ∈ B+(r) is true in I , that is, A ∈ I , and (ii) each A ∈ B−(r) is false
in I , that is, A �∈ I . Furthermore, I models rule r, that is, I |= r iff I |= H(r)
whenever I |= B(r), and I is a model of a program P , denoted I |= P , iff I |= r for
all r ∈ P . If I |= P (respectively I |= r), I is called a model of P (respectively r).

The Gelfond-Lifschitz reduct of a program P relative to a set of atoms I ,
denoted P I , is defined as P I = {H(r) ← B+(r) | r ∈ P, I ∩ B−(r) = ∅}. An
interpretation I is an answer set (or stable model [Przymusinski 1991]) of a
program P iff I is a minimal model (under inclusion ⊆) of P I . By AS(P ) we
denote the set of all answer sets of P .

Several notions for equivalence of logic programs have been considered; see
Lifschitz et al. [2001], Maher [1988], and Sagiv [1988]. In answer set program-
ming, two DLPs P and Q are regarded as equivalent, denoted P ≡ Q , iff
AS(P ) = AS(Q).

The more restrictive form of strong equivalence [Lifschitz et al. 2001] is as
follows.

Definition 2.1. Let P and Q be two DLPs. Then, P and Q are strongly
equivalent, denoted P ≡s Q , iff for any program R, the programs P ∪ R and
Q ∪ R are equivalent, that is, P ∪ R ≡ Q ∪ R.

One of the main results of Lifschitz et al. [2001] is a semantical characteri-
zation of strong equivalence in terms of the nonclassical logic HT. For charac-
terizing strong equivalence in logic programming terms, Turner [2001, 2003]
introduced the following notion of SE-models:

Definition 2.2. Let P be a DLP, and let X , Y be sets of atoms such that
X ⊆ Y . The pair (X , Y ) is an SE-model of P if Y |= P and X |= PY . By SE(P )
we denote the set of all SE-models of P . For a single rule r, we write SE(r)
instead of SE({r}).

Strong equivalence can be characterized as follows.

PROPOSITION 2.3 [TURNER 2001, 2003]. For every two DLPs P and Q, P ≡s Q
iff SE(P ) = SE(Q).

To check the strong equivalence of two programs P and Q , it is obviously
sufficient to consider SE-interpretations (X , Y ) over Atm(P ∪ Q), that is, with
X ⊆ Y ⊆ Atm(P ∪ Q). We implicitly make use of this simplification when
convenient.

Example 2.4. Reconsider the examples from the introduction. First take
programs P = {a ∨ b} and Q = {a ← not b; b ← not a}. We have1

SE(P ) = {(a, a); (b, b); (a, ab); (b, ab); (ab, ab)};
SE(Q) = {(∅, ab); (a, a); (b, b); (a, ab); (b, ab); (ab, ab)}.

Thus, (∅, ab) is an SE-model of Q but not of P . This is due to the fact that
P {a,b} = {a ∨ b} and Q {a,b} is the empty program. The latter is modeled by the
empty interpretation, while the former is not. Hence we derive P �≡s Q .

1To ease notation, we write abc instead of {a, b, c}, a instead of {a}, etc.
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Example 2.5. For the second example P = {a ← not b; a ← b} and Q =
{a ← not c; a ← c}, we also get P �≡s Q . In this case, we have

SE(P ) = {(∅, ab); (∅, abc); (c, abc)} ∪ S;
SE(Q) = {(∅, ac); (∅, abc); (b, abc)} ∪ S;

with S = {(X , Y ) | {a} ⊆ X ⊆ Y ⊆ {a, b, c}}. This shows that P �≡s Q .

Note that from the proofs of the results in Lifschitz et al. [2001] and Turner
[2003], it appears that for strong equivalence, only the addition of unary rules
is crucial. In other words, constraining the rules in the set R in the definition
of strong equivalence to normal rules having at most one positive atom in the
body does not lead to a different concept. This is encountered by restriction to
facts (i.e., empty rule bodies), however.

Moreover, the answer sets of a program can be characterized via its SE-
models as follows.

PROPOSITION 2.6. For any DLP P, Y ∈ AS(P ) iff (Y , Y ) ∈ SE(P ) and
(X , Y ) ∈ SE(P ) implies X = Y , for any X .

Finally, we define a consequence relation associated to SE-models.

Definition 2.7. Let P be a DLP and r a rule. Then, r is an SE-consequence
of P , denoted P |=s r, iff for each (X , Y ) ∈ SE(P ), it holds that (X , Y ) ∈ SE(r).
Furthermore, we write P |=s Q iff P |=s r, for every r ∈ Q .

PROPOSITION 2.8. For any DLP P and Q, P ≡s Q iff P |=s Q and Q |=s P.

Thus, the notion of SE-consequence captures the strong equivalence of logic
programs.

3. UNIFORM EQUIVALENCE

Having presented the preliminary definitions, we now turn to the issue of uni-
form equivalence of logic programs. We follow the definitions of uniform equiv-
alence in Sagiv [1988] and Maher [1988].

Definition 3.1. Let P and Q be two DLPs. Then, P and Q are uniformly
equivalent, denoted P ≡u Q , iff for any set of (nondisjunctive) facts F , the
programs P ∪ F and Q ∪ F are equivalent, that is, P ∪ F ≡ Q ∪ F .

3.1 A Characterization for Uniform Equivalence

We proceed by characterizing the uniform equivalence of logic programs in
model-theoretic terms. As restated before, strong equivalence can be captured
by the notion of an SE-model (equivalently, HT-model [Lifschitz et al. 2001])
for a logic program. The weaker notion of uniform equivalence can also be
characterized in terms of SE-models by imposing further conditions.

We start with a seminal lemma which allows us to derive simple character-
izations of uniform equivalence.

LEMMA 3.2. Two DLPs P and Q are uniformly equivalent, that is, P ≡u Q,
iff for every SE-model (X , Y ) such that (X , Y ) is an SE-model of exactly one of
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the programs P and Q, it holds that: (i) Y |= P ∪ Q, and (ii) there exists an
SE-model (X ′, Y ) X ⊂ X ′ ⊂ Y of the other program.

PROOF. For the only-if direction, suppose P ≡u Q . If Y neither models P
nor Q , then (X , Y ) is not an SE-model of either of the programs P and Q .
Without loss of generality, assume that Y |= P and Y �|= Q . Then, since in
this case Y |= PY and no strict subset of Y models P ∪ Y , Y ∈ AS(P ∪ Y ),
while Y �∈ AS(Q ∪Y ). This contradicts our assumption P ≡u Q . Hence (i) must
hold.

To show (ii), assume first that (X , Y ) is an SE-model of P but not of Q . In
view of (i), it is clear that X ⊂ Y must hold. Suppose now that for every set
X ′, X ⊂ X ′ ⊂ Y , it holds that (X ′, Y ) is not an SE-model of Q . Then, since no
subset of X models QY ∪ X , (Y , Y ) is the only SE-model of Q ∪ X of form (·, Y ).
Thus Y ∈ AS(Q ∪ X ) in this case, while Y �∈ AS(P ∪ X ) (X |= PY implies that
X |= (P ∪ X )Y , so (X , Y ) is an SE-model of P ∪ X ). However, this contradicts
P ≡u Q . Thus, it follows that for some X ′ such that X ⊂ X ′ ⊂ Y , (X , Y ) is an
SE-model of Q . The argument in the case where (X , Y ) is an SE-model of Q ,
but not of P , is analogous. This proves (ii).

For the if direction, assume that (i) and (ii) hold for every SE-model (X , Y )
which is an SE-model of exactly one of P and Q . Suppose that there exist sets of
atoms F and X such that without loss of generality X ∈ AS(P ∪ F )\AS(Q ∪ F ).
Since X ∈ AS(P ∪F ), we have that F ⊆ X and moreover X |= P . Consequently,
(X , X ) is an SE-model of P . Since X �∈ AS(Q ∪ F ), either X �|= (Q ∪ F )X or
there exists Z ⊂ X such that Z |= (Q ∪ F )X .

Let us first assume that X �|= (Q ∪ F )X . Then, since (Q ∪ F )X = Q X ∪ F and
F ⊆ X , it follows that X �|= Q X . This implies X �|= Q and hence, (X , X ) is not
an SE-model of Q . Thus (X , X ) is an SE-model of exactly one program P , but
(X , X ) violates (i), since X �|= Q ; this is a contradiction.

It follows that X |= (Q ∪ F )X must hold, and that there must exist Z ⊂ X
such that Z |= (Q ∪ F )X = Q X ∪ F . So we can conclude X |= Q and that (Z , X )
is an SE-model of Q but not of P . To see the latter, note that F ⊆ Z must
hold. So if (Z , X ) were an SE-model of P , then it would also be an SE-model of
P ∪ F , contradicting the assumption that X ∈ AS(P ∪ F ). Again we get an SE-
model (Z , X ) of exactly one of the programs, Q in this case. Hence, according
to (ii), there exists an SE-model (X ′, X ) of P , Z ⊂ X ′ ⊂ X . However, because
of F ⊂ Z , it follows that (X ′, X ) is also an SE-model of P ∪ F , contradicting
our assumption that X ∈ AS(P ∪ F ).

This proves that, given (i) and (ii) for every SE-model (X , Y ) such that (X , Y )
is an SE-model of exactly one of P and Q , no sets of atoms F and Z exist such
that Z is an answer set of exactly one of P ∪ F and Q ∪ F . In other words,
P ≡u Q holds.

From Lemma 3.2 we immediately obtain the following characterization of
uniform equivalence of logic programs.

THEOREM 3.3. Two DLPs P and Q are uniformly equivalent, that is, P ≡u Q,
iff for interpretations X , Y :
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12 • T. Eiter et al.

(i) (X , X ) is an SE-model of P iff it is an SE-model of Q; and
(ii) (X , Y ), where X ⊂ Y , is an SE-model of P (respectively Q) iff there exists a

set X ′ such that X ⊆ X ′ ⊂ Y , and (X ′, Y ) is an SE-model of Q (respectively
P ).

Example 3.4. Reconsider the programs P = {a ∨ b} and Q = {a ←
not b; b ← not a}. By Theorem 3.3, we can easily verify that P and Q are uni-
formly equivalent: Their SE-models differ only in (∅, ab), which is an SE-model
of Q but not of P . Thus, items (i) and (ii) clearly hold for all other SE-models.
Moreover, (a, ab) is an SE-model of P , and thus item (ii) also holds for (∅, ab).

Recall that P and Q are strongly equivalent after adding the constraint
← a, b, which enforces exclusive disjunction (see Example 1.2). Uniform equiv-
alence does not require such an addition.

From Theorem 3.3 we can derive the following characterization of uniform
equivalence.

THEOREM 3.5. Two DLPs P and Q, such that at least one of them is finite,
are uniformly equivalent, that is, P ≡u Q, iff the following conditions hold:

(i) For every X , (X , X ) is an SE-model of P iff it is an SE-model of Q; and
(ii) for every SE-model (X , Y ) ∈ SE(P ) ∪ SE(Q) such that X ⊂ Y , there exists

an SE-model (X ′, Y ) ∈ SE(P )∩SE(Q) (=SE(P ∪ Q)) such that X ⊆ X ′ ⊂ Y .

PROOF. Since (i) holds by virtue of Theorem 3.3, we only need to show (ii).
Assume that (X , Y ), where X ⊂ Y , is in SE(P ) ∪ SE(Q).

If (X , Y ) ∈ SE(P ) ∩ SE(Q), then the statement holds. Otherwise, by virtue
of Theorem 3.3 there exists (X 1, Y ), X ⊆ X 1 ⊂ Y , such that (X 1, Y ) is in
SE(P ) ∪ SE(Q). By repeating this argument, we obtain a chain of SE-models
(X , Y ) = (X 0, Y ), (X 1, Y ), . . . , (X i, Y ), . . . such that (X i, Y ) ∈ SE(P ) ∪ SE(Q)
and X i ⊆ X i+1, for all i ≥ 0. Furthermore, we may choose X 1 such that X 1
coincides with Y on all atoms which do not occur in P ∪ Q (and hence all X i,
i ≥ 1, do so). Since one of P and Q is finite, it follows that X i = X i+1 must hold
for some i ≥ 0 and hence (X i, Y ) ∈ SE(P ) ∩ SE(Q) must hold. This proves the
result.

3.2 Introducing UE-Models

In light of this result, we can capture the uniform equivalence of finite programs
by the notion of UE-models, defined as follows.

Definition 3.6 [UE-Model]. Let P be a DLP. Then (X , Y ) ∈ SE(P ) is a uni-
form equivalence (UE) model of P if for every (X ′, Y ) ∈ SE(P ), it holds that
X ⊂ X ′ implies X ′ = Y . By UE(P ) we denote the set of all UE-models of P .

In other words, UE-models comprise all total SE-models (Y , Y ) of a DLP plus
all its maximal nontotal SE-models (X , Y ), with X ⊂ Y . Formally,

UE(P ) = {(Y , Y ) ∈ SE(P )} ∪ max≥{(X , Y ) ∈ SE(P ) | X ⊂ Y },
where (X ′, Y ′) ≥ (X , Y ) iff jointly Y ′ = Y and X ⊆ X ′.
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By means of UE-models, we then can characterize the uniform equivalence
of finite logic programs by the following simple condition.

THEOREM 3.7. Let P and Q be DLPs. Then:

(a) P ≡u Q implies UE(P ) = UE(Q); and
(b) UE(P ) = UE(Q) implies P ≡u Q, whenever at least one of the programs P,

Q is finite.

PROOF. For proving (a), let P ≡u Q . Then, by Theorem 3.3 (i), UE(P )
and UE(Q) coincide on models (X , X ). Assume without loss of generality that
(X , Y ), X ⊂ Y , is in UE(P ), but not in UE(Q). By Theorem 3.3 (ii), there exists
(X ′, Y ), X ⊆ X ′ ⊂ Y , which is an SE-model of Q , and by a further application,
the existence of (X ′′, Y ), X ′ ⊆ X ′′ ⊂ Y , which is an SE-model of P , follows. Since
X ⊂ X ′′ contradicts (X , Y ) ∈ UE(P ), let X ′′ = X ′ = X , that is, (X , Y ) is an
SE-model of Q as well, but is not in UE(Q). Hence there exists (Z , Y ) ∈ SE(Q),
X ⊂ Z ⊂ Y and, again by Theorem 3.3 (ii), there exists (Z ′, Y ), Z ⊆ Z ′ ⊂ Y ,
which is an SE-model of P . This again contradicts (X , Y ) ∈ UE(P ). Hence
UE(P ) = UE(Q) must hold.

For (b), assume that UE(P ) = UE(Q), and without loss of generality let P be
finite. Since UE(P ) = UE(Q) implies Theorem 3.3 (i), towards a contradiction,
suppose that Theorem 3.3 (ii) is not satisfied, that is, there exists X ⊂ Y ,
such that either: (1) (X , Y ) ∈ SE(P ) and there does not exist X ⊆ X ′ ⊂ Y ,
(X ′, Y ) ∈ SE(Q), or vice versa (2) (X , Y ) ∈ SE(Q) and not exists X ⊆ X ′ ⊂ Y ,
(X ′, Y ) ∈ SE(P ).

Case 1. We show the existence of a set Z , X ⊆ Z ⊂ Y , such that (Z , Y ) ∈
UE(P ). If (X , Y ) ∈ UE(P ), or Y is finite, this is trivial. So let (X , Y ) �∈ UE(P )
and Y be infinite. Then Y P = Y ∩ Atm(P ) and X P = X ∩ Atm(P ) are finite,
(X P , Y P ) ∈ SE(P ), and X P ⊂ Y P (to see the latter, observe that otherwise,
we end up in a contradiction by the fact that then X P |= P , hence X |= P ,
and thus (X , X ) ∈ UE(P ) = UE(Q), which implies (X , Y ) ∈ SE(Q), since
(Y , Y ) ∈ UE(Q) = UE(P ) holds). Since Y P is finite, there exists a set Z P ,
X P ⊆ Z P ⊂ Y P , such that (Z P , Y P ) ∈ UE(P ). Now, let Z = Z P ∪ (Y \ Y P ).
Then X ⊆ Z ⊂ Y holds by construction. Furthermore (Z , Y ) ∈ UE(P ), since
Y \ Z = Y P \ Z P , PY = PY P , and (Z P , Y P ) ∈ UE(P ). By our assumption
(Z , Y ) ∈ UE(Q) follows. Contradiction.

