Debugging Answer-Set Programs with
Ouroboros — Extending the SeaLion Plugin*

Melanie Friihstiick!, Jorg Piihrer?, and Gerhard Friedrich?

! Siemens AG Osterreich, Corporate Technology, Vienna, Austria
melanie.fruehstueck@siemens.com
2 Technische Universitat Wien, Institut fiir Informationssysteme 184/3,
Favoritenstrafle 9-11, A-1040 Vienna, Austria puehrer@kr.tuwien.ac.at
3 Alpen-Adria Universitit, Klagenfurt, Austria
Gerhard.Friedrich@ifit.uni-klu.ac.at

Abstract. In answer-set programming (ASP), there is a lack of debug-
ging tools that are capable of handling programs with variables. Hence,
we implemented a tool, called Ouroboros, for debugging non-ground
answer-set programs. The system builds on a previous approach based on
ASP meta-programming that has been recently extended to cover weight
constraints and choice rules. The main debugging question addressed is
“given a program P and an interpretation I, why is I not an answer
set of P”. Our tool gives answers in terms of two categories of expla-
nations: unsatisfied rules and unfounded loops. Quroboros is a plugin of
the SeaLion integrated development environment for ASP that is built
on Eclipse. Thereby, Ouroboros complements and profits from SeaLion’s
Stepping plugin, that implements a different debugging approach for
ASP.

1 Introduction

Answer-set programming (ASP) is a well-known declarative problem-solving
paradigm [1]. While a great deal of work on ASP implementations has been put
into improving solver performance, comparably little effort has been spent on
tools that support the development of answer-set programs, in particular, there
is a lack of debugging systems for ASP. But, in recent years, methods for debug-
ging have been explored theoretically [2-6]. Brain and De Vos [2] discussed what
it means for answer-set programs to be incorrect and presented algorithms to
locate bugs. Syrjénen [3] proposed to debug contradictory programs by means
of ASP meta-programming. Gebser et al. [4] tried to find semantic errors of
answer-set programs. The question is why an expected interpretation is not an
answer set of a program (spock [7] implements this approach).

However, these approaches are only able to deal with propositional programs
which is clearly a limiting factor as far as practical applications are concerned.

* This research has been funded by FFG FIT-IT (grant number 825071) within the
scope of the RECONCILE project and by the Austrian Science Fund (FWF P21698).

Therefore, Oetsch et al. [8] developed a meta-program for debugging non-ground
programs in ASP. This approach is based on the meta-programming technique
of Gebser et al. [4] for propositional programs. Recently, their method has been
further extended to cover weight and cardinality constraints [9]. In this paper, we
describe the debugging system Ouroboros, which implements this approach and
explains why an expected interpretation is not an answer set of a given program.
The system gives answers in terms of two categories of explanations: unsatisfied
rules and unfounded loops. Intuitively, a rule is unsatisfied if its body is true but
all literals in its head are false. Moreover, an unfounded loop is a set of atoms
from the interpretation whose truth can only be derived from itself but is not
founded in facts. Thus, an unfounded loop is reminiscent of the Ouroboros, a
dragon biting its own tail, which our tool is named after. Duroboros* is a plugin
of SeaLion [10, 11], an integrated development environment (IDE) for ASP that
is based on the Eclipse platform and supports developing answer-set programs
using the Potassco and DLV solvers [12,13]. Thereby, Ouroboros complements
the stepping-based debugging mechanism [14] integrated in SeaLion [11]. It allows
the user to interactively build up an interpretation by, stepwise, adding literals
derived by a rule whose body is satisfied by the interpretation obtained in the
previous step.

While, on the one hand, Ouroboros provides additional debugging functional-
ity for SeaLion, on the other hand, it also profits from the Stepping-plugin which
can help in building up the interpretation that is input to our approach. Another
possibility to create an interpretation is to use the Kara plugin of Sealion [15].

2 Backend

As mentioned in the introduction, Quroboros makes use of ASP meta-program-
ming to find explanations why a given interpretation [is not an answer set
of the program P under development. The internal data flow of Ouroboros is
depicted in Fig. 1. In a preprocessing step, all cardinality constraints of P are
translated into standard rules °. Then, P and the expected interpretation I are
reified, i.e., P and I are brought onto a meta-level (i.e. a fact person(1) would be
presented by rule(rl). head(rl,r1h1). pred(r1hl,person). struct(r1hl,1,const,1).),
represented by facts, and joined with rules for identifying the targeted explana-
tions. Finally, the meta-program is fed to an ASP solver and the resulting answer
sets get interpreted.

3 Usage and Graphical User Interface

The Ouroboros plugin itself comprises two graphical components, the Debug
Configuration Tab Group for defining parameters for a debugging session and the

4 The plugin is open source and available from http://www.sealion.at
5 For a detailed description of these translations we refer the interested reader to a
companion paper [9].

