
Stepping through an Answer-Set Program?

Johannes Oetsch, Jörg Pührer, and Hans Tompits

Technische Universität Wien, Institut für Informationssysteme 184/3,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{oetsch,puehrer,tompits}@kr.tuwien.ac.at

Abstract. We introduce a framework for interactive stepping through an answer-
set program as a means for debugging. In procedural languages, stepping is a
widespread and effective debugging strategy. The idea is to gain insight into the
behaviour of a program by executing statement by statement, following the pro-
gram’s control flow. Stepping has not been considered for answer-set programs so
far, presumably because of their lack of a control flow. The framework we provide
allows for stepwise constructing interpretations following the user’s intuition on
which rule instances to become active. That is, we do not impose any ordering on
the rules but give the programmer the freedom to guide the stepping process. Due
to simple syntactic restrictions, each step results in a state that guarantees stability
of the intermediate interpretation. We present how stepping can be started from
breakpoints as in conventional programming and discuss how the approach can be
used for debugging using a running example.

Keywords: answer-set programming, program analysis, debugging

1 Introduction

Answer-set programming (ASP) is a well-established paradigm for declarative problem
solving [1], yet it is rarely used by engineers outside academia so far. Arguably, one
particular obstacle preventing software engineers from using ASP is the lack of support
tools for developing answer-set programs.

In this paper, we introduce a framework that allows for stepping through answer-set
programs. Step-by-step execution of a program is folklore in procedural programming
languages, where developers can debug and investigate the behaviour of their programs
in an incremental way. As answer-set programs have a genuine declarative semantics
lacking any control flow, it is not obvious how stepping can be realised. Our approach
makes use of a simple computation model that is based on states, which are ground
rules that a user considers as active in a program. With each state, we associate the
interpretation that is induced by the respective rules. This interpretation is guaranteed
to be an answer set of the set of rules considered in the state. During the course of
stepping, the interpretations of the subsequent states evolve towards an answer set of
the overall program. Our stepping approach is interactive and incremental, letting the
programmer choose which rules are added at each step. In our framework, states may

? This work was partially supported by the Austrian Science Fund (FWF) under project P21698
and by the European Commission under project IST-2009-231875 (OntoRule).

serve as breakpoints from which stepping can be started. We discuss how the programmer
can generate breakpoints that allow him or her to jump directly to interesting situations.
We also show how ground rules that are subsequently considered active can be quickly
obtained from the non-ground source code using filtering techniques.

The main area of application of stepping is debugging. A general problem in debug-
ging is to restrict the amount of debugging information that is presented to the user in a
sensible way. In the stepping method, this is realised by focussing on one step at a time,
which is in contrast to other debugging methods for ASP [2–5], where the program to be
debugged is analysed as a whole. Moreover, due to the interactivity of the approach, the
programmer can easily guide the search for bugs following his or her intuitions about
which part of the program is likely to be the source of error. Besides debugging, stepping
through a program can improve the understanding of the program at hand and can help
to improve the understanding of the answer-set semantics for beginners.

The paper is outlined as follows. Section 2 gives the formal background on ASP.
The framework for stepping is presented in Section 3. In Section 4, we explain how
breakpoints can be generated and how ground rules can be conveniently selected as
active ones. Moreover, we describe interesting settings where stepping can be beneficially
applied using a running example. After discussing related work in Section 5, we conclude
the paper in Section 6.

2 Preliminaries

We deal with logic programs which are finite sets of rules of form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln, (1)

where n ≥ m ≥ 0, “not” denotes default negation, and all li are literals over a
function-free first-order language L. A literal is an atom possibly preceded by the
strong negation symbol ¬. For a literal l, we define l̄ = ¬a if l = a and l̄ = a if
l = ¬a. In the sequel, we assume that L will be implicitly given. The literal l0 may
be absent in (1), in which case the rule is a constraint. Furthermore , for r of form (1),
B(r) = {l1, . . . , lm,not lm+1, . . . ,not ln} is the body of r, B+(r) = {l1, . . . , lm} is
the positive body of r, and B−(r) = {lm+1, . . . , ln} is the negative body of r. The head
of r is H(r) = {l0} if l0 is present and H(r) = ∅ otherwise. If B(r) = ∅ and H(r) 6= ∅,
then r is a fact. For facts, we usually omit the symbol “←”. Furthermore, we identify
sets of literals with sets of facts.

A literal, rule, or program is ground if it contains no variables. Let C be a set
of constants. A substitution over C is a function ϑ assigning each variable in some
expression an element of C. We denote by eϑ the result of applying ϑ to an expression e.
The grounding of a program Π , gr(Π), is defined as usual.