Case 2. We show the existence of a set Z , X ⊆ Z ⊂ Y , such that (Z , Y ) ∈
UE(Q). If (X , Y ) ∈ UE(Q), or Y is finite, this is trivial. So let (X , Y ) �∈ UE(Q),
and Y be infinite. Futhermore, Y \ X ⊆ Atm(P ) must hold (to see the latter,
observe that otherwise we end up in a contradiction by taking any atom a ∈ Y \
X , such that a �∈ Atm(P ), and considering Z = Y \ {a}. Then X ⊆ Z ⊂ Y holds
by construction and since (Y , Y ) ∈ UE(P ) = UE(Q), Y |= P and so does Z , that
is, (Z , Y ) ∈ SE(P ), a contradiction). However, since Atm(P ) is finite, this means
that Y \ X is finite, that is, there cannot exist an infinite chain of SE-models
(X , Y ) = (X 0, Y ), (X 1, Y ), . . . , (X i, Y ), . . ., such that X i ⊂ X j ⊂ Y , for i < j ,
and (X i, Y ) ∈ SE(Q). Thus, there exists a maximal model (Z , Y ) ∈ UE(Q). By
our assumption, (Z , Y ) ∈ UE(P ) follows. Contradiction. Thus Theorem 3.3 (ii)
holds as well, proving that P ≡u Q in Case (b).
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This result shows that UE-models capture the notion of uniform equiva-
lence for finite logic program in the same manner as SE-models capture strong
equivalence. Specifically, the essence of a program P with respect to uniform
equivalence is expressed by a semantic condition on P alone.

COROLLARY 3.8. Two finite DLPs P and Q are uniformly equivalent, that is,
P ≡u Q, if and only if UE(P ) = UE(Q).

Example 3.9. Each SE-model of the program P = {a ∨ b} satisfies the con-
dition of a UE-model, and thus UE(P ) = SE(P ). The program Q = {a ←
not b; b ← not a} has the additional SE-model (∅, ab), and all of its SE-models
except this one are UE-models of Q . Thus,

UE(P ) = UE(Q) = {(a, a); (b, b); (a, ab); (b, ab); (ab, ab)}.
Note that the strong equivalence of P and Q fails because (∅, ab) is not an
SE-model of P . This SE-model is enforced by the intersection property ((X 1, Y )
and (X 2, Y ) in SE(P ) implies (X 1 ∩ X 2, Y ) ∈ SE(P )). This intersection property
is satisfied by the Horn program QY , but violated by the disjunctive program
PY (=P ). The maximality condition of UE-models eliminates this intersection
property.

Example 3.10. Reconsider P = {a ← not b; a ← b}, which has classical
models (over {a, b, c}) of form {a} ⊆ Y ⊆ {a, b, c}. Its UE-models are (X , Y )
where X ∈ {Y , Y \ {b}, Y \ {c}}. Note that the atoms b and c have symmetric
roles in UE(P ). Consequently, the program obtained by exchanging the roles of
b and c, Q = {a ← not c; a ← c} has the same UE-models. Hence, P and Q are
uniformly equivalent.

The following example shows why the characterization via UE-models fails
if both compared programs are infinite. The crucial issue here is the expression
of an “infinite chain” resulting in an infinite number of nontotal SE-models.
In this case, the concept of maximal nontotal SE-models does not capture the
general characterization from Theorem 3.3.

Example 3.11. Consider the programs P and Q over A = {ai | i ≥ 1},
defined by

P = {ai ← | i ≥ 1}, and Q = {ai ← not ai, ai ← ai+1 | i ≥ 1}.
Both P and Q have the single classical model A = {ai | i ≥ 1}. Furthermore,
P has no “incomplete” SE-model (X , A) such that X ⊂ A, while Q has the
incomplete SE-models (X i, A), where X i = {a1, . . . , ai} for i ≥ 0. Both P and Q
have the same maximal incomplete SE-models (namely none), and hence they
have the same UE-models.

However, P �≡u Q , since, for example, P has an answer set while Q obviously
has not. Note that this is caught by our Theorem 3.3, item (ii): For (X 0, A),
which is an SE-model of Q but not of P , we cannot find an SE-model (X , A) of
P between (X 0, A) and (A, A).

In fact, the uniform equivalence of infinite programs P and Q cannot be
captured by a selection of SE-models.
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THEOREM 3.12. Let P and Q be infinite programs. There is no selection of
SE-models σ (SE(·)) such that P ≡u Q, if and only if σ (SE(P )) = σ (SE(Q)).

PROOF. Consider programs over A = {ai | i ≥ 1} as follows. The program
P = {ai ← | i ≥ 1} in Example 3.11, as well as

Q = {ai ← not ai, ai ← ai+1, a2i ← a2i−1 | i ≥ 1},
R = {ai ← not ai, ai ← ai+1, a2i+1 ← a2i, a1 ←| i ≥ 1}, and
S = {ai ← , ← a1 | i ≥ 1}.

Considering the corresponding SE-models, it is easily verified that SE(P ) =
{(A, A)}, SE(S) = ∅, as well as

SE(Q) = {(∅, A), (a1a2, A), . . . , (a1a2 · · · a2i, A), . . . , (A, A) | i ≥ 0}, and
SE(R) = {(a1, A), (a1a2a3, A), . . . , (a1a2 · · · a2i+1, A), . . . , (A, A) | i ≥ 0}.

Hence, we have that SE(Q) ∩ SE(R) = {(A, A)}. Observe also that Q ∪ X and
R ∪ X do not have an answer set for any proper subset X ⊂ A, while A is (the
only) answer set for both Q ∪ A and R ∪ A. Thus Q ≡u R. However, S ∪ A
does not have an answer set and we get Q �≡u S and R �≡u S. Since P has the
answer set A, we finally conclude that P �≡u Q , P �≡u R, and P �≡u S.

Towards a contradiction, let us assume that there exists a selection function
σ (SE(·)), such that Pi ≡u Pj iff σ (SE(Pi)) = σ (SE(Pj )), for Pi, Pj ∈ {P, Q , R, S}.
Then σ (SE(S)) = ∅ and, since P �≡u S, σ (SE(P )) = {(A, A)}. Furthermore
Q ≡u R implies σ (SE(Q)) = σ (SE(R)) and by SE(Q) ∩ SE(R) = {(A, A)} we
conclude either σ (SE(Q)) = σ (SE(R)) = ∅, or σ (SE(Q)) = σ (SE(R)) = {(A, A)}.
From P �≡u Q , the former follows, that is, σ (SE(Q)) = σ (SE(R)) = ∅. However,
then σ (SE(Q)) = σ (SE(S)) while Q �≡u S, which is a contradiction.

3.3 Consequence under Uniform Equivalence

Based on UE-models, we define an associated notion of consequence under uni-
form equivalence.

Definition 3.13 [UE-Consequence]. A rule r is an UE-consequence of a pro-
gram P , denoted P |=u r, if (X , Y ) ∈ SE(r), for all (X , Y ) ∈ UE(P ).

Clearly, P |=u r for all r ∈ P , and ∅ |=u r iff r is a classical tautology. The
next result shows that the UE-models of a program remain invariant under
addition of UE-consequences.

PROPOSITION 3.14. For any program P and rule r, if P |=u r, then UE(P ) =
UE(P ∪ {r}).

As usual, we write P |=u R for any set of rules R if P |=u r for all r ∈ R. As
a corollary, taking Theorem 3.7 (b) into account, we get the following.

COROLLARY 3.15. For any finite program P and set of rules R, if P |=u R
then P ∪ R ≡u P.

From this proposition, we also obtain an alternative characterization of uni-
form equivalence in terms of UE-consequence.
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THEOREM 3.16. Let P and Q be DLPs. Then:

(a) P ≡u Q implies P |=u Q and Q |=u P; and
(b) P |=u Q and Q |=u P implies P ≡u Q, whenever at least one of the programs

P, Q is finite.

PROOF. In Case (a), we have UE(P ) = UE(Q) if P ≡u Q by Theorem 3.7 (a),
and thus P and Q have the same UE-consequences. Since (X , Y ) |= P (respec-
tively (X , Y ) |= Q), for all (X , Y ) ∈ UE(P ) (respectively (X , Y ) ∈ UE(Q)), it
follows that Q |=u P and P |=u Q . For (b), we apply Proposition 3.14 repeatedly
and obtain UE(P ) = UE(P ∪ Q) = UE(Q). By Theorem 3.7 (b), P ≡u Q .

Rewriting this result in terms of SE- and UE-models gives the following
characterization (which has also been derived for finite programs in Eiter et al.
[2004a, Prop. 5]).

PROPOSITION 3.17. Let P and Q be DLPs. Then:

(a) P ≡u Q implies UE(P ) ⊆ SE(Q) and UE(Q) ⊆ SE(P ); and
(b) UE(P ) ⊆ SE(Q) and UE(Q) ⊆ SE(P ) implies P ≡u Q, whenever at least

one of the programs P, Q is finite.

We note that with respect to uniform equivalence, every program P has a
canonical normal form P∗ given by its UE-consequences, that is, P∗ = {r | P |=u
r}. Clearly, P ⊆ P∗ holds for every program P , and P∗ has exponential size.
Applying optimization methods built on UE-consequence, P (respectively P∗)
may be transformed into smaller uniformally equivalent programs; we leave
this for further study.

As for the relationship of UE-consequence to classical consequence and cau-
tious consequence under answer set semantics, we note the following hierarchy.
Let |=c denote consequence from the answer sets, namely, P |=c r iff M |= r for
every M ∈ AS(P ).

PROPOSITION 3.18. For any finite program P and rule r: (i) P |=u r implies
P ∪ F |=c r, for each set of facts F ; (ii) P ∪ F |=c r, for each set of facts F , implies
P |=c r; and (iii) P |=c r implies P |= r.

This hierarchy is strict, namely, none of the implications holds in the converse
direction. (For (i), note that {a ← not a} |=c a but {a ← not a} �|=u a, since the
UE-model (∅, {a}) violates a.)

We next present a semantic characterization in terms of UE-models, under
which UE- and classical consequence, and thus all four notions of consequence,
coincide.

LEMMA 3.19. Let P be a DLP. Suppose that (X , Y ) ∈ UE(P ) implies X |= P
(that is, X is a model of P ). Then, P |= r implies P |=u r, for every rule r.

THEOREM 3.20. Let P be any DLP. Then the following conditions are
equivalent:

(i) P |=u r iff P |= r, for every rule r; and
(ii) for every (X , Y ) ∈ UE(P ), it holds that X |= P.
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PROOF. (ii) ⇒ (i). Suppose (ii) holds. The only-if direction in (i) holds imme-
diatly by Lemma 3.19. The if direction in (i) holds in gerenal, since P |=u r iff
UE(P ) ⊆ SE(r). The latter clearly implies that each total SE-model of P is a
total SE-model of r. Consequently, P |= r.

(i) ⇒ (ii). Suppose P |=u r iff P |= r for every rule r, but there exists some
UE-model (X , Y ) of P such that X �|= P . Hence X �|= r for some rule r ∈ P .
Let r ′ be the rule which results from r by shifting the negative literals to the
head, that is, H(r ′) = H(r) ∪ B−(r), B+(r ′) = B+(r), and B−(r ′) = ∅. Then
X �|= r ′. On the other hand, r ∈ P implies (X , Y ) |= r. Hence Y |= r and thus
Y |= r ′. Moreover, B−(r ′) = ∅ implies that r ′ ∈ PY , and hence X |= r ′. This is a
contradiction. It follows that X |= P for each UE-model (X , Y ) of P .

An immediate corollary to this result is that for finite positive programs, the
notion of UE-consequence collapses with classical consequence, and hence the
uniform equivalence of finite positive programs amounts to classical equiva-
lence. We shall obtain these results as corollaries of more general results in
Section 5.1, though.

4. RELATIVIZED NOTIONS OF STRONG AND UNIFORM EQUIVALENCE

In what follows, we formally introduce the notions of relativized strong equiv-
alence (RSE) and relativized uniform equivalence (RUE).

Definition 4.1. Let P and Q be programs and let A be a set of atoms. Then:

(i) P and Q are strongly equivalent relative to A, denoted P ≡A
s Q , iff P ∪ R ≡

Q ∪ R, for all programs R over A; and
(ii) P and Q are uniformly equivalent relative to A, denoted P ≡A

u Q , iff P ∪F ≡
Q ∪ F , for all (nondisjunctive) facts F ⊆ A.

Observe that the range of applicability of these notions covers ordinary equiv-
alence (by setting A = ∅) of two programs P , Q , and general strong (respectively
uniform) equivalence (whenever Atm(P ∪ Q) ⊆ A). Also the following relation
holds: For any set A of atoms, let A′ = A ∩ Atm(P ∪ Q). Then, P ≡A

e Q holds,
iff P ≡A′

e Q holds, for e ∈ {s, u}.
Our first main result lists some properties for relativized strong equivalence.

Among them, we show that RSE shares an important property with general
strong equivalence: In particular, from the proofs of the results in Lifschitz
et al. [2001] and Turner [2003], it appears that for strong equivalence, only the
addition of unary rules is crucial. In other words, constraining the rules in the
set R in Definition 4.1 to be unary does not lead to a different concept.

LEMMA 4.2. For programs P, Q, and a set of atoms A, the following state-
ments are equivalent:

(1) There exists a program R over A such that AS(P ∪ R) �⊆ AS(Q ∪ R);
(2) there exists a unary program U over A such that AS(P ∪ U ) �⊆ AS(Q ∪ U );

and
(3) there exists an interpretation Y such that and (a) Y |= P; (b) for each Y ′ ⊂ Y

with (Y ′ ∩ A) = (Y ∩ A), Y ′ �|= PY holds; and (c) Y |= Q implies existence of
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an X ⊂ Y , such that X |= QY and, for each X ′ ⊂ Y with (X ′ ∩ A) = (X ∩ A),
X ′ �|= PY holds.

PROOF. (1) ⇒ (3): Suppose an interpretation Y and a set R of rules over A
such that Y ∈ AS(P ∪ R) and Y /∈ AS(Q ∪ R). From Y ∈ AS(P ∪ R), we get
Y |= P ∪ R and, for each Z ⊂ Y , Z �|= PY ∪ RY . Thus (a) holds, and since
Y ′ |= RY holds, for each Y ′ with (Y ′ ∩ A) = (Y ∩ A), (b) holds as well. From
Y /∈ AS(Q ∪ R), we get that either Y �|= Q ∪ R or there exists an interpretation
X ⊂ Y , such that X |= QY ∪ RY . Note that Y �|= Q ∪ R implies Y �|= Q , since
from the preceding, we have Y |= R. Thus, in the case of Y �|= Q ∪ R, (c) holds;
otherwise we get that X |= QY . Now since X |= RY , we know that, for each
X ′ ⊂ Y with (X ′∩ A) = (X ∩ A), X ′ �|= PY has to hold, otherwise Y /∈ AS(P ∪ R).
Hence (c) is satisfied.

(3) ⇒ (2): Suppose an interpretation Y such that conditions (a–c) hold. We
have two cases: First, if Y �|= Q , consider the unary program U = (Y ∩ A). By
conditions (a) and (b), it is easily seen that Y ∈ AS(P ∪U ), and from Y �|= Q , it
follows that Y /∈ AS(Q ∪U ). So suppose Y |= Q . By (c), there exists an X ⊂ Y ,
such that X |= QY . Consider the program U = (X ∩ A) ∪ {p ← q | p, q ∈
(Y \ X ) ∩ A}. Again, U is unary over A. Clearly, Y |= Q ∪ U and X |= QY ∪ U .
Thus Y /∈ AS(Q ∪ U ). It remains to show that Y ∈ AS(P ∪ U ). We have
Y |= P ∪U . Towards a contradiction, suppose a Z ⊂ Y , such that Z |= PY ∪U .
By definition of U , Z ⊇ (X ∩ A). If (Z ∩ A) = (X ∩ A), condition (c) is violated; if
(Z ∩ A) = (Y ∩ A), condition (b) is violated. Thus (X ∩ A) ⊂ (Z ∩ A) ⊂ (Y ∩ A).
But then Z �|= U , since there exists at least one rule p ← q in U , such that
q ∈ Z and p /∈ Z . Contradiction.

