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Abstract. In this paper, we propose a formal framework for specifying rule replacements in non-
monotonic logic programs within the answer-set programming paradigm. Of particular interest are
replacement schemas retaining specific notions of equivalence, among them the prominent notions of
strong and uniform equivalence, which have been introducedas theoretical tools for program optimiza-
tion and verification. We derive some general properties of the replacement framework with respect
to these notions of equivalence. Moreover, we generalize results about particular replacement schemas
which have been established for ground programs to the non-ground case. Finally, we report a number
of complexity results which address the problem of decidinghow hard it is to apply a replacement to
a given program. Our results provide an important step towards the development of effective optimiza-
tion methods for non-ground answer-set programming, an issue which has not been addressed much so
far.

1 Introduction

Answer-set programming (ASP) has emerged as an important paradigm for declarative problem solving,
and provides a host for many different application domains on the basis of nonmonotonic logic pro-
grams [13]. The increasing interest in ASP has raised also the interest in semantic comparisons of programs
in ASP, such as program equivalence [8, 4, 3] and correspondences [5, 11]. Comparisons of this kind are
a basis for program optimization, where equivalence-preserving modifications are of primary interest; in
particular, rewriting rules which allow to perform a local change in a program are important. Many such
rules have been proposed in a propositional setting for different notions of equivalence (cf., e.g., [1, 10]).

Noticeably, except for the recent work by Lin and Chen [9], rewriting rules in the context of ASP
have been considered more ad hoc rather than systematically, and were aimed at propositional programs.
However, from a practical point of view, almost all programsuse variables, and thus rewriting rules for this
setting are essential.

In this paper, we address this issue and considerreplacementsfor non-ground programs, according to
which a subset of rules in a given programp may be exchanged with some other rules, possibly depending
on a condition onp. For a simple example, consider an encoding of the three-coloring problem for graphs,
which represents graphs using predicatesnode andedge and contains (among others) the two rules

r(X) ∨ b(X)← edge(X, a),node(a),node(X), not g(X), (1)

r(Y ) ∨ b(Y ) ∨ g(Y )← node(Y ). (2)

As our results show, Rule (1) is redundant in any programp which also contains Rule (2), i.e., we can
replace (1) and (2) simply by (2). Similarly, we can replace (2) in p by its possible three “head-to-body”
shifts, where all atoms in the head except one are moved to thebody and negated, providing Rule (2) is
head-cycle free inp.

Our contributions are briefly summarized as follows.

– We study replacements and replacement schemas in a general framework, paying attention to different
natural types of replacements.

– We lift in this framework well-known replacement rules fromthe propositional case to the setting with
variables. In particular, we focus on rules given by Brass and Dix [1] as well as by Eiteret al. [2], and
generalize some of the results by Lin and Chen [9]. However, we also discuss some novel replacement
rules.
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– We describe conditions under which replacements necessarily preserve strong equivalence [8]. We
obtain interesting results which, to some extent, subsume recent results by Ferraris [6], who showed
that strong equivalence is implicit with modular rewritings of ASP programs that preserve equivalence.

– Finally, we consider the computational complexity of applying specific replacement schemas, where
we obtain bounds ranging from LOGSPACE up to PSPACE-completeness. These results provide a
handle for deciding about efficient replacements in online and offline program optimization.

Our results extend and complement recent results about program equivalence to the relevant application
setting. Furthermore, they provide a theoretical foundation for optimization techniques which in part are
used ad hoc in ASP solvers.

2 Preliminaries

Logic programs are formulated in a languageL containing a setA of predicate symbols, a setV of vari-
ables, and a setC of constants(also called thedomainof L). Each predicate symbol has an associatedarity
n ≥ 0. An atom(overL) is an expression of formp(t1, . . .,tn), wherep ∈ A is a predicate symbol of arity
n andti ∈ C ∪ V , for 1 ≤ i ≤ n. An atom isgroundif no variable occurs in it.

A (disjunctive) rule (overL), r, is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm, (3)

wherea1, . . . , an, b1, . . . , bm are atoms, withn ≥ 0, m ≥ k ≥ 0, andn + m > 0, and “not” de-
notesdefault negation. The headof r is the setH(r) = {a1, . . . , an}, and thebody of r is B(r) =
{b1, . . . , bk, not bk+1, . . . , not bm}. We also defineB+(r) = {b1, . . . , bk} andB−(r) = {bk+1, . . . , bm}.

