
Testing Relativised Uniform Equivalence under
Answer-Set Projection in the System cc⊤⋆

Johannes Oetsch1, Martina Seidl2, Hans Tompits1, and Stefan Woltran1

1 Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria
{oetsch,tompits}@kr.tuwien.ac.at

woltran@dbai.tuwien.ac.at
2 Institut für Softwaretechnik, Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria
seidl@big.tuwien.ac.at

Abstract. The systemcc⊤ is a tool for testing correspondence between logic
programs under the answer-set semantics with respect to different refined notions
of program correspondence. The underlying methodology ofcc⊤ is to reduce a
given correspondence problem to the satisfiability problem of quantified propo-
sitional logic and to employ extant solvers for the latter language as back-end
inference engines. In a previous version ofcc⊤, the system was designed to test
correspondence between programs based onrelativised strong equivalence under
answer-set projection. Such a setting generalises the standard notion of strong
equivalence by taking the alphabet of the context programs as well as the projec-
tion of the compared answer sets to a set of designated output atoms into account.
This paper outlines a newly added component ofcc⊤ for testing similarly pa-
rameterised correspondence problems based onuniform equivalence.

1 General Information

An important issue in software development is to determine whether two encodings of a
given problem are equivalent, i.e., whether they yield the same result on a given problem
instance. Depending on the context of problem representations, different definitions of
“equivalence” are useful and desirable. The systemcc⊤ [1] (short for “correspondence-
checking tool”) is devised as a checker for a broad range of different such comparison
relations defined betweendisjunctive logic programs(DLPs)under the answer-set se-
mantics[2]. In a previous version ofcc⊤, the system was designed to test correspon-
dence between logic programs based onrelativised strong equivalence under answer-
set projection. Such a setting generalises the standard notion of strong equivalence [3]
by taking the alphabet of the context programs as well as the projection of the com-
pared answer sets to a set of designated output atoms into account [4]. The latter feature

⋆ This work was partially supported by the Austrian Science Fund (FWF) under grant P18019.
The second author was also supported by the Austrian Federal Ministry of Transport, Inno-
vation, and Technology (BMVIT) and the Austrian Research Promotion Agency (FFG) under
grant FIT-IT-810806.

reflects the common use of local (hidden) variables which maybe used in submodules
but which are ignored in the final computation.

In this paper, we outline a newly added component ofcc⊤ for testing similarly pa-
rameterised correspondence problems but generalisinguniform equivalence[5]—that
is, we deal with a component ofcc⊤ for testingrelativised uniform equivalence un-
der answer-set projection. This notion, recently introduced in previous work [6], is less
restrained, along with a slightly lower complexity than itsstrong pendant. However,
in general, it is still outside a feasible means to be computed by answer-set solvers
(provided that the polynomial hierarchy does not collapse). Yet, like relativised strong
equivalence with projection, it can be efficiently reduced to the satisfiability problem
of quantified propositional logic, an extension of classical propositional logic charac-
terised by the condition that its sentences, generally referred to asquantified Boolean
formulas(QBFs), are permitted to contain quantifications over atomic formulas. The
architecture ofcc⊤ takes advantage of this and uses existing solvers for quantified
propositional logic as back-end reasoning engines.

2 System Specifics

The equivalence notions under consideration are defined forground disjunctive logic
programs with default negation under the answer-set semantics [2]. LetAS (P) be the
collection of the answer sets of a programP . Two programs,P andQ, arestrongly
equivalentiff, for any programR, AS (P ∪R) = AS (Q∪R); they areuniformly equiv-
alent iff, for any setF of facts,AS (P ∪F) = AS (Q∪F). While strong equivalence is
relevant for program optimisation and modular programmingin general [7–9], uniform
equivalence is useful in the context of hierarchically structured program components,
where lower-layered components provide input for higher-layered ones. In abstracting
from strong and uniform equivalence, Eiteret al. [4] introduced the notion of acorre-
spondence problemwhich allows to specify (i) acontext, i.e., a class of programs used
to be added to the programs under consideration, and (ii) therelation that has to hold
between the answer sets of the extended programs. The concrete formal realisation of
relativised uniform equivalence with projection is as follows [6]: Consider a quadruple
Π = (P,Q, 2A,⊙B), whereP,Q are programs,A,B are sets of atoms,⊙ ∈ {⊆,=},
andS ⊙B S

′ stands for{I ∩B | I ∈ S} ⊙ {J ∩B | J ∈ S ′}. Then,Π holdsiff, for
eachF ∈ 2A, AS (P ∪ F) ⊙B AS (Q ∪ F). Furthermore,Π is called apropositional
query equivalence problem(PQEP) if⊙B is given by=B , and apropositional query
inclusion problem(PQIP) if ⊙B is given by⊆B . Note that(P,Q, 2A,=B) holds iff
(P,Q, 2A,⊆B) and(Q,P, 2A,⊆B) jointly hold.

