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Abstract
We introduce an answer-set semantics for abstract-constraint programs with disjunction in rule heads in
the style of Faber, Leone, and Pfeifer (FLP). To this end, we extend the definition of an answer set for
logic programs with aggregates in rule bodies using the usual FLP-reduct. Additionally, we also provide
a characterisation of our semantics in terms of unfounded sets, likewise generalising the standard concept
of an unfounded set. Our work is motivated by the desire to have simple and rule-based definitions
of the semantics of an answer-set programming (ASP) language that is close to those implemented by
the most prominent ASP solvers. The new definitions are intended as a theoretical device to allow for
development methods and methodologies for ASP, e.g., debugging or testing techniques, that are general
enough to work for different types of solvers. We use abstract constraints as an abstraction of literals
whose truth values depend on subsets of an interpretation. This includes weight constraints, aggregates,
and external atoms, which are frequently used in real-world answer-set programs. We compare the new
semantics to previous semantics for abstract-constraint programs and show that they are equivalent to
recent extensions of the FLP semantics to propositional and first-order theories when abstract-constraint
programs are viewed as theories.
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1 Introduction

In order to reflect various programming needs, the basic answer-set programming (ASP) language, as
originally defined by Gelfond and Lifschitz [12], has been extended in several ways to accommodate
constructs like aggregates, weight constraints, and external atoms. Abstract-constraint programs [21,
23] are generalised logic programs providing abstractions of such commonly-used constructs and
thus are perfectly suited to study different language extensions in a uniform manner. Hereby, abstract
constraints are dedicated literals whose truth value depends on a set of propositional atoms.

In this paper, we consider abstract-constraint programs with disjunction in the heads and define
an answer-set semantics for this kind of programs in the style of Faber, Leone, and Pfeifer (“FLP” for
short), based on a simple reduct-based definition extending the original one defined for disjunctive
logic program for aggregates in rule bodies [6]. The FLP semantics has been introduced to provide
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an intuitive handling of aggregates and is implemented in the solvers DLV [4, 16] and DLVHEX [3].
Recently, the FLP semantics has also been extended to propositional theories [30] and to first-order
theories with aggregates [1]. However, in contrast to these extensions, the language we consider can
be viewed as the smallest superset of the languages supported by current state-of-the-art ASP solvers.

Besides the basic reduct-based definition of answer sets, we also introduce a characterisation of
our semantics in terms of unfounded sets, generalising the standard concept of an unfounded set [5].

Concerning the semantics for abstract-constraint programs in general, among the different propos-
als in the literature [23, 29, 27, 22, 20, 19, 26], to the best of our knowledge, only the work of Shen,
You, and Yuan [27] deals with disjunctions in the head, i.e., they consider the same language as we
do. Their semantics coincides with ours for the case of convex abstract-constraint programs, which is
also the fragment that is currently implemented in common ASP solvers, but their approach depends
on an involved program transformation that introduces fresh atoms—a potential advantage of our
definition lies in its simplicity. Moreover, while we treat abstract-constraint atoms in the spirit of the
FLP semantics, Shen, You, and Yuan [27] handle them the same way as Son, Pontelli, and Tu [29].
Relations to semantics for more restricted classes of abstract-constraint programs follow from known
results.

Our main motivation for developing the characterisations discussed in this paper is of a rather
practical nature. We want to have clear, declarative, and rule-based definitions that capture the
languages of a majority of modern ASP solvers to a large extent. The new characterisations are
intended as a theoretical device to facilitate uniform development methods and methodologies for
ASP, like debugging or testing techniques [25, 13], that are general enough to work for different
types of solvers. Indeed, since sufficiently efficient ASP solvers became available in the late 1990s,
there has never been a standard for implemented ASP languages. Different ASP solvers support
different language features, some of which are syntactic sugar, while others add expressiveness to
the formalism. In particular, the languages of DLV, Clasp [10, 11], and of other solvers based on
the grounder lparse and its de-facto successor Gringo, like smodels [24, 28], cmodels [18],
and pbmodels [20], support different features. For instance, DLV allows for disjunction in rule
heads which are not supported in Clasp and many related solvers. These, on the other hand, allow
for weight constraints [28] in rule heads, whereas aggregates in DLV are restricted to appear in rule
bodies only.1