A rule r of form (3) is afact if m = 0 andn = 1 (in which case “←” is usually omitted). Moreover,
r is safeif each variable occurring inH(r) ∪ B−(r) also occurs inB+(r), andr is ground if all atoms
occurring in it are ground.

By a program(overL) we understand a finite set of rules (overL). We assume in what follows that
rules are always safe. The set of variables occurring in an atom a (resp., a ruler, a programp) is denoted
by Va (resp.,Vr , Vp). Furthermore, the set of all constants occurring inp is called theHerbrand universe
of p, symbolicallyCp. If no constant appears inp, thenCp = {c}, for an arbitrary constantc. Moreover,
Cr denotes all constants occurring in a ruler. The set of all predicates occurring inp is denoted byAp. As
usual, theHerbrand base, Bp, of a programp is the set of all ground atoms constructed fromAp andCp.

Given a ruler and a set of constantsC ⊆ C, we definegrd(r, C) as the set of all rulesrϑ obtained from
r by all possible substitutionsϑ : Vr → C. Moreover, for any programp, thegrounding ofp with respect
to C is given bygrd(p, C) =

⋃
r∈p grd(r, C). In particular,grd(p, Cp) is referred to as thegrounding ofp

simpliciter, writtengrd(p).
By an interpretationwe understand a set of ground atoms. A ground ruler is satisfiedby an interpre-

tationI iff H(r) ∩ I 6= ∅ wheneverB+(r) ⊆ I andB−(r) ∩ I = ∅. I satisfies a ground programp iff
eachr ∈ p is satisfied byI. TheGelfond-Lifschitz reduct[7] of a ground programp with respect to an
interpretationI is given by

pI = {H(r)← B+(r) | r ∈ p, I ∩B−(r) = ∅}.

A setI ⊆ Bp is ananswer setof p iff I is a subset-minimal set satisfyinggrd(p)I . The set of all answer
sets ofp is denoted byAS(p).

In order to compare programs, we shall make use of different equivalence relations. In particular, for
a classS of programs such that∅ ∈ S, we define, for every programp, p′ overL, p ≡S p′ iff, for each
p′′ ∈ S, AS(p ∪ p′′) = AS(p′ ∪ p′′) holds. By instantiating the parameter setS, we obtain the following
well-known notions:

– ordinary equivalence, symbolically≡o, by settingS = {∅};
– uniform equivalence, symbolically≡u, by settingS as the class of all finite sets of ground facts in

languageL;
– strong equivalence, symbolically≡s, by settingS as the set of all programs overL.



Note thatp ≡o p′ iff AS(p) = AS(p′).
We say that a binary relationR impliesa binary relationR′ iff R ⊆ R′. Obviously, we have that≡s

implies≡u, and≡u implies≡o.
For further details about strong and uniform equivalence between non-ground programs, we refer to [3].

3 Replacements

Definition 1. A replacementis a triple̺ = (φ, i, o), whereφ is a unary predicate ranging over programs,
called theproviso of̺, andi, o are sets of rules.

We say that̺ is applicableto a programp, or p is ̺-eligible, if i ⊆ p andφ(p) holds. Theresult ofp
under̺ is defined as

̺[p] = (p \ i) ∪ o, if ̺ is applicable top, .

Definition 2. Let ≡ be an equivalence relation. A replacement̺ is ≡-preservingif p ≡ ̺[p], for any
̺-eligible programp.

Clearly, any≡s-preserving replacement is also≡u-preserving, and any≡u-preserving replacement is
also≡o-preserving.

Definition 3. Let̺ = (φ, i, o) be a replacement. Then,̺ is called

– independent, if for every programp, φ(p) holds,
– monotone, if for all programsp, p′, φ(p) andp ⊆ p′ impliesφ(p′),
– closed under intersection, if for all programsp, p′, φ(p) andφ(p′) impliesφ(p ∩ p′).

We sometimes identify the proviso of an independent replacement by the designated predicate⊤(p), which
is true for every programp. As well, an independent replacement(φ, i, o) may also be identified with the
pair (i, o). Note that any independent replacement is also monotone andclosed under intersection.

For illustration, consider a replacement̺ = (φ, {t}, ∅), with t denoting a concrete rule, say, e.g.,
q(x1, x2, x3)← q(x1, x2, x3), andφ(p) holds for any programp. Then,̺ is applicable to each programp
with t ∈ p, and, in these cases, we get̺[p] = p \ {t}. Indeed,̺ is an independent replacement. As we will
see later on,̺ is also≡s-preserving.