An interpretation I (over some language L) is a finite set of ground literals (over
L) such that {a,¬a} 6⊆ I , for any atom a. The satisfaction relation I |= α, where α is a
ground atom, a literal, a rule, a set of possibly default negated literals, or a program α, is
defined in the usual manner. A rule r such that I |= B(r) is called active under I . We
denote the set of all active rules of a ground program Π with respect to an interpretation
I as ActI(Π) = {r ∈ Π | I |= B(r)}. Following Faber, Leone, and Pfeifer [6], we

define an answer set of a program Π as an interpretation I that is a minimal model
of ActI(gr(Π)). For the programs we consider, this definition is equivalent to the
traditional one by Gelfond and Lifschitz [7]. The collection of all answer sets of a
program Π is denoted by AS (Π).

3 Stepping Framework

In this section, we introduce the basic computation model that underlies our stepping
approach. We are aiming for a scenario in which the programmer has strong control over
the direction of the construction of an answer set. The general idea is to first take a part of
a program and an answer set of this part. Then, step by step, rules are added by the user
such that, at every step, the literal derived by the new rule is added to the interpretation
which remains to be an answer set of the evolving program part. Hereby, the user only
adds rules he or she thinks are active in the final answer set. The interpretation grows
monotonically until it is eventually guaranteed to be an answer set of the overall program,
otherwise the programmer is informed why and at which step something went wrong.
This way, one can in principle without any backtracking direct the computation towards
an expected or an unintended actual answer set. In debugging, having the programmer
in the role of an oracle is a common scenario [8]. It is reasonable to assume that a
programmer has good intuitions on where to guide the search if there is a mismatch
between the intended and the actual behaviour of a program.

In our framework, the individual steps of a computation—which we regard as states
of the program—are represented by a set of ground rules which the user considers as
active. While these rules represent the state on the source-code level, close to what the
programmer has written, we also want to represent a state on the output level in the
form of an interpretation that constitutes a partial result of the program. Therefore, we
associate a set of ground rules with the interpretation induced by the rules.

Definition 1. Let S be a set of ground rules. Then, the interpretation induced by S is
given by Int [S] =

⋃
r∈S H(r).

States have to satisfy two properties, ensuring that the interpretation induced by the
state is an answer set of the state and that every rule in the state is active with respect to
the interpretation. Intuitively, we want every step in the construction of an answer set to
result in a stable condition, where we only have rules that are relevant to this condition.
The metaphor for that is building up a house of cards, where every card—being the
counterpart of a rule—supports the integrity of the evolving house—corresponding to the
interpretation—and stability of the house must be ensured after each building activity.

Definition 2. A set S of ground rules is self-supporting if Int [S] |= B(r), for all r ∈ S,
and stable if Int [S] ∈ AS (S). A state of a program Π is a set S ⊆ gr(Π) of ground
rules which is self-supporting and stable.

Every state can be used as a potential starting point for stepping that allows a programmer
to jump directly to an interesting situation, e.g., for debugging purposes.

We next define a successor relation between states and sets of ground rules. The
intuition is that a successor of a state S corresponds to a potential state after one step in
a computation.

Definition 3. For a state S of a program Π and a set S′ ⊆ gr(Π) of ground rules,
S′ is a successor of S in Π , symbolically S ≺Π S′, if S′ = S ∪ {r}, for some rule
r ∈ gr(Π) \ S with (i) Int [S] |= B(r), (ii) H(r) 6= ∅, and (iii) H(r) ∩ (B−(r) ∪⋃
r′∈S B−(r′) ∪

⋃
l∈Int[S] l̄) = ∅,

Intuitively, rule r is a rule instance of the program Π that is not yet considered in the
current state S but whose preconditions are already satisfied by the state’s interpretation,
as expressed by Condition (i). Conditions (ii) and (iii) ensure that r is not a constraint
and that the literal derived by r is neither inconsistent with Int [S] nor contradicting that
all rules in the S′ are active. Note that, in general, Int [S] ⊆ Int [S′] while S ⊂ S′. The
successor relation suffices to “step” from one state to another, i.e., S′ is always a state.

Proposition 1. Let S be a state of a program Π , and S′ ⊆ gr(Π) a set of ground rules
such that S ≺Π S′. Then, S′ is also a state of Π .

In the following, we define computations based on the notion of a state.

Definition 4. A computation for a program Π is a finite sequence C = S0, . . . , Sn of
states such that, for all 0 ≤ i < n, Si ≺Π Si+1.

