
AngryHEX: an Artificial Player for Angry Birds
Based on Declarative Knowledge Bases

Francesco Calimeri1, Michael Fink2, Stefano Germano1, Giovambattista Ianni1,
Christoph Redl2, and Anton Wimmer2

1 Dipartimento di Matematica e Informatica, Università della Calabria, Italy
{calimeri,ianni}@mat.unical.it, stefanogermano0@gmail.com
2 Institut für Informationssysteme, Technische Universität Wien
{fink,redl}@kr.tuwien.ac.at, anton.wimmer@tuwien.ac.at

1 Introduction

This work presents a joint project by the University of Calabria (UniCal) and
the Vienna University of Technology (TU Vienna), aiming at developing an
Intelligent Agent participating in the 2013 Angry Birds Artificial Intelligence
Competition [1]. Angry Birds is a very popular video game where the main goal
is to shoot at some pigs by means of birds of different characteristics from a
slingshot. The game field (which is static until the player moves) features some
structures that shelter pigs. Structures can be very complicated and can involve
a number of different object categories with different properties, like wood, ice,
stone, etc. The game scenario evolves largely complying with physics laws on a
bi-dimensional plane; thus, it is possible, in principle, to infer how a structure
will change if hit at a certain position by a certain bird.

The Angry Birds AI Competitions [1] are designed to test the abilities of An-
gry Birds artificial agents, playing on a variety of levels, on the Google Chrome
version of the game. The competition runs on a client/server architecture, where
the server runs an instance of the game for each participating agent. Each agent
runs on a client computer, and communicates with the server according with a
given protocol that allows agents to fetch screenshots of their own game screen
at any time. An artificial player can also obtain the current high scores for each
level, and can prompt the server for executing a shot, which will in turn be
performed in the corresponding game screen. The long term goal of the Compe-
tition is to foster the building of AI agents that can play any new level better
than the best human players. In order to successfully solve this challenge, par-
ticipants are solicited to combine different areas of AI such as computer vision,
knowledge representation and reasoning, planning, heuristic search, and machine
learning. Successfully integrating methods from these areas is indeed one of the
great challenges of AI.

2 ASP and HEX Programs

Our agent, called AngryHEX, models its internal knowledge of the game by
means of an Answer Set Programming (ASP) [2,4] knowledge base. ASP became



widely used in AI and is recognized as a powerful tool for knowledge representa-
tion and reasoning (KRR), especially for its high expressiveness and the ability
to deal also with incomplete knowledge [2]. The fully declarative nature of ASP
allows one to encode a large variety of problems by means of simple and ele-
gant logic programs. The semantics of ASP associates a knowledge base with
none, one, or many “answer sets”, each usually in one-to-one correspondence to
the solutions of the problem at hand. Among the different extensions of ASP,
we used HEX programs [3], as they are particularly well-suited when external
knowledge and/or external sources of computation must be integrated within
the same knowledge base.

3 The AngryHEX agent

We started the development of AngryHEX from the Base Framework provided
by the organizers and enriching it with new functionalities, particularly the AI.
The actual reasoning is carried out by computing the answer sets of an HEX-
program PAI that models the knowledge of the game. PAI is enriched with scene
information, and its answers sets encode the targets of choice.

3.1 Base Framework

The Base Framework consists of many parts (see fig. 1). The Angry Birds Ex-
tension works on top of the Google Chrome browser, and allows to interact
with the game by offering functionalities such as capturing the game window or
executing actions (e.g., moving the mouse, clicking, zooming). The Vision Mod-
ule segments images, recognizes the minimum bounding rectangles of essential
objects, such as birds of various colors and types, pigs, the slingshot, or bricks
made of several materials. The Trajectory Module estimates the trajectory that
a bird would follow given a particular release point set at a given distance and
orientation with respect to the slingshot. The AI Agent stub is supposed to in-
clude the artificial intelligence programmed by participants. The Game Server
interacts with the Angry Birds Extension via the Proxy module, which can han-
dle commands like CLICK (left click of the mouse), DRAG (drag the cursor from
one place to another), MOUSEWHEEL (scroll the mouse wheel), and SCREENSHOT

(capture the current game window). The Server/Client Communication Port
receives messages from agents and sends back feedbacks after the server exe-
cuted the actions asked by the messages. There are many categories of messages
(Configuration messages, Query messages, In-Game action messages and Level
selection messages).