(2) ⇒ (1) is obvious.

The next result is an immediate consequence of the fact that Propositions
(1) and (2) from the previous result are equivalent.

COROLLARY 4.3. For programs P, Q, and a set of atoms A, P ≡A
s Q holds iff,

for each unary program U over A, P ∪ U ≡ Q ∪ U holds.

We emphasize that therefore, also for relativized equivalences it holds that,
by restricting the syntax of the added rules, RSE and RUE are the only
concepts which differ. Note that this generalizes an observation reported in
Pearce and Valverde [2004b] (see Theorem 2 and subsequent remarks therein)
to relativized notions of equivalence, namely that uniform and strong equiva-
lence are the only forms of equivalence obtained by varying the logical form of
expressions, that is, the structure of the rules, in the extension.

4.1 A Characterization for Relativized Strong Equivalence

In this section, we provide a semantical characterization of RSE by generalizing
the notion of SE-models. Hence, our aim is to capture the problem P ≡A

s Q in
model-like terms. We emphasize that the forthcoming results are also applica-
ble to infinite programs. Moreover, having found a suitable notion of relativized
SE-models, we expect that a corresponding pendant for relativized uniform
equivalence can be derived in the same manner as general UE-models are
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defined over general SE-models. As in the case of UE-models, we need some
restrictions concerning the infinite case, that is, if infinite programs are con-
sidered.

We introduce the following notion.

Definition 4.4. Let A be a set of atoms. A pair of interpretations (X , Y ) is a
(relativized) A-SE-interpretation iff either X = Y or X ⊂ (Y ∩ A). The former
are called total and the latter nontotal A-SE-interpretations.

Moreover, an A-SE-interpretation (X , Y ) is a (relativized) A-SE-model of a
program P iff:

(i) Y |= P ;
(ii) for all Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A), Y ′ �|= PY ; and

(iii) X ⊂ Y implies existence of a X ′ ⊆ Y with (X ′∩A) = X , such that X ′ |= PY

holds.

The set of A-SE-models of P is given by SEA(P ).

Compared to SE-models, this definition is more involved. This is due to the
fact that we have to take care of two different effects when relativizing strong
equivalence. The first is as follows: Suppose a program P has among its SE-
models the pairs (Y , Y ) and (Y ′, Y ) with (Y ′∩ A) = (Y ∩ A) and Y ′ ⊂ Y . Then, Y
never becomes an answer set of a program P ∪ R, regardless of the rules R over
A that we add to P . This is due to the fact that either Y ′ |= (P∪R)Y still holds for
some Y ′ ⊂ Y , or Y �|= (P ∪ R)Y (the latter is a consequence of finding an R such
that Y ′ �|= (P ∪ R)Y , for (Y ′ ∩ A) = (Y ∩ A), Y ′ ⊂ Y modeling P ). In other words,
for the construction of a program R over A such that AS(P ∪ R) �= AS(Q ∪ R),
it is not worthwhile to pay attention to any original SE-model of P of the form
(·, Y ), whenever there exists a (Y ′, Y ) ∈ SE(P ) with (Y ′ ∩ A) = (Y ∩ A). This
motivates condition (ii). Condition (iii) deals with a different effect: Suppose P
has SE-models (X , Y ) and (X ′, Y ), with (X ∩ A) = (X ′ ∩ A) ⊂ (Y ∩ A). Here,
it is not possible to eliminate just one of these two SE-models by adding rules
over A. Such SE-models that do not differ with respect to A are collected into a
single A-SE-model ((X ∩ A), Y ).

The different roles of these two independent conditions become even more
apparent in the following cases. On the one hand, setting A = ∅, the A-SE-
models of a program P collapse with the answer sets of P . More precisely,
all such ∅-SE-models have to be of the form (Y , Y ), and it holds that (Y , Y )
is an ∅-SE-model of a DLP P iff Y is an answer set of P . This is easily seen
by the fact that under A = ∅, conditions (i) and (ii) in Definition 4.4 exactly
coincide with the characterization of answer sets, following Proposition 2.6.
Therefore, A-SE-model-checking for DLPs is not possible in polynomial time
in the general case; otherwise we get that checking whether a DLP has some
answer set is NP-complete, which is in contradiction to known results [Eiter
and Gottlob 1995], provided that the polynomial hierarchy does not collapse.
On the other hand, if each atom from P is contained in A, then the A-SE-models
of P coincide with the SE-models (over A) of P . The conditions in Definition 4.4
are hereby instantiated as follows: A pair (X , Y ) is an A-SE-interpretation iff
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X ⊆ Y , and by (i) we get Y |= P , (ii) is trivially satisfied, and (iii) states that
X |= PY .

The central result is as follows. In particular, we show that A-SE-models
capture the notion of ≡A

s in the same manner as SE-models capture ≡s.

THEOREM 4.5. For programs P, Q and a set of atoms A, P ≡A
s Q holds iff

SEA(P ) = SEA(Q).

PROOF. First suppose P �≡A
s Q and without loss of generality consider for

some R over A, AS(P ∪ R) �⊆ AS(Q ∪ R). By Lemma 4.2, there exists an
interpretation Y such that: (a) Y |= P ; (b) for each Y ′ ⊂ Y with (Y ′ ∩ A) =
(Y ∩ A), Y ′ �|= PY ; and (c) Y �|= Q or there exists an interpretation X ⊂ Y such
that X |= QY and, for each X ′ ⊂ Y with (X ′ ∩ A) = (X ∩ A), X ′ �|= PY . First
suppose Y �|= Q , or Y |= Q and (X ∩ A) = (Y ∩ A). Then (Y , Y ) is an A-SE-model
of P but not of Q . Otherwise, Y |= Q and (X ∩ A) ⊂ (Y ∩ A), ((X ∩ A), Y ) is an
A-SE-model of Q . But, by condition (c), ((X ∩ A), Y ) is not an A-SE-model of P .

For the converse direction of the theorem, suppose a pair (Z , Y ) such that
without loss of generality (Z , Y ) is an A-SE-model of P but not of Q . First let
Z = Y . We show that AS(P ∪ R) �⊆ AS(Q ∪ R) for some program R over A.
Since (Y , Y ) is an A-SE-model of P , we get from Definition 4.4 that Y |= P and,
for each Y ′ ⊂ Y with (Y ∩ A) = (Y ′ ∩ A), Y ′ �|= PY . Thus, conditions (a) and
(b) in part (3) of Lemma 4.2 are satisfied for P by Y . On the other hand, (Y , Y )
is not an A-SE-model of Q . By Definition 4.4, either Y �|= Q or there exists a
Y ′ ⊂ Y , with (Y ′ ∩ A) = (Y ∩ A), such that Y ′ |= QY . Therefore, condition (c)
from Lemma 4.2 is satisfied by either Y �|= Q or, if Y |= Q , by setting X = Y ′.
We apply Lemma 4.2 and get the desired result. Consequently, P �≡A

s Q . So
suppose Z �= Y . We show that then AS(Q ∪ R) �⊆ AS(P ∪ R) holds for some
program R over A. First, observe that whenever (Z , Y ) is an A-SE-model of P ,
then also (Y , Y ) is an A-SE-model of P . Hence, the case where (Y , Y ) is not an
A-SE-model of Q is already shown. So, suppose (Y , Y ) is an A-SE-model of Q .
We have Y |= Q and, for each Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A), Y ′ �|= QY . This
satisfies conditions (a) and (b) in Lemma 4.2 for Q . However, since (Z , Y ) is not
an A-SE-model of Q , for each X ′ ⊂ Y with (X ′ ∩ A) = Z , X ′ �|= QY holds. Since
(Z , Y ) in turn is an A-SE-model of P , there exists an X ⊂ Y with (X ∩ A) = Z
such that X |= PY . These observations imply that (c) holds in Lemma 4.2. We
apply the lemma and finally get P �≡A

s Q .

Although A-SE-models are more involved than SE-models, they share some
fundamental properties with general SE-models. However, some properties do
not generalize to A-SE-models. We shall discuss these issues in detail in Sec-
tion 4.3. For the moment, we list some observations concerning the relation
between SE-models and A-SE-models, in order to present some examples.

LEMMA 4.6. Let P be a program and A a set of atoms. We have the following
relations between A-SE-models and SE-models:

(i) If (Y , Y ) ∈ SEA(P ), then (Y , Y ) ∈ SE(P ).
(ii) If (X , Y ) ∈ SEA(P ), then (X ′, Y ) ∈ SE(P ), for some X ′ ⊆ Y with (X ′ ∩ A) =

X .
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Table I. Comparing the A-SE-Models for Example Programs Q and Q ′

A A-SE-Models of Q A-SE-Models of Q ′

{a, b, c} (abc, abc), (a, abc), (b, abc) (abc, abc), (a, abc), (b, abc), (∅, abc)
{a, b} (abc, abc), (a, abc), (b, abc) (abc, abc), (a, abc), (b, abc), (∅, abc)
{a, c} (abc, abc), (a, abc), (∅, abc) (abc, abc), (a, abc), (∅, abc)
{b, c} (abc, abc), (∅, abc), (b, abc) (abc, abc), (b, abc), (∅, abc)
{a} — —
{b} — —
{c} (abc, abc), (∅, abc) (abc, abc), (∅, abc)
∅ — —

Example 4.7. Consider the programs

Q = {a ∨ b ←; a ← c; b ← c; ← not c; c ← a, b};
Q ′ = {a ← not b; b ← not a; a ← c; b ← c; ← not c; c ← a, b}.

Thus, Q ′ results from Q by replacing the disjunctive rule a ∨ b ← by the two
rules a ← not b; b ← not a.

Table I lists for each A ⊆ {a, b, c} the A-SE-models of Q and Q ′, respectively.
The first row of the table gives the SE-models (over {a, b, c}) for Q and Q ′.
From this row, we can, by Definition 4.4 and Lemma 4.6, obtain the other rows
quite easily. Observe that we have Q �≡s Q ′. The second row shows that for
A = {a, b}, Q �≡A

s Q ′, as well. Indeed, adding R = {a ← b; b ← a} yields {a, b, c}
as the answer set of Q ∪ R, whereas Q ′ ∪ R has no answer set. For all other
A ⊂ {a, b, c}, the A-SE-models of Q and Q ′ coincide. Basically, there are two
different reasons. First, for A = {a, c}, A = {b, c}, or A = {c}, condition (iii)
from Definition 4.4 comes into play. In these cases, at least one of the SE-
interpretations (a, abc) or (b, abc) is “switched” to (∅, abc), and thus the original
difference between the SE-models disappears when considering A-SE-models.
In the remaining cases, namely, A ⊂ {a, b}, condition (ii) prevents any (·, abc)
from being an A-SE-model of Q or Q ′. Then, neither Q nor Q ′ possesses any
A-SE-model.

4.2 A Characterization for Relativized Uniform Equivalence

In what follows, we consider the problem of checking relativized uniform equiv-
alence. Therefore, we shall make use of the newly introduced A-SE-models in
the same manner as Section 3 provided characterizations for uniform equiva-
lence using SE-models.2

We start with a generalization of Lemma 3.2. The proof is similar to the proof
of Lemma 3.2 and thus relegated to the online Appendix, which can be accessed
at the ACM Digital Library.

LEMMA 4.8. Two DLPs P and Q are uniformly equivalent with respect to
to a set of atoms A, that is, P ≡A

u Q, iff for every A-SE-model (X , Y ) such
that (X , Y ) is an A-SE-model of exactly one of the programs P and Q, it holds
that (i) (Y , Y ) ∈ SEA(P ) ∩ SEA(Q), and (ii) there exists an A-SE-model (X ′, Y ),
X ⊂ X ′ ⊂ Y , of the other program.

2For a slightly different way to prove the main results on RUE, we refer to Woltran [2004].
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From Lemma 4.8 we immediately obtain the following characterization of
relativized uniform equivalence.

THEOREM 4.9. Two programs P and Q are uniformly equivalent with respect
to to a set of atoms A, P ≡A

u Q, iff:

(i) For each Y , (Y , Y ) ∈ SEA(P ) iff (Y , Y ) ∈ SEA(Q), that is, the total A-SE-
models of P and Q coincide; and

(ii) for each (X , Y ), where X ⊂ Y , (X , Y ) is an A-SE-model of P (respectively Q)
iff there exists a set X ′ such that X ⊆ X ′ ⊂ Y , and (X ′, Y ) is an A-SE-model
of Q (respectively P ).

In contrast to uniform equivalence, we can obtain further characterizations
for ≡A

u also for infinite programs, provided that A is finite.

THEOREM 4.10. Let P and Q be programs and A a set of atoms such that P,
Q, or A is finite. Then P ≡A

u Q, iff the following conditions hold:

(i) For each Y , (Y , Y ) ∈ SEA(P ) iff (Y , Y ) ∈ SEA(Q), that is, the total A-SE-
models of P and Q coincide; and

(ii) for each (X , Y ) ∈ SEA(P ) ∪ SEA(Q) such that X ⊂ Y , there exists an
(X ′, Y ) ∈ SEA(P ) ∩ SEA(Q) such that X ⊆ X ′ ⊂ Y .

The result is proved by the same arguments as used in the proof of Theo-
rem 3.5. The only additional argumentation is needed for the cases where P and
Q are both infinite, but A is finite. Recall that in this case there is also only a
finite number of nontotal A-SE-interpretations (X , Y ) for fixed Y , since X ⊆ A
holds by the definition of A-SE-interpretation. Therefore, any chain (as used in
the proof of Theorem 3.5) of different A-SE-models (X , Y ) with fixed Y is finite.

As mentioned before, we aim at defining relativized A-UE-models over A-
SE-models in the same manner as general UE-models are defined over general
SE-models, following Definition 3.6.

Definition 4.11. Let A be a set of atoms and P be a program. A pair (X , Y )
is a (relativized) A-UE-model of P iff it is an A-SE-model of P and, for every
A-SE-model (X ′, Y ) of P , X ⊂ X ′ implies X ′ = Y . The set of A-UE-models of
P is given by UEA(P ).

An alternative characterization of A-UE-models, which will be useful later,
is immediately obtained from Definitions 4.4 and 4.11 as follows.

PROPOSITION 4.12. An A-SE-interpretation (X , Y ) is an A-UE-model of a
program P iff:

(i) Y |= P;
(ii) for each X ′′ ⊂ Y with either (X ∩ A) ⊂ (X ′′ ∩ A) or (X ′′ ∩ A) = (Y ∩ A),

X ′′ �|= PY ; and
(iii) if X ⊂ Y , there exists a X ′ ⊆ Y with (X ′ ∩ A) = (X ∩ A) such that X ′ |= PY .

Next, we derive the desired characterization for relativized uniform equiva-
lence, generalizing the results in Theorem 3.7. The proof of the theorem is given
in the online Appendix.
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THEOREM 4.13. Let P and Q be DLPs, and A a set of atoms. Then:

(a) P ≡A
u Q implies UEA(P ) = UEA(Q); and

(b) UEA(P ) = UEA(Q) implies P ≡A
u Q whenever at least one of P, Q, or A is

finite.

Example 4.14. Recall our example programs Q and Q ′ from before. Via
the first row in the table (that is, for A = {a, b, c}, yielding the respective SE-
models), it is easily checked by Proposition 3.7 that Q and Q ′ are uniformly
equivalent. In fact, the SE-model (∅, abc) of Q ′ is not a UE-model of Q ′ due to
the presence of the SE-model (a, abc), or alternatively because of (b, abc). Note
that Q ≡u Q ′ implies that Q ≡A

u Q ′ for any A. Inspecting the remaining rows
in the table, it can be seen that for any A, the sets of A-UE-models of Q and Q ′

are equal, as expected.

We conclude this section by remarking that we do not have a directly corre-
sponding result to Theorem 3.16 for relativized uniform equivalence (see also
the next subsection). A generalization of Proposition 3.17 is possible, however.
The proof is in the online Appendix.