In what follows, we show some general properties for replacements. In particular, the next property is
central.

Theorem 1. Let≡ be any equivalence relation implying≡o. Then, any monotone replacement̺ is ≡s-
preserving, whenever̺is≡-preserving.

Proof. Towards a contradiction, let̺ = (φ, i, o) be a monotone≡-preserving replacement which is not
≡s-preserving. From the latter, we get that there exists some̺-eligible programp such thatp 6≡s ̺[p].
Hence, there exists a programp′ such thatAS(p ∪ p′) 6= AS(̺[p] ∪ p′). Without loss of generality, we
can assume that(p ∩ p′) = ∅. Now, since̺ is monotone andp is ̺-eligible,p ∪ p′ is ̺-eligible as well. By
hypothesis,̺ is ≡-preserving, and thusp ∪ p′ ≡ ̺[p ∪ p′] holds. This implies ordinary equivalence, i.e.,
AS(p ∪ p′) = AS(̺[p ∪ p′]). Sincei ⊆ p and(p ∩ p′) = ∅, we obtain

̺[p ∪ p′] = ((p ∪ p′) \ i) ∪ o = (p \ i) ∪ p′ ∪ o = ((p \ i) ∪ o) ∪ p′ = ̺[p] ∪ p′.

Thus,AS(p ∪ p′) = AS(̺[p] ∪ p′), a contradiction toAS(p ∪ p′) 6= AS(̺[p] ∪ p′). ⊓⊔

Theorem 2. An independent replacement(i, o) is≡s-preserving iffi ≡s o.

Proof. Let ̺ = (i, o) be independent. The only-if direction is by definition when applying ̺ to i itself.
For the if-direction, suppose that̺ is not≡s-preserving, i.e., there exists a programp with i ⊆ p such that
p 6≡s p′, wherep′ = (p \ i)∪ o. Hence, for some programr,AS(p∪ r) 6= AS(p′ ∪ r). In other words, for
p′′ = (p \ i) ∪ r, we getAS(i ∪ p′′) 6= AS(o ∪ p′′). Consequently,i 6≡s o. ⊓⊔

We note that Ferraris [6] shows that in a propositional setting, for any functionf which maps single
rulesr to setsR of rules such thatAR ⊆ A{r} the following holds: for all programsp, p ≡o

⋃
r∈p f(r)

iff, for eachr, r ≡s f(r). This can be concluded from Theorems 1 and 2 as follows: Each functionfr

that mapsr to f(r) and any other ruler′ to itself can be viewed as an independent replacement. Thus,by
Theorems 1 and 2,r ≡s f(r) must hold ifp ≡o

⋃
r∈p f(r) holds for allp (takep = {r}). The converse is

obvious.



4 Replacement Schemas

So far, we only considered concrete replacements guided by fixed sets of rulesi, o. However, in general,
one wants to collect sets of replacements into a singlereplacement schema. This can be realized as follows:

Definition 4. A replacement schema,R, is a partial function mapping pairs(i, o) of programs into a unary
predicateR(i, o). The domain ofR is denoted bydom(R).

A replacement(φ, i, o) is aninstanceofR if (i, o) ∈ dom(R) andφ = R(i, o). The set of all instances
ofR is denoted byinst(R).

We say thatR is applicableto a programp, or p isR-eligible, if there exists some̺∈ inst(R) which
is applicable top. We refer to the result̺[p] of p under an instance̺ ∈ inst(R) as a result ofp underR.
ByR⋆[p] we denote the set of all results ofp underR, i.e.,

R⋆[p] = {̺[p] | ̺ ∈ inst(R)}.

With an abuse of notation, we also writeR[p] to refer to a result ofp underR.
The operatorR⋆[·] is used to compare replacement schemas as follows.

Definition 5. Two replacement schemas,R1 andR2, are equipollentiff, for each programp, R⋆
1[p] =

R⋆
2[p].

Properties for replacements are easily generalized to schemas as follows:

Definition 6. A replacement schemaR is said to be≡-preserving (resp.,independent, monotone, inter-
section-closed)if each instance ofR is≡-preserving(resp., independent, monotone, intersection-closed).

Note that for an independent replacement schemaR, we may identifydom(R) with inst(R). Further-
more, the results about replacements, as given by Theorems 1and 2, carry over in a straightforward way to
replacement schemas as well.