3.2 Our extensions to the Base Framework

We extended the Base Framework adding an Executor that communicates with
the dlvhex solver; the Executor encodes the information about the current
scene into logic assertions, runs dlvhex on the composed HEX-program and



dlvhex

Fig. 1: Base Architecture

parses the output, thus identifying the next target. We also improved the Vi-
sion Module, adding the possibility of recognizing the orientation of the blocks;
indeed, the Base Framework does not correctly recognize blocks that are not
parallel to the coordinate axes. The Trajectory Module has been extended with
the possibility of aiming a trajectory at the left and top side of objects; ideed,
the original module within the Base Framework aims only at the centroid of an
object, even if it is “covered” by other objects, and thus not directly shootable.
We implemented also other minor adjustments, fixes and improvements.

3.3 Artificial Intelligence

We developed two different Intelligence layers for AngryHEX: the Tactic layer,
which plans shots, and decides how to complete a level; and the Strategy layer,
which decides the order of levels to play and possible multiple attempts to the
same level. The Tactic layer is declaratively implemented using the dlvhex
solver, which computes optimal shots based on information about the current
scene and on knowledge modeled within the HEX program PAI . In particular,
the Tactic layer behaves according to the following scheme:
– Input: Scene information encoded as a set of logic assertions S (position,

size and orientation of pigs, ice, wood and stone blocks, slingshot, etc. as
obtained by the Vision Module); a knowledge base PAI encoding knowledge
about the gameplay;

– Output: “Answer sets” of PAI ∪S, that contain a dedicated atom describing
the target to hit, and some information about the required shot;

– Physics simulation results and other information are accessed within PAI

via the so-called External Atoms constructs. External atoms allow to access
information which is external to the knowledge bases, like, e.g.,



• asking if an object is “stable” (prone to an easy fall);
• asking if object B will fall if A falls;
• asking which objects intersect with the trajectory of a bird after hitting

a given object;
• computing distances between objects;
• asking if an object O is “shootable” (i.e., there exist a trajectory where
O is the first intersecting object);

• finding the best trajectory for a White Bird (the white birds have a
peculiar behavior and require a special treatment);

• asking if an object can be “pushed” by another.
The knowledge modelled by PAI is the following:
– Define each shootable target as an object which has a direct and unob-

structed path from the slingshot;
– For each shootable target T , compute a measure of the estimated damage

that can occur on all other objects if T is hit. The specific behavior of each
bird type is taken into account (e.g. yellow birds are very effective on wood,
etc.), and the estimated damage is properly weighted by a probability value;

– Targets are ranked by their priority, e.g., maximizing the estimated damage
to pigs first; estimated damage to other objects is taken into account only
for targets which tie in the estimated damage for pigs.
As an example of a logic rule used in AngryHEX, the following “computes”

the likelihood of damage when an object pushes an adjacent one:

pushDamage(ObjB , PA, P )← pushDamage(ObjA, , PA),

PA > 0,&canpush[ngobject](ObjA, ObjB),

pushability(ObjB , PB), P = PA ∗ PB/100.

here the &canpush predicate out-sources to a C++ library the geometric cal-
culations required to assess whether an object is within range of another (i.e.
ObjA can make ObjB fall by domino effect); on the other hand, the pushability
predicate is defined using empirical knowledge of the game and defines how much
an object can be “pushed” in terms of its shape and material (e.g. long rods are
very pushable, etc.).

We have developed also other rules that take into account the direct damage
and the fall damage of each object. These depend on the probability of destroying
a particular object type, and on the importance of the fall of an object, given its
material type. Static object damage values are combined in order to form causal
chains which terminate using an energy loss estimate. Energy losses take into
account the residual energy available when the effects of a shot propagate from
an object to another. For instance the following assertions:

damageProbability(blue, wood, 10). damageProbability(yellow,wood, 100).
damageProbability(blue, ice, 100). damageProbability(yellow, ice, 10).

encode the damage probability of an object depending on the object material
and on the type of bird hitting the object at hand. Such values were encoded



Fig. 2: A successful shot featuring an exploding black bird.

empirically based on specific knowledge of the game (e.g. blue birds are very
effective on ice, etc.).

The Strategy layer decides, at the end of each level, which level to play
next. This layer is implemented in Java according to the following scheme:

1. First, each available level is played once;
2. Then, levels where the agent score differs most from the current best score

are selected (up to a limited number of attempts);
3. Next, levels where AngryHEX achieved a score higher than the current best

scores and that have the minimum difference from the best score, are selected
(up to another limited number of attempts);

4. Finally, the Strategy layer tries to play a random level (actually, this never
occurred during the available timeframe in the competition rounds).

For each level, the Strategy layer keeps tracks of previously achieved scores
and previously selected initial target objects. Previously selected targets are
excluded, in order to force a different tactic per each attempt on the same level.