The semantics characterised in this paper conservatively extends that of DLV, providing a theor-
etical basis for adding, e.g., choice rules to the language of DLV. In particular, our characterisation
in terms of unfounded sets can be seen as a practical step towards an implementation in DLV as
unfounded sets are central elements of the evaluation strategy of this solver. The introduced semantics
also coincides with that of Simons, Niemelä, and Soininen [28] implemented in Clasp whenever no
negative weights appear in weight constraints. Negative weights are rarely used and their semantics
have been considered unintuitive by some authors [9, 8]. Thus, our characterisations lay a solid
foundation for programming support methods operating on both solver dialects of Clasp and DLV.
Besides that, they are of theoretical interest as they clarify the role of aggregate domains in rule
heads in extensions of the FLP semantics. Moreover, the reduct-based definition identifies a single
condition on the spoiling interpretation that is necessary for extending the original definition of the
FLP semantics to programs with aggregates in rule heads.

Besides the relation of our semantics with the one by Shen, You, and Yuan [27], as pointed out
above, we also discuss relations to other proposals of semantics for abstract-constraint programs.
As mentioned, the FLP semantics has been extended to propositional theories by Truszczyński [30]

1 Note that the ASP solver ClaspD [2] supports both disjunctions and aggregates (more precisely, weight constraints)
in rule heads but not within the same rule.
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for comparison with the semantics by Ferraris [7, 8]. Like the definition of Ferraris, the FLP
semantics for propositional theories depends on a recursively defined reduct. Our results show that
the semantics introduced in this paper is equivalent to that proposed by Truszczyński when abstract-
constraint programs are translated into theories. In this sense, our definitions reflect the semantics by
Truszczyński for programs with disjunctive rules.

This paper is organised as follows. In the next section, we give some background on abstract-
constraint programs and discuss how special literals often used in real-world answer-set programs
can be expressed as abstract-constraint atoms. In Section 3, we first recapitulate the FLP semantics
for the fragment of abstract-constraint programs corresponding to the logic-programming language
it was originally designed for and discuss shortcomings of a straightforward extension of the FLP
semantics to full abstract-constraint programs. We then continue with our reduct-based semantics
and the characterisation in terms of unfounded sets. Section 4 presents relations to other semantics
of abstract-constraint programs. Moreover, we discuss the relation to recent extensions of the FLP
semantics to theories. We conclude the paper in Section 5. For space reasons, most proofs are omitted.

2 Preliminaries

We assume a fixed propositional language based on a countable set A of (propositional) atoms. We
use “not” as the symbol for default negation. An abstract-constraint atom, or c-atom, is a pair
A = 〈D,C〉, where D ⊆ A is the domain of A, denoted by DA, and C ⊆ 2D is a collection of sets
of atoms, called the satisfiers of A, denoted by CA. The domain of a default negated c-atom not A is
given by DnotA = DA. For an atom a, we identify the c-atom 〈{a}, {{a}}〉 with a. We call such
c-atoms elementary.

An abstract-constraint program, or simply program, is a finite set of rules of the form

A1 ∨ · · · ∨Ak ← Ak+1, . . . , Am,not Am+1, . . . ,not An, (1)

where 0 ≤ k ≤ m ≤ n and any Ai for 1 ≤ i ≤ n is a c-atom. For a rule r of form (1),
B(r) = {Ak+1, . . . , Am, not Am+1, . . . ,not An} is the body of r, B+(r) = {Ak+1, . . . , Am} is the
positive body of r, B−(r) = {Am+1, . . . , An} is the negative body of r, and H(r) = {A1, . . . , Ak}
is the head of r. If B(r) = ∅ and H(r) 6= ∅, then r is a fact. For facts, we usually omit the symbol
“←”. The domain of a rule r is Dr =

⋃
X∈H(r)∪B(r)DX . A rule r of form (1) is normal if k = 1.