Given a computation C = S0, . . . , Sn for a program Π , in analogy to stepping in
procedural programs, we identify the state S0 at which computation C starts as the
breakpoint of C. Furthermore, Int [Sn] is called the result, res(C), of C.

We next define when a computation has failed, gets stuck, or is complete. Intuitively,
failure means that the computation reached a point where no answer set of the program
can be reached. A computation is stuck when the last state activated rules deriving literals
that are inconsistent with previously chosen active rules. It is considered complete when
there are no more unconsidered active rules.

Definition 5. A computation C = S0, . . . , Sn for Π
– has failed at Step i if there is no answer set I of Π such that Si ⊆ ActI(gr(Π));
– is stuck if there is no successor of Sn in Π but there is a rule r ∈ gr(Π) \ Sn that

is active under Int [Sn];
– is complete if, for each rule r ∈ gr(Π) that is active under Int [Sn], we have r ∈ Sn.

The following result guarantees the soundness of our stepping framework.

Theorem 1. Let Π be a program and C = S0, . . . , Sn a complete computation for Π .
Then, res(C) is an answer set of Π .

The computation model is also complete in the sense that stepping, starting from
an arbitrary state S0 of Π as breakpoint, can reach every answer set I ⊇ Int [S0] of Π ,
where S0 ⊆ ActI(gr(Π)).

Theorem 2. Let I ∈ AS (Π) be an answer set of program Π and S0 a state of Π
such that Int [S0] ⊆ I and S0 ⊆ ActI(gr(Π)). Then, there is a complete computation
C = S0, . . . , Sn with Sn = ActI(gr(Π)) and res(C) = I .

Example 1. Consider the program

Π = {obj (c), obj (d), ← ch(c), ch(X)← not ¬ch(X), obj (X),
¬ch(X)← not ch(X), obj (X)}.

The answer sets of Π are I1 = {obj (c), obj (d),¬ch(c), ch(d)} and I2 = {obj (c),
obj (d),¬ch(c),¬ch(d)}. Consider the computation C = S0, S1, S2, where S0 =
{obj (c), obj (d)}, S1 = S0∪{¬ch(c)← not ch(c), obj (c)}, and S2 = S1∪{ch(d)←
not ¬ch(d), obj (d)}. Computation C is complete and res(C) = I1. Consider now the
computation C′ = S′0, S

′
1, S
′
2, where S′0 = {obj (c), obj (d)}, S′1 = S′0 ∪ {ch(c) ←

not ¬ch(c), obj (c)}, and S′2 = S′1 ∪ {ch(d) ← not ¬ch(d), obj (d)}. C′ has failed
at Step 1 as there is no answer set I of Π such that ActI(gr(Π)) contains ch(c) ←
not¬ch(c), obj (c). Moreover, C′ is stuck as there is no state succeeding S′2 but← ch(c)
is active under Int [S′2].

Observe that once a computation C has failed at some step all computations that contain
C as subsequence are guaranteed to get stuck. Hence, when failure is detected at the
current step, the user knows that the last active rule chosen is crucial for the targeted
interpretation not to be an answer set. Failure of a computation does not mean that it is
useless for debugging. In fact, when a program Π does not have any answer set, building
up a computation for Π will guide the user to rules responsible for the inconsistency.

The next corollary is a consequence of the fact that the empty set is a state of every
program.

Corollary 1. Let Π be a program and I an answer set of Π . Then, there is a complete
computation C = S0, . . . , Sn such that S0 = ∅, Sn = ActI(gr(Π)), and res(C) = I .

The programmer will typically want to start with another breakpoint than the empty set.
As we argue in Section 4, obtaining a breakpoint that is “near” to an interesting situation
is desirable and, using the programmer’s intuition, in most cases not difficult to achieve.

4 Interactive Stepping

In this section, we outline how the framework introduced in the previous section can
be used in practice. We will use the maze-generation problem, a benchmark problem
from the second ASP competition [9], as a running example. The task is to generate a
two-dimensional grid where each cell is either a wall or empty. There are two dedicated
empty cells located at the border, being the maze’s entrance and its exit, respectively.
The maze grid has to satisfy the following conditions: (i) except for the entrance and the
exit, border cells are walls; (ii) there must be a path from the entrance to every empty
cell (including the exit); (iii) if two walls are diagonally adjacent, one of their common
neighbours is a wall; (iv) there must not be any 2× 2 block of empty cells or walls; and
(v) no wall can be completely surrounded by empty cells. The input of this problem are
facts that specify the size and the positions of the entrance and the exit of the maze as
well as facts that specify for an arbitrary subset of the cells whether they are walls or
empty. The output corresponds to completions of the input that represent valid maze
structures. As example input, we consider the following set of facts

F = {row(1), row(2), row(3), row(4), row(5), col(1), col(2), col(3), col(4), col(5),
entrance(1, 2), exit(5, 4), wall(3, 3), empty(3, 4)}

that is visualised in Fig. 1 together with a completion to a legal maze. White cells
correspond to empty cells, black cells to walls, and grey areas are yet unassigned cells.