We are now prepared to give particular replacement schemas.We start with a generalization of a concept
considered by Brass and Dix [1] for the propositional case.

Definition 7. The replacement schemaTAUT is given as follows:

– dom(TAUT)= {({s}, ∅) | s is a rule withH(s) ∩B+(s) 6= ∅};
– TAUT(i, o) = ⊤, for every(i, o) ∈ dom(TAUT).

The instances ofTAUT are then all replacements of the form(⊤, {s}, ∅), whereH(s) ∩B+(s) 6= ∅. For
instance, letp = {s(X)← s(X), q(Y ); q(X)← q(X), s(X); s(a)}. Then,TAUT[p] refers either top′ =
{s(X)← s(X), q(Y ); s(a)} or top′′ = {q(X)← q(X), s(X); s(a)}. Hence,TAUT⋆[p] = {p′, p′′}.

As an example of a non-monotone replacement schema, we definelocal shifting, LSH, extending a
similar schema introduced in the propositional case by Eiter et al. [2]. The idea underlying local shifting
has already been sketched in the introduction. Formally, weneed the following concepts.

The (positive) dependency graph, Gp, of a ground programp is given by the pair(Bp, Ep), where
(a, b) ∈ Ep iff there exists a ruler ∈ p such thata ∈ H(r) andb ∈ B+(r). An atoma positively depends
on b in p iff there exists a path froma to b in Gp. A ground ruler is head-cycle free(HCF) in p iff no
distinct atomsa, b ∈ H(r) mutually positively depend on each other inp.

For an arbitrary programp (not necessarily ground),r ∈ p is HCF inp iff, for each finiteC ⊆ C and
eachr′ ∈ grd(r, C), r′ is HCF ingrd(p, C).

Definition 8. The replacement schemaLSH is given as follows:

– dom(LSH) consists of all pairs({r}, or), where
1. r is a rule such that, for eachϑ : Vr → C, |H(rϑ)| > 1, and
2. or = {h← B(r), not (H(r) \ h) | h ∈ H(r)};1

– for every(i, o) ∈ dom(LSH), LSH(i, o) = φ, whereφ(p) holds iffr is HCF inp andi = {r}.

Note thatLSH is, for instance, not applicable to the programq(X1) ∨ q(X2) ← r(X1, X2), sinceϑ

mappingX1 andX2 to the same constantc yieldsH(rϑ) = {q(c)} with cardinality= 1.
We mention thatLSH is intersection-closed, but neither monotone nor independent. Equivalence-

preserving properties forTAUT andLSH will be provided in the next section.
1 For a setS = {a1, . . . , an} of atoms,not S denotes the expressionnot a1, . . . , not an.



5 Equivalence Preserving Replacement Schemas

This section collects a number of concrete replacement schemas. In particular, we generalize ideas from
propositional ASP, where such replacements have been stipulated by Brass and Dix [1] and further investi-
gated and developed by several authors [10, 9, 12, 2].

The section is organized as follows. First, we consider≡s-preserving replacement schemas. Then, we
deal with monotone replacement schemas—in particular, we relate our framework to the one discussed
by Lin and Chen [9]. Finally, we consider replacement schemas which are not≡s-preserving but≡u- or
≡o-preserving.

5.1 Independent Replacement Schemas

We already gave an independent replacement schema above, namely TAUT. A very similar schema is
CONTRA, defined below. LikeTAUT, CONTRA has been introduced in the propositional setting by
Brass and Dix [1], and, with respect to equivalence notions,studied further by Eiteret al. [2] and Osorioet
al. [10].

Definition 9. The replacement schemaCONTRA is given as follows:

– dom(CONTRA) = {({s}, ∅) | s is a rule withB+(s) ∩B−(s) 6= ∅};
– CONTRA(i, o) = ⊤, for every(i, o) ∈ dom(CONTRA).

However, an alternative way to capture the nature ofTAUT andCONTRA is the following:

Definition 10. Schemasϑ-TAUT andϑ-CONTRA are given as follows:

– dom(ϑ-TAUT) = {({s}, ∅) | s is a rule such that, for eachϑ : Vs → C, H(sϑ) ∩B+(sϑ) 6= ∅};
– dom(ϑ-CONTRA) = {({s}, ∅) | s is a rule such that, for eachϑ : Vs → C, B+(sϑ)∩B−(sϑ) 6= ∅};
– R(i, o) = ⊤, for every(i, o) ∈ dom(R), withR ∈ {ϑ-TAUT, ϑ-CONTRA}.