A program is normal if it contains only normal rules. A program is a logic program if it contains
only elementary c-atoms. Furthermore, a program is an elementary-head program if only elementary
c-atoms appear in rule heads.

An interpretation is a set of atoms. For two sets I andX of atoms, I|X = I ∩X is the projection
of I to X . An interpretation I satisfies a c-atom 〈D,C〉, symbolically I |= 〈D,C〉, if I|D ∈ C.
Moreover, I |= not 〈D,C〉 iff I 6|= 〈D,C〉.

A c-atom A is monotone if, for all interpretations I, I ′, if I ⊂ I ′ and I |= A, then also I ′ |= A. A
c-atom A is convex if, for all interpretations I, I ′, I ′′, if I ⊂ I ′ ⊂ I ′′, I |= A, and I ′′ |= A, then also
I ′ |= A. Moreover, a program is monotone (resp., convex) if all contained c-atoms are monotone
(resp., convex). An interpretation I satisfies a set S of c-atoms, symbolically I |= S, if I |= A for
all A ∈ S. Moreover, I satisfies a rule r, symbolically I |= r, if I |= B(r) implies I |= A for some
A ∈ H(r). As well, I satisfies a set Π of rules, symbolically I |= Π, if I |= r for every r ∈ Π. If
I |= Π, we say that I is a model of Π.

A rule r such that I |= B(r) is called active under I . The set ΠI = {r ∈ Π | I |= B(r)} of all
active rules of a program Π under an interpretation I is the FLP-reduct of Π [6].

As mentioned in the introduction, c-atoms are used to represent special literals used in logic
programming, like aggregates and weight constraints, for formal study. Such special literals have
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in common that their truth values are determined by sets of atoms in an interpretation. Throughout
this paper we will identify such special literals with c-atoms. As examples, since our motivation is to
obtain characterisations of a semantics close to that of the popular answer-set solvers Clasp and
DLV, we next illustrate how frequently-used language constructs, viz. weight constraints as used in
Clasp and aggregates as used in DLV, can be represented as c-atoms. We consider variable-free
variants only since variables are not needed in the remainder of the paper. Note that both Clasp and
DLV rely on a grounding step before solving.

Simons, Niemelä, and Soininen [28] introduced weight constraints for normal logic programs. A
weight constraint is an expression of form

l [a1 = w1, . . . , ak = wk,not ak+1 = wk+1, . . . ,not an = wn] u ,

where each ai is an atom and each weight wi is a real number, for 1 ≤ i ≤ n. The lower bound l
and the upper bound u are either a real number,∞, or −∞. However, the authors effectively require
weights to be non-negative, as in their semantics negative weights are eliminated in a pre-processing
step that has been claimed to lead to unintuitive results in several works [9, 8]. If all weights are
non-negative, weight constraints are convex. Intuitively, the sum of weights wi of those atoms ai,
1 ≤ i ≤ k, that are true and the weights of the atoms ai, k < i ≤ n, that are false must lie within the
lower and the upper bound. More formally, an interpretation I satisfies a weight constraint if

l ≤ (
∑

1≤i≤k,ai∈I
wi +

∑
k<i≤n,ai 6∈I

wi) ≤ u .

A special form of a weight constraint is a cardinality constraint where all weights are 1. The
intuition is that lower and upper bounds define how many of the contained atoms may be true in an
answer set. A further specialised form of a cardinality constraint is a choice atom that is of the form

0 [a1 = 1, . . . , ak = 1] k .