Fig. 1. A maze-generation input with a corresponding solution.

The entrance is marked by a triangle and the exit by a circle. The program developed in
the sequel follows the encoding submitted by the Potassco team.1 Note that the language
used in the example is slightly richer than defined in Section 2. We allow for integer
arithmetics and assume a sufficient integer range to be available as constants.

In our approach, we always have two options how to proceed: (i) (re-)initialise
stepping and start a computation with a new state as breakpoint, or (ii) extend the current
computation by adding a further active rule.

In the remainder of the section, we first describe the technical aspects of how to
obtain a breakpoint and how ground rule instances can be chosen. Then, we discuss how
stepping can be applied in several situations, including typical debugging scenarios.

4.1 Obtaining a Breakpoint

Having a suitable breakpoint at hand will often allow for finding a bug in just a few steps.
As mentioned above, the empty set is a trivial state for every program. Besides that,
the set of all facts in a program is also ensured to be a state, except for the practically
irrelevant case that a literal and its strong negation are asserted.

Example 2. As a first step for developing the maze-generation encoding, we want to
identify border cells. Our initial program is Π0 = F ∪ΠBdr, where ΠBdr is given by

maxcol(X)← col(X),not col(X + 1),
maxrow(Y)← row(Y),not row(Y + 1),
border(1, Y)← col(1), row(Y),
border(X,Y)← row(Y),maxcol(X),
border(X, 1)← col(X), row(1),
border(X,Y)← col(X),maxrow(Y).

The first two rules extract the numbers of columns and rows of the maze from the input
facts of predicates col/1 and row/1. The next four rules derive border/2 atoms for the
grid.

Now, taking the set F of facts as a breakpoint of a computation for Π0, we can start
stepping by choosing, e.g., the ground rule

r = maxcol(5)← col(5),not col(6),
1 See also http://dtai.cs.kuleuven.be/events/ASP-competition/Teams/
Potassco.shtml.

that is active under F , as next rule to add. We obtain the computation C = F, F ∪ {r}.

In many cases, it will be useful to have states other than the empty set or the facts as
starting points, as starting stepping from them can be time consuming. For illustration,
to reach an answer set I of a program, the minimum length of a computation starting
from the empty set is |I|. We next show how states that may serve as breakpoints can be
generated. A state can be obtained by computing an answer set X of a trusted part of a
program (or its grounding) and then selecting rule instances that are active under X .

Proposition 2. Let Π be a program and Π ′ ⊆ Π ∪ gr(Π) such that I ∈ AS (Π ′).
Then, ActI(gr(Π ′)) is a state of Π .

Hence, it suffices to find an appropriate Π ′ in order to get breakpoints. One option for
doing so is to let the user manually specify Π ′ as a subset of Π (including facts).

Example 3. We want to step through the rules that derive the border/2 atoms. As
we pointed out above, the respective definitions rely on information about the size of
the maze. Hence, we will use a breakpoint where the rules deriving maxcol/1 and
maxrow/1 were already applied. Following Proposition 2, we calculate an answer set
of program Π ′0 ⊆ Π0 that is given by Π ′0 = F ∪ {maxcol(X)← col(X),not col(X +
1),maxrow(Y)← row(Y),not row(Y +1)}. The unique answer set ofΠ ′0 is I0 = F∪
{maxcol(5),maxrow(5)}. The desired breakpoint S0 is given by S0 = ActI0(gr(Π ′0)),
which consists of the facts in F and the rules maxcol(5) ← col(5),not col(6) and
maxrow(5)← row(5),not row(6).

Note that if the subprogram Π ′ for breakpoint generation has more than one answer
set, the selection of the set I ∈ AS (Π ′) is based on the programmer’s intuition, similar
to selecting the next rule in stepping.