Theorem 3. The following properties hold:

1. TAUT andCONTRA are≡s-preserving;
2. TAUT andϑ-TAUT are equipollent; and
3. CONTRA andϑ-CONTRA are equipollent.

We finally give four more replacement schemas which generalize corresponding replacement rules
given in the literature for ground programs. In particular,the ground pendants of schemasRED− and
NONMIN have been introduced by Brass and Dix [1], the ground versionof S-IMPL is due to Wang and
Zhou [12], and that ofSUB is discussed by Lin and Chen [9].

Definition 11. The schemasR ∈ {RED−, NONMIN, S-IMPL, SUB} are given as follows:

– dom(R) consists of all pairs({r, s}, {s}), wherer, s are rules, such that

• forR = RED−, H(s) ⊆ B−(r) andB(s) = ∅, and
• forR ∈ {NONMIN, S-IMPL, SUB}, there existsϑ : Vs → Vr ∪ Cr such thatB+(sϑ) ⊆ B+(r)

and
∗ forR = NONMIN, H(sϑ) ⊆ H(r) andB−(sϑ) ⊆ B−(r),
∗ for R = S-IMPL, there is someA ⊆ B−(r) with H(sϑ) ⊆ H(r) ∪ A and B−(sϑ) ⊆

B−(r) \A, and
∗ forR = SUB, H(sϑ) ⊆ H(r) ∪B−(r) andB−(sϑ) ⊆ B−(r); and

– R(i, o) = ⊤, for every(i, o) ∈ dom(R).

Observe that the safety condition of rules implies thatRED− is only applicable in cases is a ground
disjunctive fact. This is the reason why, in contrast to the other three schemas, there is no need forϑ in the
definition forRED−.

The four schemas introduced above stand in the following relationships to each other:



– if RED− or NONMIN is applicable to a programp, thenS-IMPL is applicable top, and
– if S-IMPL is applicable to a programp, thenSUB is applicable top.

Hence, the schemaSUB the most unconstrained among the four, being applicable whenever any of the
other three is.

Theorem 4. The replacement schemasRED−, NONMIN, S-IMPL, andSUB are all≡s-preserving.

Like for TAUT andCONTRA, also the above replacement schemas can be defined in an alternative
way, explicitly referring to all groundings of the rules involved. We leave a further discussion of this point
to a full version of this paper.

5.2 Monotone Replacement Schemas

For monotone replacement schemas, there is an interesting relation to independent replacement schemas
as follows:

Theorem 5. Any replacement schema which is monotone, closed under intersection, and≡s-preserving is
equipollent to an independent replacement schema.

Proof. LetR be a replacement schema which is monotone, closed under intersection, and≡s-preserving.
Consider some̺ ∈ inst(R) with ̺ = (φ, i, o). Since̺ is monotone and closed under intersection, there
exists a unique program,p0, such thatφ(p) holds for eachp ⊇ p0 butφ(p′) does not hold for anyp′ ⊂ p0.
Obviously,̺′ = (⊤, i ∪ p0, o ∪ (p0 \ i)) then satisfies̺ [s] = ̺′[s] for every programs. It follows that the
replacement schemaR′, defined by settingdom(R′) = {(i ∪ p0, o ∪ (p0 \ i)) | (i, o) ∈ dom(R)} and
R′(i, o) = ⊤, for every(i, o) ∈ dom(R′), is equipollent toR. Moreover,R′ is clearly independent. ⊓⊔

In recent work, Lin and Chen [9] captured certain classes of strongly equivalent propositional programs
by considering problems of the following form:

Given rulesr1, . . . , rk, u1, . . . , um, v1, . . . , vn, is {r1, . . . , rk, u1, . . . , um} strongly equivalent to
{r1, . . . , rk, v1, . . . , vn}?

Such a problem is referred to as ak-m-n-problem. The main focus of Lin and Chen’s work is to find
computationally effective,necessaryandsufficientconditions, for smallk, m, n, making ak-m-n-problem
true. In general, any condition that guarantees a positive answer to ak-m-n-problem, for fixedk, m, andn,
obviously yields a monotone replacement schema. Moreover,the conditions given by Lin and Chen [9] for
particular problem classes additionally enforce that the corresponding schema is closed under intersection.
In fact, Theorem 5 constitutes a generalization of observations made Lin and Chen [9].