Choice atoms are often used in the head of a rule for non-deterministically guessing a subset of its
domain {a1, . . . , ak}. They are often abbreviated as {a1, . . . , ak}.

A weight constraint

l [a1 = w1, . . . , ak = wk,not ak+1 = wk+1, . . . ,not an = wn] u

corresponds to the c-atom 〈D,C〉, where D = {a1, . . . , an} and

C = {X ⊆ D | l ≤ (
∑

1≤i≤k,ai∈X
wi +

∑
k<i≤n,ai 6∈X

wi) ≤ u} .

We next define aggregates following Faber [5]. A ground set is a set of pairs of the form 〈~c : I〉,
where ~c is a list of constants and I is a set of atoms. An aggregate function is of the form f [S], where
S is a ground set and f is an aggregate function symbol. Intuitively, f stands for a mapping from
multisets of constants to constants. An aggregate atom is of the form f [S] ≺ c, where f [S] is an
aggregate function, c is a constant called guard, and≺ ∈ {=, <,≤,≥, >} is a predefined comparison
operator. Given an interpretation I and a ground set S, I(S) is the multiset

[c1 | 〈c1, . . . , cn : I ′〉 ∈ S, I ′ ⊆ I] .

Then, an aggregate atom f [S] ≺ c is satisfied by I if f(I(S)) ≺ c. Moreover, a default negated
aggregate atom not f [S] ≺ c is satisfied by I if f [S] ≺ c is not satisfied by I . An aggregate atom
f [S] ≺ c can be expressed as a c-atom

〈D, {X ⊆ D | f(X(S)) ≺ c}〉 ,



Johannes Oetsch, Jörg Pührer, and Hans Tompits 5

where D =
⋃
〈~c:I′〉∈S I

′.
As an example, consider the aggregate atom #count[S] = 1, where

S = {〈2 : queen_2_1〉, 〈2 : queen_2_2〉, 〈2 : queen_2_3〉, 〈2 : queen_2_4〉},

stemming from an instantiation of an encoding of the n-queens problem with n = 4. Intuitively,
the aggregate atom is true when only one queen is located on row 2 of a chessboard. The aggregate
function symbol #count maps a multiset of constants to its cardinality. Hence, under interpret-
ation I1 = {queen_2_3}, we have that I1(S) = [2], therefore #count(I1(S)) = 1, and hence
#count[S] = 1 is satisfied by I1. For I2 = {queen_2_3, queen_2_4}, we have I1(S) = [2, 2],
therefore #count(I2(S)) = 2, and #count[S] = 1 is not satisfied by I2.

3 Reduct-Based Answer-Set Semantics

Before presenting our actual definition of an FLP-style semantics for abstract-constraint programs, we
first recapitulate the FLP semantics by Faber, Pfeifer, and Leone [6] for disjunctive logic programs with
aggregates appearing in rule bodies only and afterwards discuss the shortcomings of a straightforward
extension of their definition to full abstract-constraint programs.

3.1 Prelude: FLP-Semantics for Elementary-Head Programs and a
Straightforward Extension

As stated above, Faber, Pfeifer, and Leone [6] defined a semantics for disjunctive logic programs
with aggregates appearing in rule bodies only. This class of programs, viewed as abstract-constraint
programs, corresponds to the fragment of elementary-head programs. We refer to their semantics as
the FLP semantics, defined as follows.

I Definition 1 ([6]). Let Π be an elementary-head program. Then, an interpretation I is an FLP
answer set of Π if I |= ΠI and there is no I ′ ⊂ I such that I ′ |= ΠI . The set of all FLP answer sets
of Π is denoted by ASFLP(Π).

For the same class of programs, Faber [5] provided a definition of unfounded sets that we generalise
to full abstract-constraint programs later on. Note that Faber considers strong negation and partial
interpretations which we do not cover in this paper.