A different application of Proposition 2 is jumping from one state to another by
considering further non-ground rules. This makes sense, e.g., in a debugging situation
where the user initially started with a breakpoint S that is considered as an early state
in a computation. After few steps and reaching state S′, the user realises that the
computation from S to S′ seems to be as intended and wants to proceed at a point
where more literals have already been derived, i.e., after applying a selection Π ′′ of
non-ground rules from Π on top of the interpretation Int [S′] associated with S′. Then,
Π ′ is given by Π ′ = S′ ∪ Π ′′. Note that, for an arbitrary answer set I of AS (Π ′),
it is not ensured that there is a computation of Π starting from S′ and ending with
the fresh state ActI(gr(Π ′)). The reason is that there might be rules in S′ that are
not active under I . If the programmer wants to assure that there is a computation of
Π starting from S′ and ending with ActI(gr(Π ′)), Π ′ can be joined with the set
ConS′ = {← not l | l ∈ B+(r), r ∈ S′} ∪ {← l | l ∈ B−(r), r ∈ S′} of constraints.

Jumping from one state to another is also needed if the user wants to skip several
steps and considers one or more non-ground rules instead.

Example 4. Assume the program Π0 has been extended to Π1 by adding the rule

rbw = wall(X,Y)← border(X,Y),not entrance(X,Y),not exit(X,Y)

that ensures that every border cell is a wall, except for the entrance and the exit. As
Π0 ⊆ Π1, the state S0 of Π0 is also a state of Π1. Hence, assume we started step-
ping Π1 from S0 and successively added the rules border(1, 1)← col(1), row(1) and
border(1, 2) ← col(1), row(2). Let S1 be the resulting state, i.e., the union of these
rules and S0. The cells (1, 1) and (1, 2) have been identified as border cells. Accord-
ing to the problem specification, cell (1, 1) should be a wall, and (1, 2) should be
empty as it contains the entrance. To test whether our current program realises that,
we want to apply the non-ground rule rbw on top of S1. Therefore, we use Propo-
sition 2 by first computing the answer set I1 of Π ′1 = S1 ∩ {rbw} that is given
by I1 = I0 ∪ {border(1, 1), border(1, 2),wall(1, 1)} as expected. The new state is
S2 = ActI1(gr(Π ′1)).

4.2 Stepping

To obtain a successor of a given state S of program Π , by Definition 3 we need a rule
r ∈ gr(Π) \ S with (i) Int [S] |= B(r), (ii) H(r) 6= ∅, and (iii) H(r) ∩ (B−(r) ∪⋃
r′∈S B−(r′) ∪

⋃
l∈Int[S] l̄) = ∅. One can proceed in the following fashion: First, a

non-ground rule r ∈ Π with H(r) 6= ∅ is selected for instantiation. Then, the user
assigns constants to the variables occurring in r. Both steps can be assisted by filtering
techniques. A stepping system can provide the user with information which non-ground
rules in Π have instances that are active under Int [S] but not contained in S. This can
be done using ASP itself using meta-programming and tagging transformations [5, 2].

Example 5. The next version, Π2, of the maze-generation encoding is obtained by
joining Π1 with the following set Πguess of rules:

wall(X,Y)← not empty(X,Y), col(X), row(Y),
empty(X,Y)← not wall(X,Y), col(X), row(Y),

← entrance(X,Y),wall(X,Y),
← exit(X,Y),wall(X,Y).

Program Πguess guesses whether a cell is a wall or empty while assuring that no wall
is guessed on an entrance or exit cell. We start the stepping session from breakpoint
S3 = ActI3(gr(Π1)), where AS (Π1) = {I3}. Note that the answer set I3 of Π1, which
is also the interpretation induced by S3, encodes a situation where the cells from the input
as well as the border cells have already been assigned to be a wall or empty (cf. Fig. 2).
There are only two non-ground rules in Π2 that have active ground instances under I3
that are not yet contained in S3: wall(X,Y) ← not empty(X,Y), col(X), row(Y),
and empty(X,Y) ← not wall(X,Y), col(X), row(Y). An advanced source editor
may directly highlight the two rules.

A user can also get assistance for a variable assignment. By assigning the variables
in r one after the other, the domains of the remaining ones can always be accordingly
restricted such that there is still a compatible ground instance of r that is active under
Int [S]. Consider a partial substitution ϑ assigning constants in Π to some variables in r.
When fixing the assignment of a further variable X occurring in B(r), where ϑ(X) is
yet undefined, we may choose only a constant c such that there is a substitution ϑ′ with

Fig. 2. Visualisation of I3, I4, and I5 from Examples 5, 6, and 9.

– ϑ′(X ′) = ϑ(X ′), where ϑ(X ′) is defined,
– ϑ′(X) = c,
– lϑ′ ∈ Int [S], for all l ∈ B+(r), and
– lϑ′ 6∈ Int [S], for all l ∈ B−(r).