THEOREM 4.15. Let P and Q be DLPs, and A a set of atoms. Then,

(a) P ≡A
u Q implies UEA(P ) ⊆ SEA(Q) and UEA(Q) ⊆ SEA(P );

(b) UEA(P ) ⊆ SEA(Q) and UEA(Q) ⊆ SEA(P ) implies P ≡A
u Q, whenever at

least one of P, Q, or A is finite.

4.3 Properties of Relativized Equivalences

This section collects a number of properties of A-SE-models and A-UE-models,
respectively. Note that there are situations where A-SE-models and A-UE-
models are the same concepts. In what follows, we shall use card(A) to denote
the cardinality of a set A.

PROPOSITION 4.16. For any program P, and a set of atoms A with card(A) <

2, it holds that SEA(P ) = UEA(P ).

COROLLARY 4.17. For programs P,Q and a set of atoms A with card(A) < 2,
P ≡A

s Q iff P ≡A
u Q.

The following results are only given in terms of A-SE-models; the impact of
the results on properties of A-UE-models is in most cases obvious, and thus not
explicitly mentioned.

First, we are able to generalize Proposition 2.6 to relativized SE-models.

LEMMA 4.18. An interpretation Y is an answer set of a program P iff
(Y , Y ) ∈ SEA(P ) and, for each X ⊂ Y , (X , Y ) �∈ SEA(P ).

One drawback of A-SE-models is that they are not closed under program
composition. Formally, SEA(P∪Q) = SEA(P )∩SEA(Q) does not hold in general;
however, it holds whenever A contains all atoms occurring in P or Q . The fact
that, in general, SEA(P ∪ Q) �= SEA(P ) ∩ SEA(Q) is not a surprise, since for
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A = ∅, A-SE-models capture answer sets; and if this closure property would
hold, answer set semantics would be monotonic.

PROPOSITION 4.19. For programs P, Q, and a set of atoms A, we have the
following relations:

(i) (Y , Y ) ∈ SEA(P ) ∩ SEA(Q) implies (Y , Y ) ∈ SEA(P ∪ Q);
(ii) for X ⊂ Y , (X , Y ) ∈ SEA(P ∪ Q) implies (X , Y ) ∈ SEA(R), whenever

(Y , Y ) ∈ SEA(R), for R ∈ {P, Q}; and
(iii) the converse directions of (i) and (ii) do not hold in general.

PROOF. ad (i): Suppose (Y , Y ) /∈ SEA(P ∪ Q); then either: (a) Y �|= P ∪ Q ;
or (b) there exists a Y ′ ⊂ Y , with (Y ′ ∩ A) = (Y ∩ A) such that Y ′ |= (P ∪ Q)Y .
If Y �|= P ∪ Q , then either Y �|= P or Y �|= Q . Consequently, (Y , Y ) /∈ SEA(P )
or (Y , Y ) /∈ SEA(Q). So, suppose Y |= P ∪ Q and that (b) holds. Then, neither
(Y , Y ) ∈ SEA(P ) nor (Y , Y ) ∈ SEA(Q).

ad (ii): Let R ∈ {P, Q}. Suppose (Y , Y ) ∈ SEA(R) and (X , Y ) /∈ SEA(R). The
latter implies that no X ′ ⊂ Y , with (X ′ ∩ A) = (X ∩ A), satisfies X ′ |= PY .
Consequently, no such X ′ satisfies X ′ |= (P ∪ Q)Y , and thus (X , Y ) /∈ SEA(P ∪
Q).

ad (iii): Take the following example programs. Consider programs over V =
{a, b, c} containing rules R = { ← not a; ← not b; ← not c}. Note that
SE(R) = {(X , V ) | X ⊆ V }. Let

Pa = R ∪ {a ←; b ← c; c ← b};
Pb = R ∪ {b ←; a ← c; c ← a};
Pc = R ∪ {c ←; a ← b; b ← a}.

Then, the SE-models of Pv are given by (v, abc) and (abc, abc), for v ∈ V .
Set now, for instance, A = {c}. Then, we have SEA(Pa) = SEA(Pb) = {(∅, abc),

(abc, abc)}, while SEA(Pc) = ∅. However, SEA(Pa ∪ Pb) = SEA(Pa ∪ Pc) =
SEA(Pb ∪ Pc) = {(abc, abc)}. This shows that for both (i) and (ii) in Proposi-
tion 4.19, the converse direction does not hold.

The aforementioned result crucially influences the behavior of relativized
consequence operators, that is, generalizations of |=e, with e ∈ {s, u}, as in-
troduced in Definitions 2.7 and 3.13, respectively, to the relativized notions of
equivalence.

To check rule redundancy in the context of relativized strong equivalence,
we give the following result.

Definition 4.20. A rule r is an A-relativized SE-consequence of a program
P , denoted P |=A

s r, if (X , Y ) ∈ SEA({r}), for all (X , Y ) ∈ SEA(P ).

LEMMA 4.21. For any set of atoms A, program P, and rule r with (B+(r) ∪
H(r)) ⊆ A, it holds that if P |=A

s r, then P ∪ {r} ≡A
s P.

This result similarly applies to the notion of UE-consequence relative to A,
that is, the restriction (H(r)∪B+(r)) ⊆ A is also necessary in that case. However
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(as in Proposition 3.14), the result has to be slightly rephrased for A-UE-models
in order to properly handle the case of infinite programs.

In general, checking rule-redundancy with respect to relativized equiva-
lences is a more involved task; we leave it for further study.

5. RESTRICTED CLASSES OF PROGRAMS

So far, we discussed several forms of equivalence for propositional programs in
general. This section is devoted to two prominent subclasses of disjunctive logic
programs, namely, positive and head-cycle-free programs. Notice that these
classes include Horn and disjunction-free logic programs, respectively.

5.1 Positive Programs

While for programs with negation, strong and uniform equivalence are differ-
ent, these notions coincide for positive programs, also in the relativized cases.
We start with some technical results.

LEMMA 5.1. Let P be a program, and A, X ⊂ Y be sets of atoms. We have
the following relations:

(1) If (Y , Y ) ∈ SEA(P ) and (X , X ) ∈ SEA(P ), then ((X ∩ A), Y ) ∈ SEA(P ).
(2) If (X , Y ) ∈ SEA(P ), then (Y , Y ) ∈ SEA(P ) and, whenever P is positive, there

exists an X ′ ⊆ Y , with (X ′ ∩ A) = X such that (X ′, X ′) ∈ SEA(P ).

In other words, the set of all A-SE-models of a positive program P is deter-
mined by its total A-SE-models. An important consequence of this result is the
following.

PROPOSITION 5.2. Let P, Q be programs, P be positive, and suppose that the
total A-SE-models of P and Q coincide. Then, SEA(P ) ⊆ SEA(Q).

From this result, we get that deciding relativized strong and uniform equiv-
alence of positive programs collapses to checking whether total A-SE-models
coincide.

THEOREM 5.3. Let P and Q be positive DLPs, and A a set of atoms. The
following propositions are equivalent:

(i) P ≡A
s Q;

(ii) P ≡A
u Q; and

(iii) (Y , Y ) ∈ SEA(P ) iff (Y , Y ) ∈ SEA(Q), for each interpretation Y .

PROOF. (i) implies (ii) by definition; (ii) implies (iii) by Theorem 4.13. We
show that (iii) implies (i). Applying Proposition 5.2 in the case of two positive
programs immediately yields that (iii) implies SEA(P ) = SEA(Q). Hence P ≡A

s
Q .

Therefore, RSE and RUE are the same concepts for positive programs; we
thus sometimes write generically ≡e for ≡s and ≡u.
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An important consequence of this result is that A-UE-models (and thus UE-
models) are capable of dealing with infinite programs as well, provided that
they are positive.

COROLLARY 5.4. Let A be a (possibly infinite) set of atoms, and P, Q (possibly
infinite) positive program. Then P ≡A

u Q holds iff UEA(P ) = UEA(Q).

PROOF. The only-if direction has already been obtained in Theorem 4.13. For
the if direction, note that UEA(P ) = UEA(Q) implies (iii) from Theorem 5.3,
and since P and Q are positive, we derive P ≡A

u Q immediately from that
theorem.

Concerning strong equivalence and uniform equivalence, Lemma 5.1 gener-
alizes some well-known observations for positive programs.

PROPOSITION 5.5. For any positive program P, and sets of atoms X ⊆ Y ,
(X , Y ) ∈ SE(P ) iff (X , X ) ∈ SE(P ) and (Y , Y ) ∈ SE(P ).

In other words, the set of all SE-models of a program P is determined by its
total SE-models (that is, by the classical models of P ). As known and easy to
see from main results [Lifschitz et al. 2001; Turner 2003, 2001], on the class of
positive programs classical and strong equivalence coincide. Using Theorem 5.3,
we can extend this result.

THEOREM 5.6. For positive programs P, Q, P ≡e Q (e ∈ {s, u}) iff P and Q
have the same classical models.

Note that Sagiv [1988] showed that the uniform equivalence of DATALOG
programs � and �′ coincides with the equivalence of �′ and � over Her-
brand models; this implies the previous result for definite Horn programs.
Maher [1988] showed a generalization of Sagiv’s result for definite Horn logic
programs with function symbols. Furthermore, Maher also pointed out that
for DATALOG programs, this result has been independently established by
Cosmadakis and Kanellakis [1986].

Example 5.7. Consider the positive programs P = {a ∨ b ← a; b ← a} and
Q = {b ← a}. Clearly, P |= Q , since Q ⊂ P , but also Q |= P holds (note that
b ← a is a subclause of a ∨ b ← a). Hence, P and Q are uniformly equivalent,
and even strongly equivalent (which is also easily verified).

Example 5.8. Consider the positive programs P = {a ∨ b; c ← a; c ←
b} and Q = {a ∨ b; c}. Their classical models are {a, c}, {b, c}, and {a, b, c}.
Hence, P and Q are uniformly equivalent, and even strongly equivalent (due
to Theorem 5.3).

Concerning the relativized notions, a result corresponding directly to Theo-
rem 5.6 is not achievable. However, this is not surprising, otherwise we would
have that in the case of empty A, P ≡A

s Q (or P ≡A
u Q) collapses to classi-

cal equivalence. This of course cannot be the case, since for positive programs,
P ≡ Q denotes the equivalence of the minimal classical models of P and Q ,
rather than classical equivalence.
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Thus, while for strong and uniform equivalence total models (Y , Y ) for a
positive program P coincide with the classical models Y of P , the relativized
variants capture a more specific relation, namely, minimal models. We therefore
define as follows.

Definition 5.9. An A-minimal model of a program P is a classical model Y
of P such that for each Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A), Y ′ is not a classical
model of P .

Then, we can generalize Theorem 5.6 in the following manner.

THEOREM 5.10. Let P and Q be positive DLPs, and A a set of atoms. Then
P ≡A

e Q (e ∈ {s, u}) iff P and Q have the same A-minimal models.

PROOF. By Theorem 5.3, it is sufficient to show that the total A-SE-models
of a program P equal its A-minimal models. This relation holds for positive
programs, since PY = P for any positive program P and any interpretation Y .
In this case, the conditions for (Y , Y ) ∈ SEA(P ) are the same as for Y being
A-minimal for P .

Note that for A = ∅, the theorem states that P ≡A
e Q iff the minimal classical

models of P and Q coincide, reflecting the minimal model semantics of positive
programs. By contrast, for A = U , the theorem states that P ≡A

e Q iff all
classical models of P and Q coincide, as stated before.

5.2 Head-Cycle-Free Programs

The class of head-cycle-free programs generalizes the class of normal logic pro-
grams by permitting a restricted form of disjunction. Still, it is capable of ex-
pressing nondeterminism such as, for example, a guess for the value of an
atom a, which does not occur in the head of any other rule. For a definition
of head-cycle-freeness, we refer to Section 2. As shown by Ben-Eliyahu and
Dechter [1994], each head-cycle-free program can be rewritten to an ordinary
equivalent normal program, which is obtained by shifting atoms from the head
to the body.

More formally, let us define the following notations.

Definition 5.11. For any rule r, let

r→ =
{ {

a ← B+(r), not (B−(r) ∪ (H(r) \ {a})) | a ∈ H(r)
}

if H(r) �= ∅,
{r} otherwise.

For any DLP P , let P→
r = (P \ {r}) ∪ r→; and P→ = ⋃

r∈P r→.

It is well-known that for any head-cycle-free program P , it holds that P ≡
P→ (see Ben-Eliyahu and Dechter [1994]). This result can be strengthened to
uniform equivalence as well as to its relativized forms.

THEOREM 5.12. For any head-cycle-free program P, and any set of atoms A,
it holds that P ≡A

u P→.

PROOF. For any set of facts F ⊆ A, it holds that (P ∪ F )→ = P→ ∪ F and
that this program is head-cycle-free iff P is head-cycle-free. Thus P ∪ F ≡
(P ∪ F )→ ≡ P→ ∪ F . Hence P ≡A

u P→.
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We emphasize that a similar result for strong equivalence fails, as shown
by the canonical counterexample in Example 1.1. Recall that the program P =
{a ∨ b ← .} is not strongly equivalent to any NLP. Thus, we can not conclude
without further consideration that a simple disjunctive “guessing clause” like
the one in P (such that a and b do not occur in other rule heads) can be replaced
in a more complex program by the unstratified clauses a ← not b and b ← not a
(the addition of a further constraint ← a, b is required). However, we can
conclude this under uniform equivalence, taking standard program splitting
results into account [Lifschitz and Turner 1994; Eiter et al. 1997]. Indeed, if
we can split a program Q into programs Q1 and Q2, and further, if programs
Q ′

1, Q ′
2 are uniform equivalent to Q1 and Q2, respectively, then, as easily seen,

Q ≡u Q ′
1 ∪ Q ′

2. Since P can be split into P1 = {a ∨ b ← .} and P2 = P \ P1, the
claim follows for uniform equivalence from Theorem 5.12. In fact, this result
can be refined to local shifting of a rule [Eiter et al. 2004b].

The following result provides a characterization of arbitrary programs which
are relativized strongly equivalent to their shift variant. A more detailed dis-
cussion of eliminating disjunction under different notions of equivalences was
recently published in Eiter et al. [2004a].

First, we state a simple technical result.

LEMMA 5.13. For any rule r, SE(r) ⊆ SE(r→).

PROOF. Indirect. Suppose (X , Y ) ∈ SE(r) and (X , Y ) /∈ SE(r→). Then, Y |= r
and either Y ∩ B−(r) �= ∅, X �|= B+(r), or X ∩ H(r) �= ∅. By classical logic,
Y |= r iff Y |= r→. By assumption (X , Y ) /∈ SE(r→), there exists a rule in
r→, with a as the only atom in its head, such that a /∈ X , Y ∩ B−(r) = ∅,
X |= B+(r), and Y ∩(H(r)\{a}) = ∅. Hence, from the aforementioned conditions
for (X , Y ) ∈ SE(r), only X ∩ H(r) �= ∅ applies. Then, some b from H(r) is
contained in X . If a = b, we get a contradiction to a /∈ X ; otherwise we get a
contradiction to Y ∩ (H(r) \ {a}) = ∅, since Y ⊇ X and thus b ∈ Y .

Next, we define the following set which characterizes the exact difference
between r and r→ in terms of SE-models.

Definition 5.14. For any rule r, define

Sr = {(X , Y ) | X ⊆ Y , X |= B+(r),
Y ∩ B−(r) = ∅, card(H(r) ∩ Y ) ≥ 2, H(r) ∩ X = ∅}.

PROPOSITION 5.15. For any disjunctive rule r, SE(r→) \ SE(r) = Sr.

A proof for this result can be found in Eiter et al. [2004a]. Hence, together
with Lemma 5.13, we get that for any disjunctive rule r, Sr characterizes exactly
the difference between r and r→ in terms of SE-models.

THEOREM 5.16. Let P be a program, and r ∈ P. Then P ≡A
s P→

r iff for each
SE-model (X , Y ) ∈ SE(P→

r ) ∩ Sr, there exists an X ′ ⊂ Y , with X ′ �= X and
(X ′ ∩ A) = (X ∩ A) such that (X ′, Y ) ∈ SE(P ).