For illustration, consider the programs

P = {sad ∨ happy ←; sappy ← sad , happy ; confused ← sappy},
Q = {sad ← not happy ; happy ← not sad ; confused ← sad , happy},

which express some knowledge about the “moods” of a person, whereP uses an aux-
iliary atomsappy . The programs can be seen as queries over a propositional database
which consists of facts from, e.g.,{happy , sad}. For the output, it would be natural
to consider the common intensional atomconfused . We thus considerΠ = (P,Q,

ccT

program P

program Q

context set A

projection set B

non-normal form

QBF-solver

normal form

QBF-solver
qst

non-normal form

QBF

normal form

QBF

input files

Fig. 1.Overall architecture ofcc⊤.

2A,=B) as a suitable PQEP, specifyingA = {happy , sad} andB = {confused}. It is
a straightforward matter to check thatΠ, defined in this way, holds.

As pointed out in Section 1, the overall approach ofcc⊤ is to reduce PQEPs and
PQIPs to the satisfiability problem of quantified propositional logic and to use extant
solvers for the latter language [10] as back-end inference engines for evaluating the re-
sulting formulas. The reductions required for this approach are described by Oetschet
al. [6] but cc⊤ employs additional optimisations [11]. We note that quantified propo-
sitional logic is an extension of classical propositional logic in which sentences are
permitted to contain quantifications over atomic formulas.It is standard custom to refer
to the formulas of this language asquantified Boolean formulas(QBFs).

The overall architecture ofcc⊤ is depicted in Figure 1. The system takes as input
two programs,P andQ, and two sets of atoms,A andB. Command-line options select
between two kinds of reductions, a direct one or an optimisedone, and whether the pro-
grams are compared as a PQIP or a PQEP. Detailed invocation syntax can be requested
with option-h. The syntax of the programs is the basicDLV syntax.1 Sincecc⊤ does
not output QBFs in a specific normal form, for using solvers requiring normal-form
QBFs, the additional normaliserqst [12] is employed. Finally,cc⊤ is developed en-
tirely in ANSI C; hence, it is highly portable. The parser forthe input data was written
using LEX and YACC. Further information aboutcc⊤ is available at

http://www.kr.tuwien.ac.at/research/ccT/.

Experimental evaluations using different QBF solvers are reported in a companion pa-
per [11].

References

1. Oetsch, J., Seidl, M., Tompits, H., Woltran, S.: ccT: A Tool for Checking Advanced Corre-
spondence Problems in Answer-Set Programming. In: Proceedingsof the 15th International
Conference on Computing (CIC 2006), IEEE Computer Society Press (2006) 3–10

1 Seehttp://www.dlvsystem.com/ for details aboutDLV.

2. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs andDisjunctive Databases.
New Generation Computing9 (1991) 365–385

3. Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs. ACM Transac-
tions on Computational Logic2 (2001) 526–541

4. Eiter, T., Tompits, H., Woltran, S.: On Solution Correspondences in Answer Set Program-
ming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005). (2005) 97–102

5. Eiter, T., Fink, M.: Uniform Equivalence of Logic Programs underthe Stable Model Se-
mantics. In: Proceedings of the 19th International Conference on Logic Programming (ICLP
2003). Volume 2916 in Lecture Notes in Computer Science. Springer (2003) 224–238

6. Oetsch, J., Tompits, H., Woltran, S.: Facts do not Cease to Exist Because They are Ignored:
Relativised Uniform Equivalence with Answer-Set Projection. In: Proceedings of the 22nd
National Conference on Artificial Intelligence (AAAI 2007), AAAI Press (2007) 458–464

7. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying Logic Programs Under Uniform
and Strong Equivalence. In Lifschitz, V., Niemelä, I., eds.: Proceedings of the 7th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning(LPNMR-7). Vol-
ume 2923 of Lecture Notes in Computer Science. Springer Verlag (2004) 87–99

8. Pearce, D.: Simplifying Logic Programs under Answer Set Semantics. In: Proceedings of the
20th International Conference on Logic Programming (ICLP 2004). Volume 3132 of Lecture
Notes in Computer Science. Springer (2004) 210–224

9. Lin, F., Chen, Y.: Discovering Classes of Strongly Equivalent Logic Programs. In: Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005).
(2005) 516–521

10. Le Berre, D., Narizzano, M., Simon, L., Tacchella, L.A.: The Second QBF Solvers Com-
parative Evaluation. In: Proceedings of the 7th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004). Revised Selected Papers.Volume 3542 of
Lecture Notes in Computer Science., Springer (2005) 376–392

11. Oetsch, J., Seidl, M., Tompits, H., Woltran, S.: An Extension of the System cc⊤ for Testing
Relativised Uniform Equivalence under Answer-Set Projection (2007). Submitted draft

12. Zolda, M.: Comparing Different Prenexing Strategies for Quantified Boolean Formulas
(2004). Master’s Thesis, Vienna University of Technology