Respective computations can be done by a simple ASP meta-program that guesses ϑ′

given r, ϑ, and Int [S], and checks the conditions above plus rϑ′ /∈ S.
ASP solvers typically require safety, i.e., all variables occurring in r must also occur

in B+(r). Thus, the constants to be considered are restricted to those that appear in
literals in Int [S] to which literals B+(r) can be substituted to. If safety is not given
however, all constants in Π have to be considered for the respective substitutions.

Once a substitution ϑ for all variables in r is found, we check whether the newly
obtained ground instance r′ = rϑ satisfies the final condition of Definition 3, i.e.,
checking whether the head of r′ is consistent with all rules in the potential successor
state of S being active. If this is not the case, the user’s intention that for the considered
stepping choices rule r′ can be active was wrong.

Example 6. We resume the stepping session of Example 5 at state S3 and choose rule
rw = wall(X,Y) ← not empty(X,Y), col(X), row(Y) for instantiation. There are
24 instances of rw that are active under I3. Each such instance corresponds to rwϑ,
where ϑ(X), ϑ(Y) ∈ {1, . . . , 5} and not both ϑ(X) = 3 and ϑ(Y) = 4. Assume we
want to determine the assignment ϑ(Y) for variable Y first. We choose ϑ(Y) = 4
and determine the value of X next. Filtering now leaves only 1, 2, 4, and 5 as options.
We define ϑ(X) = 4 and use the obtained ground instance r′wϑ = wall(4, 4) ←
not empty(4, 4), col(4), row(4) to step to state S4 = S3 ∪ r′w. The interpretation
I4 = Int [S4] is visualised in Fig. 2.

4.3 Application Scenarios

Stepping to an answer set. Stepping until an answer set of a program is reached can
be helpful in many situations. Besides the general benefit of getting insights into the
interplay of rules of a program, stepping can be used to search for a particular answer
set when a program has many of them.

Example 7. ProgramΠ2 has 128 answer sets and does not yet incorporate all constraints
from the problem specification. All answer sets that correspond to valid maze-generation

solutions for the given problem instance are among them. Starting stepping from break-
point S3, corresponding to the visualisation of I3 in Fig. 2, we only need nine steps to
get to a state Ssol where Int [Ssol] encodes the solution depicted in Fig. 1. In fact, we just
need to add instances of the rule empty(X,Y) ← not wall(X,Y), col(X), row(Y)
from Πguess for each unassigned cell (X,Y).

Whenever a state S is reached and I = Int [S] is a desired answer set (projected to
interesting literals) of a yet unfinished program, we can make use of the obtained
interpretation I for further developing the program. For example, later versions of the
program can be tested for being consistent with the intended solution I . If they are not,
I can be used as input in a debugging approach, e.g., like the one from earlier work [5]
that gives reasons why I is not an answer set of a program.

If the guessing part of a program is extensive, i.e., involving a large number of
literals, the guessing rules have to be considered already when obtaining the breakpoint
using Proposition 2. If the user has special requirements regarding the guess, for instance
that certain cells are not walls, they can be added as constraints when computing the
new breakpoint. It is advisable, however, to use small problem instances for testing
during program development. Using 5× 5 mazes as in our example will be sufficient for
realising a reliable encoding and makes stepping easier as computations will be shorter.

Absence of answer sets. A common situation when writing an answer-set program is
that the program’s current version is unexpectedly incoherent, i.e., it does not yield any
answer sets. A usual debugging strategy is to individually remove the constraints of the
program to identify which one yields the incoherence. It may be the case that absence of
answer sets is not caused by constraints (e.g., contradictory literals, odd loops through
negation), but unfortunately, as we will see in the next example, even when the bug is
due to constraints, removing constraints is not always sufficient to locate the error.

Example 8. As next features of the maze-generation program, we (incorrectly) imple-
ment rules that should express that there has to be a path from the entrance to every
empty cell and that 2× 2 blocks of empty cells are forbidden. We obtain a new version,
Π3, by joining Π2 with the rules

adjacent(X,Y,X, Y + 1)← col(X), row(Y), row(Y + 1),
adjacent(X,Y,X, Y − 1)← col(X), row(Y), row(Y − 1),
adjacent(X,Y,X + 1, Y)← col(X), row(Y), col(X + 1),
adjacent(X,Y,X − 1, Y)← col(X), row(Y), col(X − 1),

reach(X,Y)← entrance(X,Y),not wall(X,Y),
reach(X2 ,Y2)← adjacent(X1, Y1,X2 ,Y2), reach(X1, Y1),

not wall(X2 ,Y2),

formalising when an empty cell is reached from the entrance, and the constraints

c1 =← empty(X,Y),not reach(X,Y),
c2 =← empty(X,Y), empty(X+1, Y), empty(X,X+1), empty(X+1, Y +1)

to ensure that every empty cell is reached and that no 2× 2 blocks of empty cells exist.