I Definition 2 ([5]). Let Π be an elementary-head program and I an interpretation. Then, a set X
of atoms is unfounded in Π with respect to I if, for each rule r ∈ Π with H(r) ∩X 6= ∅,

I 6|= B(r),
I \X 6|= B(r), or
I |= l, for some l ∈ H(r) \X .

As shown by Faber [5], a model I of a program Π is an FLP answer set of Π iff I ∩X = ∅, for
each unfounded set X for Π with respect to I .

Now, let us call the extended FLP semantics the one obtained from Definition 1 by keeping
the conditions of the definition but allowing Π to be a general abstract-constraint program. This
straightforward extensions leads to undesired results, however, as we illustrate next.

As stated earlier, a popular form of aggregates used in the head of rules in ASP are choice atoms.
Consider the program consisting of the fact

〈{a, b}, {∅, {a}, {b}, {a, b}}〉
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which corresponds to the choice atom {a, b}. Here, the intended behaviour of a choice atom, viz.
expressing a non-deterministic choice between sets ∅, {a}, {b}, and {a, b}, can only be achieved
if non-minimal answer sets are permitted. The extended FLP semantics, however, allows only the
empty set as an answer set of this program.

We are interested in a notion of answer set that prevents minimisation between the different
satisfiers of an abstract-constraint atom and thus allows for using choice atoms with their usual
meaning. This is introduced in the following.

3.2 Basic Definition and Unfounded Sets

I Definition 3. Let Π be an abstract-constraint program and I an interpretation. Then, I is an
answer set of Π if I |= ΠI , and there is no I ′ ⊂ I such that

(i) I ′ |= ΠI , and
(ii) for every r ∈ ΠI with I ′ |= B(r), there is some A ∈ H(r) with I ′ |= A and I ′|DA = I|DA .

The set of answer sets of Π is denoted by AS(Π).

This definition differs from the one of Faber, Pfeifer, and Leone [6] by the additional Condition (ii)
on the spoiling interpretation I ′. Intuitively, the purpose of this condition is to prevent minimisation
within c-atoms.

I Example 4. Consider program Π1 consisting of the fact

〈{a, b}, {{a}, {b}, {a, b}}〉

that realises a choice of at least one atom from {a, b}. The answer sets of Π1 are given by {a},
{b}, and {a, b}. Without Condition (ii), however, we would lose the answer set {a, b} as, e.g.,
{a} ⊆ {a, b} and {a} |= Π{a,b}.

Opposed to the extended FLP semantics for programs where such a choice cannot be expressed
without introducing auxiliary atoms, we do not enforce subset-minimal answer sets.

The next example illustrates that there are however minimisation effects between different c-atoms
in a disjunction.

I Example 5. Consider the program

Π2 = 〈{a, b}, {{a}, {b}, {a, b}}〉 ∨ 〈{a, c}, {{a, c}}〉

that also consist of a single (disjunctive) fact. Interpretations {a}, {b}, and {a, b} are answer sets of
Π2. However, the satisfier {a, c} of the second disjunct is not an answer set. Here, {a} is the spoiling
interpretation, since for

A = 〈{a, b}, {{a}, {b}, {a, b}}〉

we have {a} |= A and {a}|DA = {a, c}|DA .

Often, answer sets are computed following a two-step strategy: First a model of the program is
built and in the second step it is checked whether this model obeys a foundedness condition ensuring
that it is an answer set. Intuitively, every set of atoms in an answer set must be “supported” by some
active rule that derives one of the atoms. Here, it is important that the reason for this rule to be active
does not depend on the atom it derives. Such rules are referred to as external support [14]. In what
follows, we extend this notion to our setting.
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I Definition 6. Let r be a rule, X a set of atoms, and I an interpretation. Then, r is an external
support for X with respect to I if

I |= B(r),
I \X |= B(r),
there is some A ∈ H(r) with X|DA 6= ∅ and I|DA ⊆ S for some S ∈ CA, and
for all A ∈ H(r) with I |= A we have (X ∩ I)|DA 6= ∅.