As an immediate consequence of this result, we obtain the following charac-
terization for general strong equivalence.
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COROLLARY 5.17. Let P be any DLP. Then, P ≡s P→ if and only if for every
disjunctive rule r ∈ P, it holds that P→ has no SE-model (X , Y ) ∈ Sr (that is,
SE(P→) ∩ Sr = ∅).

Example 5.18. Reconsider P = {a ∨ b ←}. Then P→ = {a ← not b, b ←
not a} has the SE-model (∅, ab) which satisfies the conditions for Sa∨b←. Note
that also the extended program P ′ = {a ∨ b ←, a ← b, b ← a} is not strongly
equivalent to its shifted program P ′→. Indeed, (∅, ab) is also an SE-model of
P ′→. Furthermore, P ′ is also not uniformly equivalent to P ′→, since (∅, ab) is
moreover a UE-model of P ′→, but P ′ has the single SE-model (and thus UE-
model) (ab, ab).

We already have seen that shifting is possible if the disjunction is made
exclusive with an additional constraint (see also Example 1.2).

Example 5.19. Let P be a program containing the two rules r = a ∨ b ←
and r ′ =← a, b. The rule r ′ guarantees that no SE-model (X , Y ) of P or of P→

r
with {a, b} ⊆ Y exists. But then Sr does not contain an element from SE(P→

r ),
and we get by Corollary 5.17 that P ≡s P→

r .

So far, we have presented a general semantic criterion for deciding whether
shifting is invariant under ≡A

s . We close this section with a syntactic criterion
generalizing the concept of head-cycle-freeness.

Definition 5.20. For a set of atoms A, a rule r is A-head-cycle-free (A-HCF)
in a program P , iff the dependency graph of P , augmented with the clique over
A, does not contain a cycle going through two atoms from H(r). A program is
A-HCF iff all of its rules are A-HCF.

In other words, the considered augmented graph of P as used in the definition
is given by the pair (A ∪ Atm(P ), E), with

E =
⋃
r∈P

{(p, q) | p ∈ B+(r), q ∈ H(r), p �= q} ∪ {(p, q), (q, p) | p, q ∈ A, p �= q}

and obviously coincides with the (ordinary) dependency graph of the program
P ∪ R, where R is the set of all unary rules over A. Recall that following
Corollary 4.3, unary rules characterize relativized strong equivalence suffi-
ciently. From this observation, the forthcoming results follow in a straight-
forward manner.

THEOREM 5.21. For any program P, r ∈ P, and set of atoms A, P ≡A
s P→

r
whenever r is A-HCF in P.

Note that if r is A-HCF in P , then r is HCF in P ∪ R, where R is the
set of unary rules over A. In turn, r then is HCF in all programs P ∪ R ′, with
R ′ ⊆ R. Thus P ∪R ′ ≡ P→

r ∪R ′ holds for all R ′, by known results. Consequently
P ≡A

s P→
r .

COROLLARY 5.22. For any program P, and set of atoms A, P ≡A
s P→ holds

whenever P is A-HCF.
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Table II. Complexity of Equivalence Checking in Terms of Completeness Results

P ≡A
s Q / P ≡A

u Q /
P k≡A

s Q / P k≡A
u Q / P ≡u Q DLP Positive HCF Normal Horn

Horn �P
2 coNP coNP coNP coNP

coNP coNP coNP coNP P

normal �P
2 �P

2 �P
2 /coNP coNP

coNP coNP coNP coNP

HCF �P
2 �P

2 �P
2 /coNP

coNP coNP coNP

positive �P
2 �P

2
coNP/�P

2 /�P
2 coNP

DLP �P
2

coNP/�P
2 /�P

2

6. COMPUTATIONAL COMPLEXITY

In this section, we address the computational complexity of checking various
notions of equivalence for logic programs. We start with uniform equivalence,
also taking the associated consequence operator into account. Then, we gen-
eralize these results and consider the complexity of relativized equivalence.
Finally, we consider bounded relativization, that is, the problem of deciding
P ≡A

e Q (e ∈ {s, u}) such that the number of atoms missing in A is bounded by
a constant k, denoted P k≡A

e Q . For all three groups of problems we provide a
fine-grained picture of their complexity by taking different classes of programs
into account.

Recall that �P
2 = coNPNP is the class of problems such that the complemen-

tary problem is nondeterministically decidable in polynomial time with the help
of an NP oracle, that is, in �P

2 = NPNP. Furthermore, the class DP consists of
all problems expressible as the conjunction of a problem in NP and a problem
in coNP. Moreover, any problem in DP can be solved with a fixed number of
NP-oracle calls, and is thus intuitively easier than a problem which is complete
for �P

2 .
Our results are summarized in Table II. More precisely, the table shows the

complexity of the considered problems P ≡A
s Q and P ≡A

u Q in the general
case, as well as in the bounded case (P k ≡A

s Q and P k ≡A
u Q). Moreover, we

explicitly list the problem of uniform equivalence P ≡u Q . Depending on the
program classes to which P and Q belong, the corresponding entry shows the
complexity (in terms of a completness result) for all five equivalence problems
with respect to these classes. In fact, the table has to be read as follows. For
instance, the complexity of equivalence checking for DLPs in general is given
by the entry in the last line and first column of Table II. The entry’s first line
refers to the problems P ≡A

s Q and P ≡A
u Q (which are both �P

2 -complete),
and the entry’s second line refers to the problems P k ≡A

s Q , P k ≡A
u Q , and

P ≡u Q , respectively. The latter two show �P
2 -completenes while P k≡A

s Q is
coNP-complete. As another example, the complexity of deciding the equivalence
of a head-cycle-free program and a normal program is reported by the entry in
the second line of the third column.
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Table III. Complexity of Model Checking

A-SE-Models A-UE-Models
A Bounded General card(A) = 1 A= ∅ General A Bounded UE-Models

DLP/positive in P DP DP coNP DP coNP coNP
HCF in P NP P P P P P
normal/Horn in P P P P P P P

We now highlight the most interesting entries of Table II.

— (Unrelativized) uniform equivalence is harder than (unrelativized) strong
equivalence, and this result carries over to the case of bounded relativiza-
tion. This difference in complexity is only obtained if both programs involved
contain head cycles and at least one contains default negation.

—For the case of relativization, uniform equivalence is in some cases easier
to decide than relativized strong equivalence. This effect occurs only if both
programs are head-cycle-free whereby one of them may be normal (but not
Horn).

—Another interesting case arises if two Horn programs are involved. Therein,
relativized equivalence is harder than in the bounded case, but also harder
than ordinary equivalence (see Theorem 6.18 in Section 6.2 to follow). In
every other case, relativization is never harder than ordinary equivalence.

—Finally, we list those cases where bounded relativizations decrease the
complexity: As already mentioned for both RSE and RUE, this holds for
comparing Horn programs. Additionally, in the case of RSE, there is a proper
decrease whenever one program is disjunctive and the other is not Horn, or
when P contains negation as well as head cycles and Q is Horn. In the latter
situation, we also observe a descrease in the case of RUE. Additionaly, such
a decrease for RUE is present if P is normal or HCF and Q is disjunctive
and contains head cycles, or if two positive DLPs containing head cycles are
compared.

Some of these effects can be explained by inspecting the underlying decision
problem of model checking. For a set of atoms A, the problem of A-SE-model
checking (respectively A-UE-model checking) is defined as follows: Given sets
of atoms X , Y , and a program P , decide whether (X , Y ) ∈ SEA(P ) (respec-
tively (X , Y ) ∈ UEA(P )). We compactly summarize our results on A-SE-model
checking, respectively, A-UE-model checking, in Table III. This table has to be
read as follows. The lines determine the class of programs to be dealt with and
the columns refer to model checking problems in different settings. From left-
to-right we have: (i) bounded A-SE-model checking of a program P , that is, it
is assumed that Atm(P ) \ A contains a fixed number of atoms; (ii) the general
A-SE-model checking problem; (iii) the special case of card(A) = 1, where A-
SE-model checking and A-UE-model checking coincide; (iv) the special case of
card(A) = 0 where both A-SE-model checking and A-UE-model checking coin-
cide with answer set checking; (v) the general A-UE-model checking problem;
(vi) bounded A-UE-model checking (analogously to bounded A-SE-model check-
ing); and finally, we explicitly list the results for (vii) UE-model checking. All
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results from Table III are proven in detail in the subsequent sections, as well.
All entries except those in the first column are completeness results. Some in-
teresting observations which also intuitively explain the different results for ≡A

s
and ≡A

u include: (1) A-SE-model checking is easier than A-UE-model checking
in the case of DLPs and bounded A: Roughly speaking, in this case the addi-
tional test for maximality in A-UE-model checking is responsible for the higher
complexity; (2) for the case of head-cycle-free programs, A-SE-model checking
is harder than A-UE-model checking, namely, it is NP-complete. This result
is a consequence of Theorem 5.16, which guarantees that in terms of uniform
equivalence, shifted HCF (and thus normal) programs can be employed; recall
that this simplification is not possible in the context of strong equivalence.

Towards showing all the results in detail, we introduce the following notions
used throughout this section. We often reduce propositional formulas to logic
programs using, for a set of propositional atoms V , an additional set of atoms
V̄ = {v̄ | v ∈ V } within the programs to refer to negative literals. Consequently,
we associate to each interpretation I ⊆ V an extended interpretation σV (I ) =
I ∪ {v̄ | v ∈ V \ I}, usually dropping the subscript V if clear from the context.
The classical models of a formula φ are denoted by Mφ . Furthermore, we have a
mapping (·)∗ defined as v∗ = v, (¬v)∗ = v̄, and (φ◦ψ)∗ = φ∗◦ψ∗, with v an atom, φ
and ψ formulas, and ◦ ∈ {∨, ∧}. A further mapping (·) is defined as v = v̄, ¬v = v,
φ ∨ ψ = φ ∧ ψ , and (φ ∧ ψ) = φ ∨ ψ . To use these mappings in logic programs,
we denote rules also by a1 ∨ . . . ∨ al ← al+1 ∧ . . . ∧ am ∧ not am+1 ∧ . . . ∧ not an.

Finally, we define for a set of atoms Y ⊆ U the following sets of Horn rules:

Y U
⊆ = {← y | y ∈ U \ Y }

Y U
⊂ = Y U

⊆ ∪ {← y1, . . . , yn}
Y U

= = Y U
⊆ ∪ Y

Sometimes we do not write the superscript U , which refers to the universe.
We assume that unless stated otherwise, U refers all atoms occurring in the
programs under consideration.

6.1 Complexity of Uniform Equivalence

In this section, we address the computational complexity of uniform equiv-
alence. While our main interest is in the problem of deciding the uniform
equivalence of two given programs, we also consider the related problems of
UE-model checking and UE-consequence. Our complexity results for deciding
uniform equivalence of two given programs are collected from Table II into
Table IV for matters of presentation. The table has to be read as with Table II.
Note that, in general, uniform equivalence is complete for class �P

2 and there-
fore more complex than deciding strong equivalence, which is in coNP [Pearce
et al. 2001; Lin 2002; Turner 2003]. Thus, the more liberal notion of uniform
equivalence generally comes at higher computational cost. However, for im-
portant classes of programs it has the same complexity as strong equivalence.

In what follows, we prove all the results in Table IV. Towards these results,
we start with the problem of UE-model checking. Let ‖α‖ denote the size of an
object α.
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Table IV. Complexity of Uniform Equivalence in Terms of
Completeness Results

P ≡u Q DLP Positive HCF Normal Horn

Horn coNP coNP coNP coNP P
normal coNP coNP coNP coNP
HCF coNP coNP coNP
positive �P

2 coNP
DLP �P

2

THEOREM 6.1. Given a pair of sets (X , Y ) and a program P, the problem
of deciding whether (X , Y ) ∈ UE(P ) is (i) coNP-complete in general, and (ii)
feasible in polynomial time with respect to ‖P‖ + ‖X ‖ + ‖Y ‖ if P is head-cycle-
free. Hardness in case (i) holds, even for positive programs.

PROOF. Testing Y |= P and X |= PY , that is, (X , Y ) ∈ SE(P ), for given
interpretations X , Y , is possible in polynomial time. If X ⊂ Y it remains to
check, whether no X ′, X ′ |= PY , exists such that X ⊂ X ′ ⊂ Y . This can be
done via checking

PY ∪ X ∪ Y⊂ |= X =. (1)

In fact, each model X ′ of PY ∪ X ∪ Y⊂ gives a nontotal SE-model (X ′, Y ) of
P with X ⊆ X ′ ⊂ Y . By contrast, the only model of X = is X itself. Hence,
Eq. (1) holds iff no X ′ with X ⊂ X ′ ⊂ Y exists such that (X ′, Y ) ∈ SE(P ),
namely, iff (X , Y ) ∈ UE(P ). In general, deciding (1) is in coNP, witnessed by
the membership part of (i).

If P is normal, then the involved programs in (1) are Horn and, since classical
consequence can be decided in polynomial time for Horn programs, the overall
check proceeds in polynomial time. Finally, if P is head-cycle-free, then so is
PY . Moreover, by Theorem 5.12 we have P ≡u P→. Hence, in this case, (1) holds
iff (P→)Y ∪ X ∪ Y⊂ |= X =. Since P→ is normal, the latter test can be done in
polynomial time (with respect to ‖P‖ + ‖X ‖ + ‖Y ‖). This shows (ii).

It remains to show the coNP-hardness of UE-model checking for posi-
tive programs. We show this by a reduction from tautology checking. Let
F = ∨m

k=1 Dk be a propositional formula in DNF containing literals over atoms
X = {x1, . . . , xn}, and consider the following program P :

P = {
xi ∨ x̄i ← x j . xi ∨ x̄i ← x̄ j . | 1 ≤ i �= j ≤ n

} ∪{
xi ← x j , x̄ j . x̄i ← x j , x̄ j . | 1 ≤ i �= j ≤ n

} ∪{
xi ← D∗

k . x̄i ← D∗
k . | 1 ≤ k ≤ m, 1 ≤ i ≤ n

}
,

where D∗
k results from Dk by replacing literals ¬xi by x̄i.

Since P is positive, the SE-models of P are determined by its classical models,
which are given by ∅, X ∪ X̄ , and σ (I ), for each interpretation I ⊆ X making
F false. Hence, (∅, X ∪ X̄ ) is an SE-model of P and (∅, X ∪ X̄ ) ∈ UE(P ) iff F is
a tautology. This proves coNP-hardness.

In fact, also those UE-model checking problems which are feasible in poly-
nomial time are hard for the class P.

ACM Transactions on Computational Logic, Vol. 8, No. 3, Article 17, Publication date: July 2007.



34 • T. Eiter et al.

THEOREM 6.2. Given a pair of sets (X , Y ) and a head-cycle-free program P,
the problem of deciding whether (X , Y ) ∈ UE(P ) is P-complete. Hardness holds,
even if P is definite Horn.

PROOF. Membership has already been shown in Theorem 6.1. We show hard-
ness via a reduction from the P-complete problem HORNSAT to UE-model
checking for Horn programs. Hence, let φ = φ f ∧ φr ∧ φc be a Horn formula
over atoms V , where φ f = a1 ∧ · · · ∧ an; φr = ∧m

i=1(bi,1 ∧ · · · ∧ bi,ki → bi); and
φc = ∧l

i=1 ¬(ci,1 ∧· · ·∧ci,ki ). Without loss of generality, suppose n ≥ 1 (otherwise
φ would be trivially satisfiable by the empty interpretation). Let u, w be new
atoms, and take the program

P = {ai ← u | 1 ≤ i ≤ n} ∪
{bi ← bi,1, . . . , bi,ki | 1 ≤ i ≤ m} ∪
{w ← ci,1, . . . , ci,ki | 1 ≤ i ≤ l } ∪
{u ← v; v ← w | v ∈ V } ∪ {u ← w}.

We show that φ is unsatisfiable iff (∅, V ∪ {u, w}) is a UE-model of P . Note that
both ∅ and V ∪ {u, w} are classical models of P for any φ. Since P is positive,
it is sufficient to show that φ is satisfiable iff a model M of P exists such that
∅ ⊂ M ⊂ (V ∪ {u, w}).