Assume that we did not spot the bug contained in c2—in the third body literal
the term Y + 1 was mistaken for X + 1. This could be the result of a typical copy-
paste error. It turns out that Π3 has no answer set. As we already trust the previous
version Π2 and expect the inconsistency to be caused by one of the constraints, the most
obvious strategy is to remove one of c1 or c2. It turns out that both Π3 \ {c1} as well as
Π3 \ {c2} do have answer sets, 84 answer sets in the former case and ten in the latter
case. Inspecting ten answer sets manually is tedious but still manageable. Thus, one
could go through them and check whether some of them encode proper maze-generation
solutions. After doing so, c2 would be identified as suspicious. An alternative approach—
also feasible if there were more than ten answer sets to expect—is to use the approach
of Example 7 and start a computation for Π3 towards an intended solution, e.g., the
one from Fig. 1, at breakpoint S3. As soon as we reach a state Sc2 where the cells
(1, 2), (2, 1) and (2, 3) are considered to be empty, there is an instance of constraint
c2 which becomes active with respect to the interpretation induced by Sc2 . As noted
in Section 4.2, automatic checks after each step could be used to reveal and highlight
non-ground rules with active instances. In the case of active constraint instances, it
would even be sensible to explicitly warn the programmer. Using the filtering techniques
for variable substitutions, the user can be guided to a concrete active instance of c2,
viz. to c′2 =← empty(1, 2), empty(2, 2), empty(1, 2), empty(2, 3). It is obvious that
the cells (1, 2),(2, 2),(1, 2), and (2, 3) do not form a valid 2 × 2 block and hence the
wrong term in c2 can be easily detected. A correct program Π4 is obtained from Π3 by
changing c2. As shown in Example 7, depending on the order in which the rules are
added, c′2 becomes active in at most nine steps when reaching state Ssol.

Understanding someone else’s code. Reading and understanding a program written by
another developer can be difficult. Stepping through such a program can be quite helpful.

Example 9. Assume we were provided with the code

c3 =← wall(X,Y),wall(X + 1, Y),wall(X,Y + 1),wall(X + 1, Y + 1),
c4 =← wall(X,Y),wall(X + 1, Y + 1),not wall(X + 1, Y),not wall(X,Y + 1),
c5 =← wall(X + 1, Y),wall(X,Y + 1),not wall(X,Y),not wall(X + 1, Y + 1),
c6 =← wall(X,Y), empty(X + 1, Y), empty(X − 1, Y),

empty(X,Y + 1), empty(X,Y − 1),

implementing the yet uncovered parts of the specification by someone else. Constraint
c3 is similar to the corrected constraint c2 but forbidding 2× 2 blocks of walls instead of
empty cells. Constraints c4 and c5 ensure that one common neighbour of two diagonally
adjacent walls must be a wall. Consequently, the purpose of the remaining constraint c6
must be to disallow walls to be completely surrounded by empty cells. We are puzzled,
however, that the rule already forbids the case that only upper, lower, left, and right
neighbours are empty. So, we are wondering how the case that a wall has a single
adjacent wall that is the bottom right neighbour is addressed.

To shed light on this issue, we reuse S4 as a breakpoint for stepping, where Int [S4] =
I4 is illustrated in Fig. 2. We successively add instances of rule empty(X,Y) ←
not wall(X,Y), col(X), row(Y) for fixing the six unassigned cells around the wall at
(3, 3) to be empty. Let us assume that S5 is the state that results (I5 = Int [S5] is also

depicted in Fig. 2). As the wall in the centre has as its only neighbouring wall the cell
(4, 4), we see the requirement that the wall may not be surrounded by empty cells is
not violated. Checking for active rules at state S5 reveals that constraint c6 has active
instances as expected. However, we notice that also constraint c4 has an active instance
under I5. We now understand why the encoding is correct as the developer of constraints
c3 to c6 has exploited the interplay of the requirements already that walls without wall
neighbours are forbidden and that two diagonally adjacent walls must have one joint
neighbour wall. Whenever a wall has only diagonally adjacent walls as neighbours, it
is not harmful that constraint c6 is violated: then, necessarily also the requirement of a
common neighbour of the diagonally adjacent walls is violated.

5 Related Work

Previous work on visualising answer-set computations is realised by the noMoRe-
system [10]. This system is graph-based and utilises rule dependency graphs (RDGs)
which are directed labelled graphs where the nodes are the rules of a given program.
Answer sets can be computed by stepwise colouring the nodes of the RDG of a ground
program either green or red, reflecting whether a rule is considered active or not. An
answer set is formed by the heads of the rules which are coloured green. A handicap for
practical stepping is the separation of visualisation from the actual source code due to
the graph-based representation and the limitation to ground programs.