4 Computational Performance Considerations

Since the tactic layer is repeatedly prompted for deciding the chosen target on the
current scene, its efficiency is crucial for achieving good time performance of the
overall agent. The core of the tactic layer is an evaluation carried over the logical
knowledge base PAI coupled with a set of assertion S describing the current
scene. Thus, both the size of S and PAI affect in principle the performance of
the tactic layer. Another performance factor concerns the time performance and
the number of calls to external libraries.



Concerning the size of S, this is directly proportional to the number of ob-
jects in the current scene: there is one fact per each object in the scene, plus a
constant number of facts (three) encoding respectively, the slingshot position,
the current bird type, and the scale factor of the scene. PAI is instead a fixed logic
program comprising about 3 hundred statements, made of both rules and facts
encoding fixed knowledge of the domain. For what calls to external libraries are
concerned, these were optimized for reducing the number of possibly redundant
calls3. External calls proved to be a key-point for what the impact on efficiency
is concerned. Indeed, by means of external calls, we were allowed to out-source
to imperatively coded modules a number of tasks in which ASP and logic pro-
gramming in general are not well-tailored at, like simulation of future scenarios
according to laws of physics, approximation of ballistic trajectories, etc.

With the help of an hybrid architecture featuring access to external sources
of knowledge, we found that the capabilities of current ASP solvers fit very
well the setting of the Angry Birds game and its AI Competition: first, Angry
Birds can be seen as a game in between a real-time game and a turn-based one,
allowing a fairly large time window for deciding the next shot4; and second,
the size of the search space of the tactic layer is linearly proportional to the
number of objects in the current scene. Note that the above setting can be lifted
to a variety of other contexts in which a) there is an acceptable time window
available for reasoning, and b) the set of actions that can be taken by the agent
at hand is fairly small, do not underlies an exponentially larger search space, and
no look-ahead of arbitrary depth on future scenarios is required (or convenient)
to be performed. This generalized context covers e.g. automated room cleaning,
semi-interactive turn-based games, etc.

Concerning actual performance, we could not yet perform accurate bench-
marking, due to the unavailability to the public of the levels used in the Angry
birds AI Competition. However, our testing on the publicly known first 21 levels
of the “Poached Eggs” set5, which reflect the competition setting in qualitative
terms (type of materials, shape of objects and type of birds available), allowed
us to draw some conclusion. First, the reasoning time was a negligible fraction
with respect to the overall time of each shot. Most of the shot time is indeed
taken by the animation and simulation of the shot itself (within tens of seconds),
while reasoning takes generally less than 1-2 seconds, with some outlier case of
no more than 5 seconds; second, given the low reasoning times, we could not ap-
preciate any correlation between the reasoning time and the number of objects
available6, although we expect such correlation should appear clearer in more
complex levels.

3 Also, the burden of repeated identical calls to external sources has been mitigated
by caching.

4 In the Angry Birds AI Competition, depending on the round at hand, each shot was
allowed about 10-20 seconds.

5 “Poached Eggs” is the first level set available in the downloadable version of the
game.

6 In the “Poached Eggs” level set, the number of objects ranges from 8 to 65, including
“ground” objects describing terrain areas. Levels proposed to participants in the



5 Conclusion

AngryHEX performed very well in the 2013 Competition, reaching semifinals.
Notably, AngryHEX kept the first place out of 20 participants, in both the two
qualification rounds. Benchmarking performed by the Competition Organizer
after the Competition also shows AngryHEX ranking with the best score in the
first 21 levels of the “Poached Eggs” level set. The levels used in the semifinal
and final stage are unfortunately not publicly available; thus, we could not assess
the quality of performance of AngryHEX on them, nor understand the reasons of
the lower performance. Nevertheless, we conjecture that levels used in finals and
semi-finals are very rich in the number of objects, thus triggering some scalability
issues in the architecture of our agent.

We identified many points in which AngryHEX can be improved. In the fu-
ture, we aim at introducing the planning of multiple shots based on the order
of birds that must be shot; we think that it might be useful also to better study
the interaction between objects. Some other possible improvements concern per-
formance, and the declarative implementation of the Strategy layer.

References

1. Angry Birds AI Competition. http://aibirds.org
2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press (2003)
3. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-

Order Reasoning and External Evaluations in Answer Set Programming. In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI) 2005. pp. 90–96. Edin-
burgh, UK (Aug 2005)

4. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

AI Competition qualification rounds were only slightly more complex with levels
reaching up to 100 objects.

http://aibirds.org

	AngryHEX: an artificial player for Angry Birds based on declarative knowledge bases