Suppose φ is satisfiable, and M is a model of φ; then it is easily checked
that M ∪ {u} is a model of P . So suppose φ is unsatisfiable, and towards a
contradiction let some M with ∅ ⊂ M ⊂ (V ∪ {u, w}) be a model of P . From
the rules {v ← w | v ∈ V } ∪ {u ← w}, we get w /∈ M . Hence, the constraints φc
are true under M . Since M is not empty, either u ∈ M or some v ∈ V is in M .
However, the latter implies that u ∈ M as well (by rules {u ← v | v ∈ V }). Recall
that φ f is not empty by assumption, hence all ai ’s from φ f are in M . Then, it is
easy to see that M \ {u} satisfies φ, which contradicts our assumption that φ is
unsatisfiable.

We now consider the problem of our main interest, namely, deciding uni-
form equivalence. By the previous theorem, the following upper bound on the
complexity of this problem is obtained.

LEMMA 6.3. Given two DLPs P and Q, deciding whether P ≡u Q is in the
class �P

2 .

PROOF. To show that two DLPs P and Q are not uniformly equivalent, we
can by Theorem 3.7 guess an SE-model (X , Y ) such that (X , Y ) is UE-model
of exactly one of the programs P and Q . By Theorem 6.1, the guess for (X , Y )
can be verified in polynomial time with the help of an NP oracle. This proves
�P

2 -membership of P ≡u Q .

This upper bound has a complementary lower bound, proved in the following
result.

THEOREM 6.4. Given two DLPs P and Q, deciding whether P ≡u Q is �P
2 -

complete. Hardness holds even if one of the programs is positive.
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PROOF. Membership in �P
2 has already been established in Lemma 6.3. To

show �P
2 -hardness, we provide a polynomial reduction of evaluating a quanti-

fied Boolean formula (QBF) from a fragment which is known �P
2 -complete to

deciding the uniform equivalence of two DLPs P and Q .
Consider a QBF2,∀ of the form F = ∀X ∃Y φ with φ = ∧m

i=1 Ci, where each
Ci is a disjunction of literals over the Boolean variables in X ∪ Y . Deciding
whether a given such F is true is well-known to be �P

2 -complete.
For the moment, let us assume that X = ∅, that is, the QBF amounts to a SAT-

instance F over Y . More precisely, in what follows we reduce the satisfiability
problem of the quantifier-free formula φ to the problem of deciding the uniform
equivalence of two programs P and Q . Afterwards, we take the entire QBF,
that is, F , into account.

Let a and b be fresh atoms and define

P = { y ∨ ȳ ←| y ∈ Y } ∪ (2)
{b ← y , ȳ ; y ← b; ȳ ← b | y ∈ Y } ∪ (3)
{b ← Ci | 1 ≤ i ≤ m} ∪ (4)
{a ←}. (5)

Note that P is positive. The second program is defined as follows:

Q = { y ∨ ȳ ← z | y ∈ Y ; z ∈ Y ∪ Ȳ ∪ {a}} ∪ (6)
{b ← y , ȳ ; y ← b; ȳ ← b | y ∈ Y } ∪ (7)
{b ← Ci | 1 ≤ i ≤ m} ∪ (8)
{a ← b; a ← not b; a ← not a} (9)

The only differences between the two programs P and Q are located in the rules
(2) compared to (6) as well as (5) compared to (9). Note that (9) also contains
default negation.

Let us first compute the SE-models of P . Since P is positive, it is sufficient to
consider classical models. Let A = Y ∪ Ȳ ∪ {a, b}. First, A is clearly a classical
model of P , and so is σ (I ) ∪ {a}, for each classical model I ∈ Mφ . In fact, these
are the only models of P . This can be seen as follows. By rules (2), at least one
y or ȳ must be contained in a model for each y ∈ Y . By (3), if both y and ȳ
are contained in a candidate model for some y ∈ Y or b is contained in the
candidate, then the candidate is spoiled up to Y ∪ Ȳ ∪ {b}. Hence the classical
models of (2)–(3) are given by {σ (I ) | I ⊆ Y } and Y ∪ Ȳ ∪{b}. Now, (4) eliminates
those candidates which make φ false by “lifting” them to Y ∪ Ȳ ∪ {b}. By (5) we
finally have to add a to the remaining candidates.

Hence, the SE-models of P are given by

{(σ (I ) ∪ {a}, σ (I ) ∪ {a}) | I ∈ Mφ} ∪ {(σ (I ) ∪ {a}, A) | I ∈ Mφ} ∪ (A, A).

Obviously, each SE-model of P is also a UE-model of P .
We now analyze Q . First observe that the classical models of P and Q coin-

cide. This is due the fact that (5) is classically equivalent to (9) and thus classi-
cally derives a, making (6) and (2) do the same job in this context. However, since
Q is not positive, we have to consider the respective reducts of Q to compute the
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SE-models. We start with SE-models of the form (X , A). In fact, (X , A) ∈ SE(Q)
iff X ∈ {∅, A}∪{σ (I ) | I ∈ Mφ}∪{σ (I )∪{a} | I ∈ Mφ}. The remaining SE-models
of Q are all total and, as for P , given by {(σ (I ) ∪ {a}, σ (I ) ∪ {a}) | I ∈ Mφ}.

Hence, the set of all SE-models of Q is

{(σ (I ) ∪ {a}, σ (I ) ∪ {a}) | I ∈ Mφ} ∪ {(σ (I ) ∪ {a}, A) | I ∈ Mφ}
∪ (A, A) ∪ {(σ (I ), A) | I ∈ Mφ} ∪ (∅, A);

having additional SE-models compared to P , namely, (∅, A) and {(σ (I ), A) | I ∈
Mφ}. Note, however, that the latter SE-models are never UE-models of Q , since
clearly σ (I ) ⊂ (σ (I ) ∪ {a}) for all I ∈ Mφ .

Thus, if Mφ is not empty, the UE-models of P and Q coincide; otherwise
there is a single nontotal UE-model of Q , namely (∅, A). Note that the latter
is not a UE-model of Q in the case Mφ �= ∅, since, for each I ∈ Mφ , σ (I ) �= ∅.
Consequently, the UE-models of P and Q coincide iff Mφ is not empty, that is,
iff φ is satisfiable.

So far we have shown how to construct programs P and Q such that uniform
equivalence encodes SAT. To complete the reduction for the QBF, we now also
take X into account.

We add in both P and Q the set of rules

{x ∨ x̄ ←; ← x, x̄ | x ∈ X },
where the x̄ ’s are fresh atoms. The set A remains as before, that is, without any
atom of the form x or x̄.

This has the following effects. First, the classical models of both P and Q are
now given by σX ∪Y (I ) ∪ {a}, for each I ∈ Mφ , and (σX ∪Y (J ) ∪ A) = (σX (J ) ∪ A),
for each J ⊆ X . Therefore, the SE-models of P are given by

{(σX ∪Y (I ) ∪ {a}, σX ∪Y (I ) ∪ {a}) | I ∈ Mφ} ∪ (10)
{(σX ∪Y (I ) ∪ {a}, σX (I ) ∪ A) | I ∈ Mφ} ∪ (11)
{(σX (J ) ∪ A, σX (J ) ∪ A) | J ⊆ X }. (12)

Again, each SE-model of P is also a UE-model of P . For Q , the argumentation
from before is used analogously. In particular, for each J ⊆ X , we get an addi-
tional SE-model {(σX (J ), σX (J ) ∪ A)} for Q . Thus, the UE-models of P and Q
coincide iff none of these additional SE-models {(σX (J ), σX (J ) ∪ A)} of Q is an
UE-model of Q , either. This is the case iff for each J ⊆ X there exists a truth
assignment to Y making φ true, namely, iff the QBF ∀X ∃Y φ is true.

Since P and Q are obviously constructible in polynomial time, our result
follows.

For the construction of P and Q , in the preceding proof we used—for matters
of presentation—two additional atoms a and b. However, one can resign on b by
replacing rules (3) and (4) in both programs by { y ← Ci; ȳ ← Ci | y ∈ Y ; 1 ≤
i ≤ m}; and additionally, rules (9) in Q by {a ← Ci | 1 ≤ i ≤ m} ∪ {← not a}.
Hence, already a single occurrence of default negation in one of the compared
programs makes the problem harder. Note that the equivalence of two positive
disjunctive programs is among the coNP-problems discussed in the following.
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THEOREM 6.5. Let P and Q be positive DLPs. Then, deciding whether P ≡u
Q is coNP- complete, where coNP-hardness holds even if one of the programs is
Horn.

PROOF. By Theorem 5.3, uniform equivalence and strong equivalence are
the same concepts for positive programs. Since strong equivalence is generally
in coNP, the membership part of the theorem follows immediately.

We show coNP-hardness for a positive DLP P and a Horn program Q by
a reduction from UNSAT. Given a propositional formula in CNF F = ∧m

i=1 Ci
over atoms X , let

P = {C∗
i ∨ a ← | 1 ≤ i ≤ m} ∪ {← x, x̄ | x ∈ X }; and

Q = {a ←} ∪ {← x, x̄ | x ∈ X }.
By Theorem 5.6, P ≡u Q iff P and Q have the same classical models. The latter
holds iff each model of P contains the atom a. But then, F is unsatisfiable.

We now turn to head-cycle-free programs.

THEOREM 6.6. Let P and Q be DLPs, and P head-cycle-free. Then, deciding
whether P ≡u Q is coNP- complete where coNP-hardness holds even if P is
normal and Q is Horn.

PROOF. For the membership part, by Theorem 3.16, P ≡u Q iff P |=u Q and
Q |=u P . Both tasks are in coNP (see Theorem 6.9 to follow). Since the class
coNP is closed under conjunction, it follows that deciding whether P ≡u Q is
in coNP.

To show coNP-hardness, consider the programs from the proof of Theo-
rem 6.5. Indeed, P is HCF and therefore P ≡u P→, by Theorem 5.12. Using the
same argumentation as previously, yields P→ ≡u Q iff F is unsatisfiable. This
shows the coNP-hardness result for comparing normal and Horn programs.

Note that Sagiv [1988] showed that deciding P ≡u Q for given definite Horn
programs P and Q is polynomial, which easily follows from his result that
the property of uniform containment (whether the least model of P ∪ R is
always a subset of Q ∪ R) can be decided in polynomial time. As pointed out
by Maher [1988], Buntine [1988] has, like Sagiv, provided an algorithm for
deciding uniform containment.

Sagiv’s result clearly generalizes to arbitrary Horn programs, since by
Theorem 5.6, deciding P ≡u Q reduces to checking the classical equivalence of
Horn theories, which is known to be P-complete.

COROLLARY 6.7. Deciding the uniform equivalence of Horn programs is
P-complete.

This concludes our analysis on the complexity of checking uniform equiv-
alence. Our results cover all possible combinations of the classes of programs
considered, namely, DLPs, positive programs, normal programs, head-cycle-free
programs, as well as Horn programs, as already highlighted in Table IV.

Finally, we complement the results on uniform equivalence and UE-model
checking by addressing the complexity of UE-consequence. The proofs of these
results can be found in the online Appendix.
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Table V. Complexity of Relativized Equivalences in Terms of
Completeness Results

P ≡A
s Q / P ≡A

u Q DLP Positive HCF Normal Horn

Horn �P
2 coNP coNP coNP coNP

normal �P
2 �P

2 �P
2 /coNP coNP

HCF �P
2 �P

2 �P
2 /coNP

positive �P
2 �P

2
DLP �P

2

THEOREM 6.8. Given a DLP P and a rule r, deciding P |=u r is: (i) �P
2 -

complete in general, (ii) coNP-complete if P is either positive or head-cycle-free,
and (iii) polynomial if P is Horn.

THEOREM 6.9. Let P, Q be DLPs. Then, P |=u Q is coNP-complete whenever
one of the programs is head-cycle-free. coNP-hardness holds even if P is normal
and Q is Horn.

6.2 Complexity of Relativized Equivalence

We now generalize the complexity results to relativized forms of equivalence.
In particular, we investigate the complexity of A-SE/UE-model checking, as
well as of the equivalence problems ≡A

s and ≡A
u , respectively. Like in the pre-

vious section, we also consider different classes of programs. Our results are
summarized at a glance in Table V for both RSE and RUE just by highlighting
where the complexity differs. Note that the only differences between RSE and
RUE stem from the entries �P

2 /coNP in the column for head-cycle-free pro-
grams. Here we have that in the cases HCF/HCF and HCF/normal, checking
whether ≡A

s is in general harder for RSE than for RUE. Another issue to men-
tion is that already for uniform equivalence, the concept of relativization make
things more difficult. One need only compare the first two columns of Tables IV
and V, respectively. This is even worse for strong equivalence, which is in coNP
in its unrelativized version and now jumps up to �P

2 -completeness in several
cases. Finally, also the comparison of two Horn programs becomes intractable,
namely coNP-complete, compared to the polynomial-time result in the cases of
unrelativized strong and uniform equivalence.

To summarize, both RSE and RUE are: (i) harder to decide than in their
unrelativized versions in several cases, and (ii) generally of the same complexity,
except when head-cycle-free programs are involved. Note that observation (ii),
on the one hand, contrasts the current view that notions of strong equivalence
have milder complexity than notions like uniform equivalence. On the other
hand, the intuition behind this gap becomes apparent if one takes into account
that for HCF programs P , P ≡A

u P→ holds, whereas P ≡A
s P→ does not.

For an even more fine-grained picture, note that the problems associated with
equivalence tests relative to an atom set A call for further distinctions between
several cases concerning the concrete instance A. We identify the following:

—card(A) = 0: In this case, both A-SE- and A-UE-model checking collapse
to answer set checking; correspondingly, RSE and RUE collapse to ordinary
equivalence; and
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—card(A) < 2: By Proposition 4.16 and Corollary 4.17, A-SE-models and A-
UE-models coincide, and thus, RSE and RUE are the same concepts.

Our results for ≡A
e , e ∈ {s, u}, given in the following, consider arbitrary fixed

A unless stated otherwise. Moreover, we consider that A contains only atoms
which also occur in the programs under consideration. In some cases the hard-
ness part of the complexity results is obtained only if card(A) > k for some
constant k. We shall make these cases explicit.

Another special case for A is to consider bounded relativization. This denotes
the class of problems where the cardinality of (V \ A) is less than or equal to
a fixed constant k, with V being the atoms occurring in the two programs
compared. Note that this concept contains strong and uniform equivalence,
respectively, as special cases, that is, if (V \ A) = ∅. We deal with bounded
relativization explicitly in the subsequent section.

Towards deriving the results from Table V, we first consider model checking
problems. Formally, for a set of atoms A, the problem of A-SE-model checking
(respectively A-UE-model checking) is defined as follows: Given sets of atoms
X , Y , and a program P , decide whether (X , Y ) ∈ SEA(P ) (respectively (X , Y ) ∈
UEA(P )). We start with the following tractable cases.

THEOREM 6.10. Given a pair of sets (X , Y ), a set of atoms A, and a program
P, the problem of deciding whether (X , Y ) ∈ SEA(P ) (respectively (X , Y ) ∈
UEA(P )) is feasible in polynomial time with respect to ‖P‖+‖X ‖+‖Y ‖, whenever
P is normal (respectively whenever P is HCF).

PROOF. We start with the test for whether (X , Y ) is an A-SE-model of a
normal program P . Note that PY is Horn, and that Y is a model of PY iff Y is
a model of P . Consider the following algorithm.

Algorithm

(1) Check whether Y is a model of PY .
(2) Check whether PY = PY ∪ (Y ∩ A) ∪ Y⊂ is unsatisfiable.
(3) If X ⊂ Y , check whether PX = PY ∪ (X ∩ A)∪{← x | x ∈ (A\ X )}∪Y⊆ is satisfiable.

Note that each step is feasible in polynomial time, especially since both PX and
PY are Horn. Hence, it remains to proof that the preceding algorithm holds
exactly if (X , Y ) is A-SE-model of P . This is seen as follows: Each step exactly
coincides with one of the conditions for checking whether (X , Y ) is an A-SE-
model, namely: (1) Y |= P ; (2) for all Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A), Y ′ �|= PY ;
and (3) X ⊂ Y implies the existence of a X ′ ⊆ Y with (X ′ ∩ A) = X such that
X ′ |= PY .