Work on debugging in ASP includes justifications for ASP [11]. A justification is
a labelled directed graph that explains the truth value of a literal with respect to an
answer-set in terms of dependency on the truth values of fellow literals. Interesting
with respect to our technique is the notion of an online justification that explains truth
values with respect to partial answer sets emerging during the solving process. As our
approach is compatible with the model of computation for online justifications, they
can be used in a combined debugging approach. While interactively stepping through
a computation allows for following individual intuitions concerning rule applications,
justifications or related concepts could keep track of the chosen support for individual
literals of interest. A potential shortcoming concerning the intuition of justifications is
the absence of program rules, constituting the actual source code artifacts, in the graphs.

Other work on declarative debugging centred on the question why a given interpre-
tation is not an answer set of a program [5]. The answers are given in terms of rule
instances that are unsatisfied or loops that are unfounded. As noted in Section 4.2, the
meta-programming techniques used in that work allow for identifying active rules in the
stepping approach. Also, the interpretation needed as input in that debugging approach
could be partially constructed by means of stepping. Note that unfounded loops cannot
occur in the stepping process as states are required to be stable.

Another related approach is to trace the concrete execution of a solver. A respective
system developed for DLV [12] is intended for debugging the solver itself rather than the
answer-set programs. A disadvantage of solver-based tracing for debugging and program
analysis is that some solver algorithms do not work on the rule level, are quite involved,
and hard to grasp for an ordinary programmer. Interpreted as a strategy for computing
answer sets, our stepping model is similar in spirit to a non-deterministic algorithm due

to Iwayama and Satoh [13]. Moreover, Gebser et al. [14] introduced an incremental
semantics for logic programs based on ι-answer sets. These are relaxations of answer
sets that are not necessarily models of the overall program and can be constructed by
step-by-step applying active rules similar as in our approach. Their semantics guarantees
to reach a ι-answer set, while under standard semantics, computations may fail.

6 Conclusion

We presented a framework for stepping through an answer-set program that is useful for
debugging and program analysis. It allows the programmer to follow his or her intuitions
regarding which rules to apply next and is based on an intuitive and simple computation
model where rules are subsequently added to a state. Every state implicitly defines an
interpretation that is stable with respect to that state. We also discussed how to obtain
states that may serve as breakpoints from which stepping is started. Keeping a handful
of these breakpoints during program development, the programmer can quickly initiate
stepping sessions from situations he or she is already familiar with. A prototypical
stepping system will be part of SeaLion, an integrated development environment for
ASP we are currently developing. In future work, we plan to extend the approach to
programs with function symbols, aggregates (possibly in rule heads), and disjunctions.

References
1. Gelfond, M., Leone, N.: Logic programming and knowledge representation - the A-Prolog

perspective. Artificial Intelligence 138(1-2) (2002) 3–38
2. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP

programs by means of ASP. In: Proc. LPNMR’07. (2007) 31–43
3. Syrjänen, T.: Debugging inconsistent answer set programs. In: Proc. NMR’06. (2006) 77–83
4. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debugging

answer-set programs. In: Proc. AAAI’08, AAAI Press (2008) 448–453
5. Oetsch, J., Pührer, J., Tompits, H.: Catching the Ouroboros: Towards debugging non-ground

answer-set programs. Theory and Practice of Logic Programming 10(4–6) (2010) 513–529
6. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Seman-

tics and complexity. In: Proc. JELIA’04. (2004) 200–212
7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Generation Computing 9(3-4) (1991) 365–386
8. Shapiro, E.Y.: Algorithmic Program Debugging. PhD thesis, Yale University, New Haven,

CT, USA (May 1982)
9. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The second answer set

programming competition. In: Proc. LPNMR’09. Volume 5753. (2009) 637–654
10. Bösel, A., Linke, T., Schaub, T.: Profiling answer set programming: The visualization

component of the noMoRe system. In: Proc. JELIA’04. (2004) 702–705
11. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set

semantics. Theory and Practice of Logic Programming 9(1) (2009) 1–56
12. Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A visual tracer for DLV. In: Proc. SEA’09. (2009)
13. Iwayama, N., Satoh, K.: Computing abduction by using TMS with top-down expectation.

Journal of Logic Programming 44(1-3) (2000) 179 – 206
14. Gebser, M., Gharib, M., Mercer, R.E., Schaub, T.: Monotonic answer set programming.

Journal of Logic and Computation 19(4) (2009) 539–564