We next show how answer sets can be characterised in terms of external supports.

I Theorem 7. Let Π be a program and I an interpretation. Then, I is an answer set of Π iff I is a
model of Π and every X with ∅ ⊂ X ⊆ I has an external support r ∈ Π with respect to I .

To complete the picture, we express the absence of an external support in an interpretation by
extending the concept of an unfounded set [17, 5] to abstract-constraint programs (for the case of total
interpretations). Defining unfounded sets in terms of external supports is motivated by the duality of
these notions as discussed by Lee [14].

I Definition 8. Let Π be a program,X a set of atoms, and I an interpretation. Then,X is unfounded
in Π with respect to I if there is no rule r ∈ Π that is an external support for X with respect to I .

Note that this is a conservative extension of Definition 2 for elementary-head programs.
Theorem 7 now immediately yields the following result:

I Theorem 9. Let Π be a program and I an interpretation. Then, I is an answer set of Π iff I is a
model of Π, and there is no set X with ∅ ⊂ X ⊆ I that is unfounded in Π with respect to I .

Faber [5] also provides a characterisation of answer sets based on the unfounded-freeness property
for the class of programs he considered. This concept can be lifted to the case of abstract-constraint
programs under our semantics.

I Definition 10. Let Π be a program and I an interpretation. Then, I is unfounded-free in Π if
I ∩X = ∅ for each unfounded set X in Π with respect to I .

Opposed to Theorems 7 and 9, the definition of unfounded-freeness does not restrict the considered
unfounded sets to subsets of the interpretation. Therefore, it is important to note that due to the
definition of external support, the part of an unfounded set contained in the interpretation is itself an
unfounded set.

I Proposition 11. Let X be a set of atoms, and I an interpretation. If a rule r is an external
support for I ∩X with respect to I then r is an external support for X with respect to I .

I Lemma 12. Let X be a set of atoms, Π a program, and I an interpretation. If X is unfounded in
Π with respect to I then I ∩X is unfounded in Π with respect to I .

We conclude the section with the result that characterises answer sets in terms of unfounded-free
models, generalising Corollary 3 of Faber [5].

I Theorem 13. Let Π be a program and I an interpretation. Then, I is an answer set of Π iff I is
a model of Π and unfounded-free in Π.

Proof. (⇒) Suppose that I is an answer set of Π. By Theorem 9, I is a model of Π and it holds
that (∗) there is no set X with ∅ ⊂ X ⊆ I that is unfounded in Π with respect to I . Assume that I
is not unfounded-free in Π. Then, there is some unfounded set X for Π with respect to I such that
I ∩X 6= ∅. Hence, by Lemma 12, I ∩X is an unfounded set in Π with respect to I , contradicting (∗).
(⇐) Towards a contradiction, assume that I is not an answer set of Π. By Theorem 9, there must be
some setX with ∅ ⊂ X ⊆ I that is unfounded in Π with respect to I . Hence, as thus I ∩X 6= ∅, I is
not unfounded-free in Π. J
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4 Relation to other Semantics

In this section, we shed some light on commonalities and differences of our semantics with related
proposals. First, we discuss relations to semantics that follow the tradition of Simons, Niemelä, and
Soininen [28] and then to other FLP-style semantics. A characteristic difference of the two categories
of semantics is how non-convex body literals may give support to atoms in an interpretation.

As an example, consider the program consisting of the following rules:

a←〈{a, b}, {∅, {a, b}}〉,
a←b, and
b←a.

While {a, b} is an answer set under FLP-style semantics, it is not considered stable in, e.g., the
semantics discussed in the following subsection.

4.1 Semantics in the Tradition of Simons, Niemelä, and Soininen

Shen, You, and Yuan [27] defined a stable model semantics for abstract-constraint programs involving
disjunction, i.e., the language fragment they consider is the same as in our setting. Let us call a stable
model following Shen, You, and Yuan [27] an SYY stable model.2

The following result can be shown:

I Theorem 14. Let Π be a program such that all c-atoms appearing in a body of Π are convex. If
I is an answer set of Π, then I is an SYY stable model of Π.