For the result on A-UE-model checking we use similar argumentation. First,
suppose that P is normal and consider the algorithm from before, but replacing
the second step by

(2a) Check whether PY ∪ (X ∩ A) ∪ Y⊂ |= (X ∩ A) ∪ {← x | x ∈ (A \ X )}.
The desired algorithm then corresponds to the respective conditions for A-

UE-model checking following Proposition 4.12. To be more specific, the models
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of PY ∪ (X ∩ A) ∪ Y⊂ are those X ′ with (X ∩ A) ⊆ X ′ ⊂ Y such that X ′ |= PY .
The set of models of the righthand-side is given by {Z | (Z ∩ A) = (X ∩ A)}.
Hence, the test in (2a) is violated iff there exists an X ′ with (X ∩ A) ⊂ (X ′ ∩ A)
and X ′ ⊂ Y such that X ′ |= PY , that is, iff (X , Y ) /∈ UEA(P ). Moreover, for HCF
programs, P→ is A-UE-equivalent to P , following Theorem 5.12, namely, the
A-UE-models for P and P→ coincide. Applying P→ to the presented procedure
thus shows that A-UE-model checking is feasible in polynomial time also for
HCF programs.

Without a formal proof, we mention that these tractable model checking
problems are complete for the class P. Indeed, one can reuse the argumentation
from the proof of Theorem 6.2 and take, for instance, A = {u}. Then (∅, V ∪
{u, w}) ∈ SEA(P ) = UEA(P ) iff the encoded Horn formula is satisfiable. Note
that P-hardness holds also for answer set checking (that is, A = ∅) by the
straightforward observation that a Horn program P has an answer set iff P is
satisfiable.

Next, we consider the case of A-SE-model checking for head-cycle-free pro-
grams. Recall that for card(A) < 2, A-SE-model checking coincides with A-UE-
model checking, and thus in these cases A-SE-model checking is feasible in
polynomial time, as well. However, in general, A-SE-model checking is harder
than A-UE-model checking for head-cycle-free programs.

THEOREM 6.11. Let (X , Y ) be a pair of interpretations, and P a head-cycle-
free program. Deciding whether (X , Y ) ∈ SEA(P ) is NP-complete. Hardness
holds for any fixed A with card(A) ≥ 2.

PROOF. For the membership result we argue as follows. First, we check
whether (Y , Y ) ∈ SEA(P ). Note that (Y , Y ) ∈ SEA(P ) holds iff (Y , Y ) ∈ UEA(P ).
By Theorem 6.10, the latter test is feasible in polynomial time. It remains to
check whether there exists a X ′ ⊆ Y with (X ′ ∩ A) = X such that X ′ |= PY .
This task is in NP, and therefore the entire test is in NP.

For the corresponding NP-hardness, consider the problem of checking the
satisfiability of a formula ψ = ∧m

j=1 Cj in CNF given over a set of atoms V .
This problem is NP-complete. We reduce it to A-SE-model checking for an HCF
program. Consider the following program with additional atoms a1, a2, V̄ = {v̄ |
v ∈ V }, and let A = {a1, a2}.

P = {v ∨ v̄ ←| v ∈ V } (13)
{v ← a1; v̄ ← a1 | v ∈ V } (14)
{a2 ← C j | 1 ≤ j ≤ m} (15)
{a2 ← v, v̄ | v ∈ V } (16)

Note that P is HCF. Let Y = V ∪ V̄ ∪ A. We show that (∅, Y ) ∈ SEA(P ) iff ψ

is satisfiable. It is clear that Y |= P and no Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A)
satisfies Y ′ |= PY = P due to rules (14). This shows that (Y , Y ) ∈ SEA(P ). Now,
(∅, Y ) ∈ SEA(P ) iff there exists a X ⊆ (V ∪ V̄ ) such that X |= PY = P . Suppose
X |= P . Since a2 /∈ X , X must represent a consistent guess due to rules (13)
and (16). Moreover, X has to represent a model of ψ due to rules (15). Finally,
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X |= (14) holds by trivial means, namely since a1 /∈ X . The converse direction
is by analogous arguments. Hence (∅, Y ) ∈ SEA(P ) iff there exists a model of
ψ , that is, iff ψ is satisfiable.

This shows the hardness for card(A) = 2. To obtain coNP-hardness for any
A with k = card(A) > 2 and such that all a ∈ A are also occurring in the
program, consider P as earlier augmented by rules {ai+1 ← ai | 2 ≤ i < k} and
A = {ai | 1 ≤ i ≤ k}. By analogous arguments as before, one can show that then
(∅, (V ∪ V̄ ∪ A)) ∈ SEA(P ) iff ψ is satisfiable.

The next result concerns A-SE-model checking and A-UE-model checking of
disjunctive logic programs in general and for positive DLPs. For A = ∅, these
tasks coincide with answer set checking, which is known to be coNP-complete
(see, e.g., Eiter and Gottlob [1995]). Already a single element in A yields a mild
increase of complexity.

THEOREM 6.12. Let (X , Y ) be a pair of interpretations, and P a DLP. Decid-
ing whether (X , Y ) ∈ SEA(P ) (respectively (X , Y ) ∈ UEA(P )) is DP -complete.
Hardness holds for any fixed A with card(A) ≥ 1, even for positive programs.

PROOF. We first show DP -membership. By Definition 4.4, a pair of in-
terpretations (X , Y ) is an A-SE-model of P iff: (1) (X , Y ) is a valid A-SE-
interpretation; (2) Y |= P ; (3) for all Y ′ ⊂ Y with (Y ′ ∩ A) = (Y ∩ A), Y ′ �|= PY ;
and (4) X ⊂ Y implies the existence of a X ′ ⊆ Y with (X ′ ∩ A) = X such
that X ′ |= PY holds. Obviously, items (1) and (2) can be verified in polynomial
time. The complementary problem of (3) can be verified by a guess for Y ′ and
a derivability check. Furthermore, (4) can be verified by a guess for X ′ and
a derivability check. Hence, (3) is in coNP and (4) is in NP, which shows DP -
membership. The similar holds in the case of A-UE-models: By Proposition 4.12,
(X , Y ) ∈ UEA(P ) iff: (1) (X , Y ) is a valid A-SE-interpretation; (2) Y |= P ; (3) for
each X ′′ ⊂ Y with (X ∩ A) ⊂ (X ′′ ∩ A) or X ′′ = (Y ∩ A), X ′′ �|= PY holds; and (4)
X ⊂ Y implies that there exists a X ′ ⊆ Y with (X ′∩A) = X such that X ′ |= PY .
As before, one can verify that the first two conditions are feasible in polynomial
time, whereas checking (3) is a coNP-test, and checking (4) an NP-test.

For the matching lower bound, we consider the case where card(A) = 1.
Therefore, the DP -hardness of both A-SE-model checking is A-UE-model check-
ing is captured at once. We consider the problem of jointly checking whether:

(a) a formula φ = ∨n
i=1 Di in DNF is a tautology; and

(b) a formula ψ = ∧m
j=1 Cj in CNF is satisfiable.

This problem is DP -complete, even if both formulas are given over the same
set of atoms V . Consider the following positive program:

P = {v ∨ v̄ ←| v ∈ V } (17)
{v ← a1, D∗

i ; v̄ ← a1, D∗
i | v ∈ V , 1 ≤ i ≤ n} (18)

{a1 ← C j | 1 ≤ j ≤ m} (19)
{a1 ← v, v̄ | v ∈ V }; (20)

where a1 is a fresh atom. Let Y = {a1} ∪ V ∪ V̄ and A = {a1}. We show

ACM Transactions on Computational Logic, Vol. 8, No. 3, Article 17, Publication date: July 2007.



42 • T. Eiter et al.

that (∅, Y ) is an A-SE-model of P iff (a) and (b) jointly hold. Since P is
positive, we can argue via classical models (over Y ). Rules (17) have clas-
sical models {X | σ (I ) ⊆ X ⊆ Y , I ⊆ V }. By (18), this set splits into
S = {X | σ (I ) ⊆ X ⊆ (Y \ {a1})} and T = {σ (I ) ∪ {a1} | I /∈ Mφ} ∪ {Y }. By (20),
S reduces to {σ (I ) | I ⊆ V }, and by (19) only those elements σ (I ) survive with
I ∈ Mψ . To summarize, the models of P are given by

{σ (I ) | I ⊆ V , I ∈ Mψ } ∪ {σ (I ) ∪ {a1} | I ⊆ V , I /∈ Mφ} ∪ {Y }.
From this the A-SE-models are easily obtained. We want to check whether
(∅, Y ) ∈ SEA(P ). We have that Y |= P . Further, we have that no Y ′ ⊂ Y with
a1 ∈ Y ′ exists such that Y ′ |= P = PY iff there exists no I ⊆ V making φ false,
namely, iff φ is a tautology. Finally, to show that (∅, Y ) ∈ SEA(P ), there has to ex-
ist an X ⊆ (V ∪ V̄ ) such that X |= P = PY . This holds exactly if ψ is satisfiable.
Since P is always polynomial in the size of φ plus ψ , we derive DP -hardness.

This shows the claim for card(A) = 1. For card(A) > 1, we apply a similar
technique as in the proof of Theorem 6.11. However, since we deal here with
both A-SE-models and A-UE-models, we have to be a bit more strict. Let k =
card(A) > 1. We add to P the following rules {ai+1 ← ai; ai ← ai+1 | 1 ≤ i < k}
and set A = {ai | 1 ≤ i ≤ k}. One can show that then, for Y = A ∪ V ∪ V̄ ,
(∅, Y ) ∈ SEA(P ) iff (∅, Y ) ∈ UEA(P ) iff (a) and (b) jointly hold.

With these results for model checking at-hand, we obtain numerous com-
plexity results for deciding relativized equivalence.

THEOREM 6.13. For programs P, Q, a set of atoms A, and e ∈ {s, u}, P ≡A
e Q

is in �P
2 .

PROOF. We guess an A-SE-interpretation (X , Y ). Then, by virtue of
Theorem 6.12, we can verify that (X , Y ) is A-SE-model (respectively A-UE-
model) of exactly one of the programs P , Q in polynomial time with four calls
to an NP oracle (since the two model-checking tasks are in DP ). Hence, the com-
plementary problem of deciding relativized equivalence is in �P

2 . This shows
�P

2 -membership.

THEOREM 6.14. Let P, Q be DLPs, A a set of atoms, and e ∈ {s, u}. Then,
P ≡A

e Q is �P
2 -complete. �P

2 -hardness holds even if Q is Horn.

PROOF. Membership is already shown in Theorem 6.13.
For the hardness part, we reduce the �P

2 -complete problem of deciding the
truth of a QBF ∃X ∀Y φ with φ = ∨n

i=1 Di a DNF to the complementary problem
of P �≡A

s Q . We define

P = {x ∨ x̄ ←; ← x, x̄ | x ∈ X } ∪
{ y ∨ ȳ ←; y ← a; ȳ ← a; a ← y , ȳ | y ∈ Y } ∪
{a ← D∗

i | 1 ≤ i ≤ n} ∪
{← not a};

and take Q = {⊥}. Note that {⊥} has no A-SE-model for any A. It thus remains
to show that P has an A-SE-model iff the QBF ∃X ∀Y φ is true.
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P has an answer set (that is, an ∅-SE-model) iff ∃X ∀Y φ is true (see the
�P

2 -hardness proof for the program consistency problem in Eiter and Gottlob
[1995]). From this we get that ordinary equivalence is �P

2 -hard. This shows the
claim for card(A) = 0. For A of arbitrary cardinality k, it is sufficient to add
“dummy” rules ai ← ai, for each 1 ≤ i ≤ k, to P . These rules do not have any
effect on our argument. Whence, for any fixed A, ≡A

s and ≡A
u are �P

2 -hard as
well.

A slight modification (see the online Appendix for details) of this proof gives us
the following result.

THEOREM 6.15. Let P be a positive program, A a set of atoms, and e ∈ {s, u}.
Then, deciding whether P ≡A

e Q is �P
2 -complete, where �P

2 -hardness holds even
if Q is either positive or normal.

For head-cycle-free programs, RSE and RUE have different complexities. We
first consider RSE.

THEOREM 6.16. Let P and Q be head-cycle-free programs, and A be a set
of atoms. Then, deciding whether P ≡A

s Q is �P
2 -complete, where �P

2 -hardness
holds even if Q is normal, and with fixed A with card(A) ≥ 2.

This concludes the collection of problems which are located at the second
level of the polynomial hierarchy. Let us remark that in the hardness part of
the proof of Theorem 6.16 (see the online Appendix for details), we used at least
two elements in A. In fact, for HCF programs and card(A) ≤ 1 the complexity is
different. Since for card(A) ≤ 1, ≡A

s and ≡A
u are the same concepts, this special

case is implicitly considered in the next theorem. Another issue is to decide
whether P ≡A

s Q if both P and Q are A-HCF, as introduced in Definition 5.20.
In this case, we can employ P→ ≡A

s Q→, and thus the complexity coincides
with the complexity of ≡A

s for normal programs. This is also part of the next
theorem.

THEOREM 6.17. Deciding P ≡A
e Q is coNP-complete in the following settings:

(i) e ∈ {s, u}, P positive, Q Horn;
(ii) e = s, P head-cycle-free and Q Horn;

(iii) e ∈ {s, u}, P and Q normal; and
(iv) e = u, P and Q head-cycle-free.

The coNP-hardness of P ≡A
e Q (e ∈ {s, u}) holds, even if P is normal or positive

and Q is Horn.

PROOF. We start with the coNP-membership results. Cases (iii) and (iv) fol-
low immediately from Theorem 6.10, since A-SE/UE-model checking for the
programs involved is feasible in polynomial time. The more complicated cases
(i) and (ii) are addressed in the online Appendix.

It remains to show the coNP-hardness part of the theorem. We use UNSAT
of a formula F = ∧n

i=1 Ci in CNF over atoms X . Take

P = {x ∨ x̄ ←; ← x, x̄ | x ∈ X } ∪ {← Ci | 1 ≤ i ≤ n}.
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Note that this program is positive and HCF. The program has a classical model
iff F is satisfiable, that is, iff it is not equivalent to the Horn program Q = {⊥}.
In other words, SEA(P ) �= ∅ (or, respectively UEA(P ) �= ∅) iff φ is satisfiable.
Note that A can thus be of any form. Since the rules ← x, x̄ are present in
P , we have P ≡A

s P→. This proves coNP-hardness also for the case where one
program is normal and the other is Horn.

A final case remains open, namely, that of checking the relativized equiva-
lence of Horn programs. Unfortunately, this task is coNP-complete. However,
whenever the cardinality of A is fixed by a constant, the problem gets tractable.
This is in contrast to the hardness results proved so far, which even hold in the
case where card(A) is fixed. The proof of the theorem is given in the online
Appendix.

THEOREM 6.18. Deciding P ≡A
e Q, for e ∈ {s, u}, is coNP-complete for Horn

programs P, Q. Hardness holds whenever card(A) is not fixed by a constant,
and even for definite Horn programs.

Whenever the cardinality of A is bounded, we can decide this problem in
polynomial time.

THEOREM 6.19. Let P, Q be Horn programs and A be a set of atoms such
that card(A) ≤ k with a fixed constant k. Then, deciding P ≡A

e Q is feasible in
polynomial time with respect to ‖P‖ + ‖Q‖ + k.

PROOF. It is sufficient to show the claim for e = u. By explicitly checking
whether (P ∪ S) ≡ (Q ∪ S) holds for any S ⊆ A, we obtain a polynomial-
time algorithm, since checking the ordinary equivalence of Horn programs is
polynomial and we need at most 2k such checks.

6.3 Complexity of Bounded Relativization

In this section, we pay attention to the special case of tests ≡A
s and ≡A

u where the
number of atoms from the considered programs missing in A is bounded by some
constant k (we sometimes abbreviate these tests by P k ≡A

s Q and P k ≡A
u Q ,

respectively). Hence, the respective problem classes apply to programs P , Q ,
only if card(Atm(P ∪ Q) \ A) ≤ k. Apparently, this class of problems contains
strong and uniform equivalence in its unrelativized versions (k = 0). The com-
plexity results are summarized in Table VI. In particular, we get that in the
case of RSE, all entries (except Horn/Horn) reduce to coNP-completeness. This
generalizes results on strong equivalence. Previous work reported some of these
results, but not in form of this exhaustive list.