We next deal with properties for 0-1-0-problems. To this end, we introduce the following replacement
schemas.

Definition 12. SchemasLC0-1-0 andϑ-LC0-1-0 are given as follows:

– dom(LC0-1-0) = {({s}, ∅) | s is a rule withB+(s) ∩ (H(s) ∪B−(s)) 6= ∅};
– dom(ϑ-LC0-1-0) = {({s}, ∅) | s is a rule such that, for eachϑ : Vs → C, B+(sϑ) ∩ (H(sϑ) ∪

B−(sϑ)) 6= ∅};
– R(i, o) = ⊤, for every(i, o) ∈ dom(R), withR ∈ {LC0-1-0, ϑ-LC0-1-0}.

Obviously, the syntactic criterion ofLC0-1-0 combines, in a sense, the conditions forTAUT and
CONTRA. This is made precise as follows:

Theorem 6. LC0-1-0
⋆[p] = TAUT⋆[p] ∪ CONTRA⋆[p], for any programp.

In view of this and previous results, the next theorem comes at no surprise:

Theorem 7. LC0-1-0 is≡s-preserving. Furthermore,LC0-1-0 is equipollent toϑ-LC0-1-0.

As mentioned above, Lin and Chen [9] are concerned with conditions makingk-m-n problems true,
for smallk, m, n. The following proposition rephrases a result of that endeavour:



Proposition 1 ([9]).For any ground ruler, {r} ≡s ∅ iff LC0-1-0 is applicable to{r}.

This result can be lifted to the non-ground case, yielding a syntactic criterion when a single rule is
redundant in a program.

Theorem 8. For any ruler, {r} ≡s ∅ iff LC0-1-0 is applicable to{r}.

Finally, we remark that the replacement schemaSUB, introduced in the previous section, is the gener-
alization of another condition given by Lin and Chen [9] for propositional programs.

5.3 Non-Monotone Replacement Schemas

Theorem 9. LSH is≡u-preserving, but not≡s-preserving.

Indeed, the fact thatLSH is not≡s-preserving already follows from an analogous result in theproposi-
tional case [2]. However, to illustrate this property, consider the following example in the non-ground set-
ting: Takep as consisting of the single ruler = q(X)∨ r(X)← s(X, Y ). Clearly,r is HCF inp, and thus
LSH is applicable top. However, forp′ = LSH[p], we havep 6≡s p′, which can be seen by considering, e.g.,
p′′ = {q(Y ) ← r(Y ); r(X) ← q(X); s(a, b)}, for which we get thatAS(p ∪ p′′) = {s(a, b), q(a), r(a)}
whileAS(p′ ∪ p′′) = ∅.

We next introduce a≡u-preserving replacement schema, which, to the best of our knowledge, has not
been considered before, even in a propositional setting. Note that in the definition below,δ is required to
be a (bijective) renaming rather than a substitution.

Definition 13. The replacement schemaFOLD is given as follows:

– dom(FOLD) is the set of all pairs({r, s}, {t}), wherer, s, t are rules and there exists a renaming
δ and an atoma ∈ B−(rδ) ∩ B+(s) such thatH(rδ) = H(s) = H(t) and (B(rδ) \ {not a}) =
(B(s) \ {a}) = B(t);

– for every(i, o) ∈ dom(FOLD), FOLD(i, o) = φ, whereφ(p) holds iff, for each head atomb in p and
eachϑa : Va → C andϑb : Vb → C, aϑa 6= bϑb, with a as above.

Theorem 10. FOLD is≡u-preserving, but not≡s-preserving.

For illustration, considerp = {q(X, X) ← r(X), not s(X); q(Y, Y ) ← r(Y ), s(Y )}. We can apply
FOLD to p since no atoms(·) occurs in a head ofp. The result of the replacement isp′ = FOLD[p] =
{q(Y, Y ) ← r(Y )}. By the theorem above,p ≡u p′. For instance, addingt = {r(a)} yieldsAS(p ∪
t) = AS(p′ ∪ t) = {r(a), q(a, a)}. On the other hand, addingt′ = {r(a), s(X) ← q(X, Y )} results in
AS(p∪ t′) = ∅, whileAS(p′ ∪ t′) = {r(a), s(a), q(a, a)}. This shows thatFOLD is not≡s-preserving; a
corresponding counterexample can also be constructed for the propositional setting as well. Furthermore,
FOLD is applicable to the programp∪ t as well, but it is not applicable top∪ t′. Sincet′ ⊃ t, we observe
thatFOLD is not monotone.