Regarding the converse direction, an even stronger result holds:

I Theorem 15. Let Π be a program. If I is an SYY stable model of Π, then I is an answer set of Π.

Due to known results from the literature [27, 19, 29], Theorems 14 and 15 imply that our
semantics is equivalent to a range of semantics proposed for more restricted classes of abstract-
constraint programs including ones for normal monotone abstract-constraint programs [23, 22] and
normal convex abstract-constraint programs [20] that are based on a non-deterministic one-step
provability operator.

Furthermore, there are semantics defined for normal abstract-constraint programs where every
answer set in the respective approach is an answer set as defined in our paper and where, if the
considered programs are convex, also the converse holds, i.e., an answer set as defined in this paper is
also an answer set in the respective approach. In particular, these include

the approach by Liu et al. [19] based on computations,
the work of Son, Pontelli, and Tu [29] that use the concept of conditional satisfaction of c-atoms
for defining their semantics, and
the reduct-based semantics by Shen and You [26].

Liu and Truszczyński [20] showed that their semantics for normal convex abstract-constraint programs
resembles that of normal programs with weight constraints [28] with non-negative integer weights.
As stated earlier, this type of weight constraints can be represented by convex abstract-constraint
atoms. Due to the relation of the semantics by Liu and Truszczyński and ours, answer sets as defined
in this paper coincide with stable models as defined by Simons, Niemelä, and Soininen for this class
of programs. This semantics has been implemented in smodels and the state-of-the-art ASP solver
Clasp.

2 Their construction is quite involved and is omitted here for space reasons.
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4.2 Semantics in the Style of Faber, Pfeifer, and Leone

The straightforwardly extended FLP semantics for abstract-constraint programs, as discussed in
Section 3, and our proposed semantics are interrelated as follows.

I Theorem 16. For any program Π, each extended FLP answer set of Π is an answer set of Π.

As intended, for the restricted setting of elementary-head programs that was considered by Faber,
Pfeifer, and Leone [6], our semantics coincides with theirs.

I Theorem 17. For an elementary-head program Π, it holds that AS(Π) = ASFLP(Π).

Proof. ASFLP(Π) ⊆ AS(Π) holds by Theorem 16. Assume now that I ∈ AS(Π) but I /∈
ASFLP(Π). From I ∈ AS(Π) it follows that I |= ΠI . Hence, by Definition 1, there must be some
I ′ ⊂ I such that I ′ |= ΠI . Furthermore, by Definition 3, there must be some r ∈ ΠI such that
I ′ |= B(r) and (∗) for all l ∈ H(r) with I ′ |= l, I ′|Dl 6= I|Dl holds. From r ∈ ΠI , I ′ |= B(r), and
I ′ |= ΠI , we get that I ′ |= H(r). Thus, there is some l′ ∈ H(r) with I ′ |= l. From the definition of
the satisfaction relation follows I ′|Dl = {l}. As I ′ ⊂ I and Dl = {l}, we get I|Dl = {l}, and hence
I ′|Dl = I|Dl . As this contradicts (∗), AS(Π) = ASFLP(Π) must hold. J

Truszczyński [30] introduced an FLP-style semantics for propositional theories. A main goal
of his paper is to study the differences between the semantics by Faber, Pfeifer, and Leone and that
of Ferraris [8]. It is worth mentioning that the same differences to the latter apply to the semantics
defined in this paper. In particular, they differ in the treatment of default negated literals that are
non-convex. For further information on the relation between these families of semantics, we refer
to the work of Truszczyński [30] and of Lee and Meng [15] who reduce elementary-head programs
under the FLP semantics to propositional formulas under the semantics of Ferraris.