In what follows, we first give the respective results for model checking, and
then we prove the entries in Table VI.

LEMMA 6.20. For a program P and a set of atoms A such that card(Atm(P )\
A) ≤ k, with k a fixed constant, A-SE-model checking the is feasible in polyno-
mial time with respect to ‖P‖ + k.

PROOF. By the conditions in Definition 4.4, deciding (X , Y ) ∈ SEA(P ) can be
done as follows: (i) checking Y |= P ; (ii) checking whether for all Y ′ ⊂ Y with
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Table VI. Complexity of Equivalences with Bounded Relativization in
Terms of Completeness Results

P k≡A
s Q / P k≡A

u Q DLP Positive HCF Normal Horn

Horn coNP coNP coNP coNP P
normal coNP coNP coNP coNP
HCF coNP coNP coNP
positive coNP/�P

2 coNP
DLP coNP/�P

2

(Y ′ ∩ A) = (Y ∩ A), Y �|= PY holds; and (iii) if X ⊂ Y , checking the existence
of a X ′ ⊆ Y with (X ′ ∩ A) = X such that X ′ |= PY holds. Test (i) can be
done in polynomial time; test (ii) is a conjunction of at most 2k − 1 independent
polynomial tests (for each such Y ′), while (iii) is a disjunction of at most 2k

polynomial tests (for each X ′). Since we have fixed k, the entire test is feasible
in polynomial time.

Compared to the model checking problems discussed so far, the polynomial-
time decidable problems of A-SE-model checking in the bounded case do not
belong to the class of P-complete problems, but are easier. This is best illus-
trated by SE-model checking, which obviously reduces to two (ordinary) inde-
pendent model-checking tests which, in turn, are in ALOGTIME [Buss 1987]
(see also Barrington et al. [1990] and Immerman [1999]). For bounded A-SE-
model checking the situation is basically the same, since it is sufficient to employ
a fixed number of independent model-checking tests.

Concerning UE-model checking, we already established some P-hardness
results in Theorem 6.2 which generalize to the relativized case for arbitrary
bound A. In general, for A-UE-model checking the decrease of complexity is
in certain cases only moderate compared to the corresponding decrease in the
case of A-SE-model checking.

LEMMA 6.21. For a program P and a set of atoms A such that card(Atm(P )\
A) ≤ k, with k a fixed constant, A-UE-model checking is coNP-complete. Hard-
ness holds even for positive programs.

PROOF. We show NP-membership for the complementary problem, that is,
for checking whether a given pair (X , Y ) is not in UEA(P ). We first check
whether (X , Y ) is an A-SE-model of P . This can be done in polynomial time, by
Lemma 6.20. If this is not the case, we are done; otherwise, we guess an X ′ with
X ⊂ X ′ ⊂ (Y ∩ A) and check whether (X ′, Y ) is an A-SE-model of P . This guess
for (X ′, Y ) can be verified in polynomial time using an NP oracle. Therefore,
the entire problem is in NP. The correctness of the procedure is given by its
direct reflection of Definition 4.11. This yields coNP-membership for bounded
A-UE-model checking.

Hardness is obtained via the case card(Atm(P ) \ A) = 0, that is, ordinary
UE-model checking and the respective result in Theorem 6.1.

THEOREM 6.22. For programs P, Q and a set of atoms A such that
card(Atm(P ∪ Q) \ A) ≤ k with k a fixed constant, P ≡A

s Q is coNP-complete.
Hardness holds, provided that P and Q are not Horn.

ACM Transactions on Computational Logic, Vol. 8, No. 3, Article 17, Publication date: July 2007.



46 • T. Eiter et al.

PROOF. By Lemma 6.20, A-SE-model checking is feasible in polynomial time
in the bounded case. Hence, coNP-membership for P ≡A

s Q is an immediate
consequence. The hardness result is easily obtained by the hardness part from
Theorem 6.17.

For RUE, some cases remain on the second level, however. This is not a sur-
prise, since as we have seen in Theorem 6.4, (unrelativized) uniform equivalence
is �P

2 -complete in general.

THEOREM 6.23. For programs P, Q and a set of atoms A such that
card(Atm(P ∪ Q) \ A) ≤ k with k a fixed constant, P ≡A

u Q is �P
2 -complete.

�P
2 -hardness holds even if one of the programs is positive.

PROOF. Membership is obtained by the fact that A-UE-model checking with
A bounded is coNP-complete (see Lemma 6.21). Hardness comes from the �P

2 -
hardness of uniform equivalence.

For all other cases, RUE for bounded A is in coNP. The proofs of the final
two theorems are relegated to the online Appendix.

THEOREM 6.24. For programs P, Q and a set of atoms A such that
card(Atm(P ∪ Q) \ A) ≤ k with k a fixed constant, P ≡A

u Q is coNP-complete if
either: (i) both programs are positive; or (ii) at least one program is head-cycle-
free. Hardness holds even if P is normal or positive, and Q is Horn.

One final case remains to be considered.

THEOREM 6.25. Let P and Q be Horn programs and let A be a set of atoms
such that card(Atm(P ∪ Q) \ A) ≤ k with a fixed constant k. Then, deciding
P ≡A

e Q is feasible in polynomial time with respect to ‖P‖ + ‖Q‖ + k.

7. LANGUAGE VARIATIONS

In this section, we briefly address how our results apply to variations of the
language of logic programs. First, we consider modifications within the case of
propositional programs, and then discuss the general DATALOG case.

7.1 Extensions in the Propositional Case

Adding Classical Negation. Our results easily carry over to extended logic
programs, that is, programs where classical (also called strong) negation is al-
lowed as well. If the inconsistent answer set is disregarded, that is, an inconsis-
tent program has no models, then, as usual, the extension can be semantically
captured by representing strongly negated atoms ¬A by a positive atom A′ and
adding the constraints ← A, A′, for every atom A, to any program.

However, if in the extended setting the inconsistent answer set is taken
into account, then the given definitions have to be slightly modified such that
the characterizations of uniform equivalence capture the extended case prop-
erly. The same holds true for the characterization of strong equivalence by
SE-models, as illustrated by the following example. Note that the redefinition
of ≡u and ≡s is straightforward.
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Let LitA = {A, ¬A | A ∈ A} denote the (inconsistent) set of all literals using
strong negation over A. Note that an extended DLP P has an inconsistent
answer set iff LitA is an answer set of it; moreover, it is in the latter case the
only answer set of P . Call any DLP P contradiction-free if LitA is not an answer
set of it, and contradictory otherwise.

Example 7.1. Consider the extended logic programs P = {a ∨ b ← ; ¬a ←
a; ¬b ← b} and Q = {a ← not b; b ← not a; ¬a ← a; ¬b ← b}. They both
have no SE-model; hence, by the criterion of Propostion 2.3, P ≡s Q would
hold, which implies that P ≡u Q and P ≡ Q . However, P has the inconsistent
answer set LitA, while Q has no answer set. Thus formally, P and Q are not
equivalent, even if LitA is admitted as an answer set.

Since Turner [2003, 2001] and Lifschitz et al. [2001] made no distinction be-
tween no answer set and an inconsistent answer set, in Eiter and Fink [2003b]
we adapted the definition of SE-models accordingly and got more general char-
acterizations in terms of so-called SEE-models for extended programs. Many re-
sults easily carry over to the extended case: For example, for positive programs,
uniform and strong equivalence coincide also in this case and, as a consequence
of previous complexity results, checking P ≡u Q (respectively P ≡s Q) for ex-
tended logic programs P and Q is �P

2 -hard (respectively coNP-hard).
However, not all properties do carry over. As Example 7.1 reveals, in gen-

erally a head-cycle-free extended DLP P is no longer equivalent, hence not
uniformly equivalent, to its shift variant P← (see Eiter and Fink [2003b] for a
characterization of head-cycle-and contradiction-free programs for which this
equivalence holds).

We expect a similar picture for the relativized equivalences of extended logic
programs, but adapting corresponding proofs is still the subject of future work.

Disallowing Constraints. Sometimes, it is desirable to consider constraints
just as abbreviations so as to have core programs which are definite, that is,
without constraints. The most direct approach is to replace each constraint ← B
by w ← B, not w, where w is a designated atom not occurring in the original
program. Obviously, this does not influence ordinary equivalence tests, but for
notions such as uniform and strong equivalence some more care is required.
Take the strongly equivalent programs P = {a ← not a} and Q = {← not a}.
By the preceding rewriting Q becomes Q ′ = {w ← not a, not w}. Then, (·, w) /∈
SE(P ) but (·, w) ∈ SE(Q ′). Hence, this rewriting is not sensitive under strong
equivalence. However, if we disallow w to appear in possible extensions, namely,
employing ≡A

s instead of ≡s, we can circumvent this problem. Simply take A =
U \ {w}, where U is the universe of atoms. Observe that this employs bounded
relativization, and in light of Theorem 6.22, this strategy does not result in
a more complex problem. For uniform equivalence, the methodology can be
applied in the same manner.

However, this approach requires (unstratified) negation. If we want to get
rid of constraints for comparing positive programs, an alternative method is to
use a designated (spoiled) answer set to indicate that the original program had
no answer set. The idea is to replace each constraint ← B by w ← B where
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w is a designated atom as described earlier; additionally, we add the collection
of rules v ← w for each atom v of the universe to both programs (even if no
constraint is present). This rewriting retains any equivalence notion, even if w
is allowed to occur in the extensions.

The problem of comparing, say, a positive program P (with constraints) and
a normal program Q is more subtle if we require to replace the constraints in
P by the positive rules themselves. We leave this for further study, but refer
to some results in Eiter et al. [2004b], which suggest that these settings may
not be solved in an easy manner. To wit, Eiter et al. [2004b] report that the
complexity for some problems of the form “Given a program P from class C;
does there exist a program Q from class C′ such that P ≡e Q?” differs with
respect to allowing constraints.

Using Nested Expressions. Programs with nested expressions [Lifschitz
et al. 1999] (also called nested logic programs) extend DLPs in such a way
that arbitrarily nested formulas, formed from literals using negation as fail-
ure, conjunction, and disjunction, constitute the heads and bodies of rules. Our
characterizations for uniform equivalence are well-suited for this class. This is
as follows from Pearce and Valverde [2004b], which extends results from Eiter
and Fink [2003a] to propositional theories, that is, to equilibrium logic. Since
the proofs of our main results are generic in the use of reducts, we expect that
all results (including relativized notions of equivalence) can be carried over to
nested logic programs without any problems. Note, however, that the concrete
definitions for subclasses (positive, normal, etc.) have to be extended in the con-
text of nested logic programs (see Linke et al. [2004] for such an extension of
head-cycle-free programs). It remains for further work to apply our results to
such classes.

7.2 DATALOG Programs

The results in the previous sections on propositional logic programs provide
an extensive basis for studying the equivalences of DATALOG programs if,
as usual, their semantics is given in terms of propositional programs. Basic
notions and concepts for strong and uniform equivalence, such as SE-models,
UE-models, and the respective notions of consequence, generalize naturally to
this setting using Herbrand interpretations over a relational alphabet and a set
of constants in the usual way (Eiter et al. [2005]). Furthermore, fundamental
results can be applied to DATALOG programs by reduction to the propositional
case. In particular, the elementary characterizations P ≡e Q iff Me(P ) = Me(Q)
iff P |=e Q and Q |=e P carry over to the DATALOG setting for e ∈ {s, u} and
Ms(·) = SE(·), respectively, Mu(·) = UE(·) (see also Eiter et al. [2005]). How-
ever, a detailed analysis of the DATALOG case including relativized notions of
equivalence is a subject of ongoing work.

Nevertheless, let us conclude this section with some remarks on the complex-
ity of programs with variables. For such programs, in the case of a given finite
Herbrand universe the complexity of equivalence checking (respectively model
checking) increases by an exponential. Intuitively, this is explained by the ex-
ponential size of a Herbrand interpretation, namely, the ground instance of a
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program over the universe. Note that Lin [2002] reported (without proof) that
checking strong equivalence for programs in this setting is in coNP, and thus
would have the same complexity as in the propositional case. However, coNP-
membership holds only in case of a constant upper bound on the number of
variables occurring in the rules of the program, but checking strong equivalence
is exponentially harder (i.e., co-NEXPTIME-complete) in the general case. Un-
surprisingly, over infinite domains, in light of the results in Shmueli [1993] and
Halevy et al. [2001], the decidability of equivalence and inference problems for
DATALOG programs is no longer guaranteed. While strong equivalence and
SE-inference remain decidable (more precisely, complete for co-NEXPTIME),
this is not the case for uniform equivalence (respectively inference) in general.
For positive programs, however, the two notions coincide and are decidable
(more precisely, complete for co-NEXPTIME); see Eiter et al. [2005] for details.
It remains as an issue for future work to explore the decidability versus undecid-
ability frontier for classes of DATALOG programs, possibly under restrictions
as in Halevy et al. [2001] and Chaudhuri and Vardi [1992].

8. CONCLUSION AND FURTHER WORK

In this article, we have extended the research about equivalence of nonmono-
tonic logic programs under answer set semantics in order to simplify parts (or
modules) of a program without analyzing the entire program. Such local simpli-
fications call for alternative notions of equivalence, since a simple comparison
of the answer sets does not provide information as to whether a program part
can be replaced by its simplification. To wit, by the nonmonotonicity of the an-
swer set semantics, two (ordinary) equivalent (parts of) programs may lead to
different answer sets if they are used in the same global program R. Alternative
notions of equivalence thus require that the answer sets of the two programs co-
incide under different R: strong equivalence [Lifschitz et al. 2001], for instance,
requires that the compared programs are equivalent under any extension R.

In this article, we have considered further notions of equivalence in which
the actual form of R is syntactically constrained:

—We have addressed uniform equivalence of logic programs, which had been
considered earlier for DATALOG and general Horn logic programs [Sagiv
1988; Maher 1988]. Under answer set semantics, the uniform equivalence
can be exploited for the optimization of components in a logic program which
is modularly structured.

—Relativized notions of both uniform and strong equivalence restrict the al-
phabet of the extensions. This allows to specify which atoms may occur in the
extensions and which not. This notion of equivalence for answer set seman-
tics was originally suggested by Lin [2002] but not further investigated. In
practice, relativization is a natural concept, since it allows to specify internal
atoms which only occur in the compared program parts, but guarantees that
they do not occur anywhere else.

We have provided semantical characterizations of all these notions of equiv-
alence by adopting the concept of SE-models [Turner 2001] (equivalently,
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HT-models [Lifschitz et al. 2001]), which capture the essence of a program with
respect to strong equivalence. Furthermore, we have thoroughly analyzed the
complexity of equivalence checking and related problems for the general case
and several important fragments. This collection of results gives a valuable
theoretical underpinning for advanced methods of program optimization and
for enhanced ASP application development, as well as a potential basis for the
development of ASP debugging tools.

Several issues remain for further work. One issue is a characterization of
uniform equivalence in terms of “models” for arbitrary programs in the infinite
case; as we have shown, no subset of SE-models serves this purpose. In par-
ticular, a notion of models corresponding to UE-models in the case where the
latter capture uniform equivalence would be interesting.

We focused here on the propositional case, to which general programs with
variables reduce, and briefly mentioned a possible extension to a DATALOG set-
ting [Eiter et al. 2005]. Here, the undecidability of uniform equivalence arises
if negation may be present in programs. A thorough study of cases under which
uniform and other notions of equivalence are decidable is needed, along with
complexity characterizations. Given that in addition to the syntactic condi-
tions on propositional programs considered here, further conditions involving
predicates might be taken into account (compare with Chaudhuri and Vardi
[1992] and Halevy et al. [2001]), quite a number of different cases remains to be
analyzed.

Finally, an important issue is to explore the usage of uniform equivalence and
relativized equivalence in program replacement and rewriting, and to develop
optimization methods and tools for answer set programming. A first step in this
direction, picking up some of the results of this article, has been made in Eiter
et al. [2004b]. However, much more remains to be done.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.
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