Finally, we briefly discuss a replacement schema which is≡o-preserving but not≡u-preserving. For
the propositional case, this replacement schema was first considered by Brass and Dix [1].

Definition 14. The replacement schemaRED+ is given as follows:

– dom(RED+) is the set of all pairs({r}, {t}), wherer, t are rules such thatH(r) = H(t) and
B(r) = B(t) ∪ {not a};

– for every(i, o) ∈ dom(RED+), RED+(i, o) = φ, whereφ(p) holds iff, for each head atomb in p and
eachϑa : Va → C andϑb : Vb → C, aϑa 6= bϑb, wherea is an atom such thatB(i) = B(o)∪{not a}.

Note thatRED+ is, to some extent, a simplification ofFOLD, where the second rule,s, of i having
a positive in its body is not mandatory anymore. As a consequence, the equivalence notion preserved by
RED+ is weaker.

Theorem 11. RED+ is≡o-preserving, but not≡u-preserving.

As in the case ofLSH, the fact thatRED+ is not≡u-preserving follows immediately from a corre-
sponding result in the propositional case [2].



6 Complexity of Applicability

In this section, we deal with the computational complexity of theapplicability problemfor a given replace-
ment schemaR, which is the task of determining whetherR is applicable to a given program.

Our first result concerns the schemasTAUT, CONTRA, andRED−.

Theorem 12. The applicability problem forR ∈ {TAUT, CONTRA, RED−} is in LOGSPACE.

The independent replacement schemas involving two rules, which we considered, are more complex,
however.

Theorem 13. The applicability problem forR ∈ {NONMIN, S-IMPL, SUB} is NP-complete.NP-hard-
ness holds even if the arities of the predicates in the given program are bounded by a constant.

We now turn to non-monotone replacements.

Theorem 14. The applicability problem forLSH is PSPACE-complete. If each predicate in the given
program has its arity bounded by a constant, the problem isNLOGSPACE-complete.

Informally, the difficult part is solving the HCF test, whichamounts to test reachability in an implicitly
represented graph, which is PSPACE-complete. Note that, inthe practical relevant setting of programs hav-
ing bounded predicate arities,LSH-applicability can be tested inNLOGSPACE, and thus in polynomial
time. Here, the implicit graph can be effectively constructed using logarithmic workspace.

While LSH is computationally involving in the general case, the othertwo non-monotone replacement
schemas turn out to be easier.

Theorem 15. The applicability problem forFOLD is polynomially equivalent(under Turing-reductions)
to the graph isomorphism problem.

Here, computational hardness is located in the check whether two rules in the given program yield an
instance ofFOLD, rather than the test involving the proviso. Indeed, the problem of finding a bijective
renamingδ allows for a representation of graph isomorphism already ifwe restrict ourselves to programs
over binary atoms. In turn, we can show thatFOLD-applicability can be decided by a polynomial number
of tests for graph isomorphism. Graph isomorphism is inNP but it is not known to beNP-complete or
belonging toP.

Our final result provides a tractable case.

Theorem 16. The applicability problem forRED+is LOGSPACE-complete.

7 Conclusion

Our results on replacements provide a basis for program optimization by rewriting in the practicably im-
portant setting of non-ground programs. While many rewriting rules have been proposed for propositional
programs, generalizations to the non-ground case have not yet been considered in an answer-set program-
ming setting. We have addressed this issue considering safeprograms. However, safety is not necessarily
required and, in many cases, unsafe rules can be taken into account if their replacement does not change
the active domain of the program. We leave further details onthese issues for future work.

Applying replacements for program optimization requires the program to be scanned for applicable
replacements. Depending on the considered replacement schema, this test requires different computational
effort, ranging from tractable cases up toPSPACE.

An implementation of the applicability tests for some of themost general replacement schemas which
we have presented is currently under development, using theASP solver DLV and Perl. Note that for all
schemas considered in this paper, these tests are cheaper than the complexity of computing an answer set
(which is NEXPNP-hard in general for disjunctive programs)—in fact, with the exception ofLSH, these
tests aredrasticallycheaper. Thus, the schemas might be considered also foronline optimizationand not
only for staticoffline optimization.
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