For comparison with the work of Truszczyński, we consider propositional theories over the
language determined by A and the Boolean connectives ⊥, ∧ ,∨, and ⊃. Moreover, we use the
shorthands > = ⊥ ⊃ ⊥ and ¬f = f ⊃ ⊥. Given an interpretation I and a formula f , the classical
satisfaction relation I |= f is defined as usual. Also, following custom, we identify empty disjunctions
with ⊥ and empty conjunctions with >.

I Definition 18 ([30]). Let f be a propositional formula and I an interpretation. The T-reduct, f I ,
of f is defined inductively as follows, where a is an atom, ◦ ∈ {∧,∨}, and g and h are propositional
formulas:

⊥I =⊥.

aI =
{
a if I |= a,
⊥ otherwise.

(g ◦ h)I =
{
gI ◦ hI if I |= g ◦ h,

⊥ otherwise.

(g ⊃ h)I =


g ⊃ hI if I |= g and I |= h,

> if I 6|= g,
⊥ otherwise.

For a propositional theory F , F I is defined as {f I | f ∈ F}.

I Definition 19 ([30]). Let F be a propositional theory and I an interpretation. Then, I is a
T-answer set of F iff I is a subset-minimal model of F I .
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Note that any T-answer set of F is also a model of F . In order to compare our semantics and
the semantics by Truszczyński, we use a standard translation of abstract-constraint programs to
propositional theories. To this end, we use the following representation of abstract-constraint atoms
in terms of DNF formulas.

I Definition 20 ([27]). Let A = 〈D,C〉 be an abstract constraint atom where D consists of atoms
only. Then,

ϕ(A) =
∨
X∈C

((
∧
l∈X

l) ∧ (
∧
l∈D\X

¬l)) .

We extend the translation ϕ(·) to rules and abstract-constraint programs as follows.

I Definition 21. Let r be a rule of the form (1) where everyAi, 1 ≤ i ≤ n, is an abstract-constraint
atom whose domain is restricted to atoms. Then, ϕ(r) = ϕB(r)→ ϕH(r), where

ϕH(r) = ϕ(A1) ∨ · · · ∨ ϕ(Ak) and

ϕB(r) = ϕ(Ak+1) ∧ · · · ∧ ϕ(Am) ∧ ¬ϕ(Am+1) ∧ · · · ∧ ¬ϕ(An).

Finally, for a program Π, we define the propositional theory ϕ(Π) = {ϕ(r) | r ∈ Π}.

Obviously, for a rule r and an interpretation I , I |= H(r) iff I |= ϕH(r), and I |= B(r) iff
I |= ϕB(r).

We next present the relation of our semantics to the approach of Truszczyński.

I Theorem 22. Let Π be a program and I an interpretation. Then, I is an answer set of Π iff I is
a T-answer set of ϕ(Π).

As Bartholomew, Lee, and Meng [1] have shown that their semantics for first-order theories with
aggregates extends that of Truszczyński, the same relation applies to our approach.

5 Conclusion

In this work, we presented a new definition of answer sets for disjunctive abstract-constraint programs
and a respective characterisation in terms of unfounded sets. The underlying semantics is a conservat-
ive extension of that by Faber, Pfeifer, and Leone [6] for disjunctive logic programs with aggregates
in rule bodies only to the case where aggregates are also allowed in rule heads. Moreover, we showed
that our semantics is also equivalent to a range of semantics that follow the understanding of Simons,
Niemelä, and Soininen [28] for convex programs. Thereby, we reached our goal of providing simple
definitions of an answer set that captures the essence of the semantics as implemented in popular ASP
solvers like Clasp and DLV.

As regards future work, we are currently working on novel debugging techniques supporting
software developers in writing answer-set programs that exploit the characterisations presented in this
paper. Moreover, it would be interesting to explore how our notion of external support relates to loop
formulas for abstract constraint programs as defined by You and Liu [31].
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