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Abstract. The systemcc⊤ is a tool for testing correspondence between logic
programs under the answer-set semantics with respect to different refined notions
of program correspondence. The underlying methodology ofcc⊤ is to reduce a
given correspondence problem to the satisfiability problem of quantified propo-
sitional logic and to employ extant solvers for the latter language as back-end
inference engines. In a previous version ofcc⊤, the system was designed to test
correspondence between programs based onrelativised strong equivalence under
answer-set projection. Such a setting generalises the standard notion of strong
equivalence by taking the alphabet of the context programs as well as the projec-
tion of the compared answer sets to a set of designated output atoms into account.
This paper outlines a newly added component ofcc⊤ for testing similarly pa-
rameterised correspondence problems based onuniform equivalence.

1 General Information

An important issue in software development is to determine whether two encodings of a
given problem are equivalent, i.e., whether they yield the same result on a given problem
instance. Depending on the context of problem representations, different definitions of
“equivalence” are useful and desirable. The systemcc⊤ [1] (short for “correspondence-
checking tool”) is devised as a checker for a broad range of different such comparison
relations defined betweendisjunctive logic programs(DLPs)under the answer-set se-
mantics[2]. In a previous version ofcc⊤, the system was designed to test correspon-
dence between logic programs based onrelativised strong equivalence under answer-
set projection. Such a setting generalises the standard notion of strong equivalence [3]
by taking the alphabet of the context programs as well as the projection of the com-
pared answer sets to a set of designated output atoms into account [4]. The latter feature
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reflects the common use of local (hidden) variables which maybe used in submodules
but which are ignored in the final computation.

In this paper, we outline a newly added component ofcc⊤ for testing similarly pa-
rameterised correspondence problems but generalisinguniform equivalence[5]—that
is, we deal with a component ofcc⊤ for testingrelativised uniform equivalence un-
der answer-set projection. This notion, recently introduced in previous work [6], is less
restrained, along with a slightly lower complexity than itsstrong pendant. However,
in general, it is still outside a feasible means to be computed by answer-set solvers
(provided that the polynomial hierarchy does not collapse). Yet, like relativised strong
equivalence with projection, it can be efficiently reduced to the satisfiability problem
of quantified propositional logic, an extension of classical propositional logic charac-
terised by the condition that its sentences, generally referred to asquantified Boolean
formulas(QBFs), are permitted to contain quantifications over atomic formulas. The
architecture ofcc⊤ takes advantage of this and uses existing solvers for quantified
propositional logic as back-end reasoning engines.

2 System Specifics

The equivalence notions under consideration are defined forground disjunctive logic
programs with default negation under the answer-set semantics [2]. LetAS (P ) be the
collection of the answer sets of a programP . Two programs,P andQ, arestrongly
equivalentiff, for any programR, AS (P ∪R) = AS (Q∪R); they areuniformly equiv-
alent iff, for any setF of facts,AS (P ∪F ) = AS (Q∪F ). While strong equivalence is
relevant for program optimisation and modular programmingin general [7–9], uniform
equivalence is useful in the context of hierarchically structured program components,
where lower-layered components provide input for higher-layered ones. In abstracting
from strong and uniform equivalence, Eiteret al. [4] introduced the notion of acorre-
spondence problemwhich allows to specify (i) acontext, i.e., a class of programs used
to be added to the programs under consideration, and (ii) therelation that has to hold
between the answer sets of the extended programs. The concrete formal realisation of
relativised uniform equivalence with projection is as follows [6]: Consider a quadruple
Π = (P,Q, 2A,⊙B), whereP,Q are programs,A,B are sets of atoms,⊙ ∈ {⊆,=},
andS ⊙B S

′ stands for{I ∩B | I ∈ S} ⊙ {J ∩B | J ∈ S ′}. Then,Π holdsiff, for
eachF ∈ 2A, AS (P ∪ F ) ⊙B AS (Q ∪ F ). Furthermore,Π is called apropositional
query equivalence problem(PQEP) if⊙B is given by=B , and apropositional query
inclusion problem(PQIP) if ⊙B is given by⊆B . Note that(P,Q, 2A,=B) holds iff
(P,Q, 2A,⊆B) and(Q,P, 2A,⊆B) jointly hold.

For illustration, consider the programs

P = {sad ∨ happy ←; sappy ← sad , happy ; confused ← sappy},
Q = {sad ← not happy ; happy ← not sad ; confused ← sad , happy},

which express some knowledge about the “moods” of a person, whereP uses an aux-
iliary atomsappy . The programs can be seen as queries over a propositional database
which consists of facts from, e.g.,{happy , sad}. For the output, it would be natural
to consider the common intensional atomconfused . We thus considerΠ = (P,Q,
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Fig. 1.Overall architecture ofcc⊤.

2A,=B) as a suitable PQEP, specifyingA = {happy , sad} andB = {confused}. It is
a straightforward matter to check thatΠ, defined in this way, holds.

As pointed out in Section 1, the overall approach ofcc⊤ is to reduce PQEPs and
PQIPs to the satisfiability problem of quantified propositional logic and to use extant
solvers for the latter language [10] as back-end inference engines for evaluating the re-
sulting formulas. The reductions required for this approach are described by Oetschet
al. [6] but cc⊤ employs additional optimisations [11]. We note that quantified propo-
sitional logic is an extension of classical propositional logic in which sentences are
permitted to contain quantifications over atomic formulas.It is standard custom to refer
to the formulas of this language asquantified Boolean formulas(QBFs).

The overall architecture ofcc⊤ is depicted in Figure 1. The system takes as input
two programs,P andQ, and two sets of atoms,A andB. Command-line options select
between two kinds of reductions, a direct one or an optimisedone, and whether the pro-
grams are compared as a PQIP or a PQEP. Detailed invocation syntax can be requested
with option-h. The syntax of the programs is the basicDLV syntax.1 Sincecc⊤ does
not output QBFs in a specific normal form, for using solvers requiring normal-form
QBFs, the additional normaliserqst [12] is employed. Finally,cc⊤ is developed en-
tirely in ANSI C; hence, it is highly portable. The parser forthe input data was written
using LEX and YACC. Further information aboutcc⊤ is available at

http://www.kr.tuwien.ac.at/research/ccT/.

Experimental evaluations using different QBF solvers are reported in a companion pa-
per [11].
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