Unsatisfied Rule
Unsatisfied Rule

Unfounded Loop

Unfounded Loop

. Program Solver Sets
Constraints

B\ Translzlll'OH Meta ASP Answer
D/ Cardinality —» > ™

Fig. 1. Data Flow in Ouroboros.

Debugging Fxplanation View that provides the explanations found to the user.
In the following two subsections, both will be clarified by means of an example.
The example is based on the original house problem [16] that is an abstraction of
several configuration problems where entities may be contained in other entities
and some additional requirements are defined. We considered a simplification of
the modification of this problem [17,18]. Given a set of cabinets, rooms, persons
and objects, the problem consists of assigning objects to cabinets, cabinets to
rooms and rooms to persons, such that following constraints hold: cabinets and
rooms can contain only a specific number of objects and cabinets, respectively;
objects belonging to different persons cannot be placed in the same cabinet;
cabinets of different persons cannot be placed in the same room. Fig. 2 depicts the
original program and the expected interpretation (in the interpretation view).

3.1 Debug Configurations

Debug configurations are similar to run configurations in Eclipse. They are used
to start an application in the debug mode. When clicking on Ouroboros in the
debug configurations, three tabs occur which the user can select, where one tab
is the Common FEclipse tab. Let us assume that a user, called Benia, wants
to debug the program given in Fig. 2. In the Input Program/Interpretation tab
Benia selects the program file and the expected interpretation file. When clicking
on the add button, a window occurs for selecting files from the Eclipse workspace.
The currently opened file in the editor is preselected. As Benia wants to check for
unsatisfied rules in the program, he selects the explanation type Unsatisfiability.

In the Solver tab, Benia chooses Gringo/clasp as solver configuration. If he
had checked for unfounded loops instead unsatisfied rules, the solver would have
to be able to deal with disjunctions as they are needed in the meta-program. In
that case one can set the first check mark on the bottom of the tab to filter for
solver configurations marked as claspD configurations. Using some other solver
that is able to deal with disjunctions, requires the second check mark to be set.

After all required attributes of the debug configuration are set, Benia can
start the debugging process. Now, all steps described in Fig. 1 are run through.
When the final answer set is computed, the explanation why the given inter-
pretation is not answer set of the given program is shown in the debugging
explanation view.

Sealion - debugging_examples/house.lp - Eclipse SDK

File Edit Navigate Search Project Run Window Help

Wil FrOv@r o5 R Qa & | ®sealion
[Projec 2 = 8 @houselp 2 = g @ Interpretation 2 | (3| = B
Bs 1{cabinetTOthing(X,Y) :cabinet(X)}1 :- thing(Y). ¥ & simplehouse -0
:- 6 {cabinetTOthing(X,Y):thing(Y)}, cabinet(X). . R
* @ debugging_exam ¥ @ simplehouse: 0-0
» [# 01_graph_colour 1{roemTocabinet(X,Y):roem(x)}1:-cabinet(Y). » (P cabinet/1 <5>
i - :- 5 {roomTOcabinet(X,Y):cabinet(Y)}, room(X). i i
+ 8801 graph colour { cablnetit } abinetTothing/2 <2>
» {8 01_graph_colour personToroom(P,R) : -personTOthing(P,X), cabinetTothing(c,x), cabinetTOthing(503, 6)
» [# 02_knight_tour_i roomTOcabinet(R,C) . . cabinetTOthing(504, 7)
i [1<2
28802 kniaht tourl :-cabinetTothing(X,¥1), cabinetTothing(X,¥2), personTOthing(P1,Y1), person/1<2>
personTOthing(P2,Y2), PL1=P2. ¥ ® personTOroom/2 <2>
gEoutlin X = 8 personTOroom(1, 1000)
e [:- persenTOroom(P1,R), persenTOroom(P2,R). personTOroom(2, 1001)
2 [IE

¥ @ personTOthing/2 <2>
personTOthing(1, 6)

¥ B @block DEFAULT personTOthing(2, 7)
¥ @ 1 {cabinetTOthi > ® room/1 <5>
> @ -6 {cabinetTOth » @ roomTOcabinet/2 <5>
» @ 1{roomTOcabin > @ thing/1<2>

Fig. 2. The given program and the expected interpretation.

3.2 Debugging Explanation View

The debugging explanation view consists of two columns. In the first column,
the explanation is shown. This is either the rule that is unsatisfied with re-
spect to the interpretation or an unfounded loop. In the second column the
meta-programming predicates are shown. This can be either guessRule/1 and
subst/2 (the former states about the unsatisfied rule and the latter about its
substitution) or inLoop/1 (all literals that form an unfounded loop). Even if the
output of the debugger concerns a translation rule of a cardinality constraint,
it is mapped back to the cardinality constraint itself. Additionally, all reasons
of why the given interpretation is not an answer set of the program are given.
In the case of Benia’s program, the explanation represents the last constraint
given in the program. In particular, the additional condition P1!=P2 is missing,
that means that the overall configuration does not allow a room belonging to
two different persons. Thus, one room can only belong to one person. When
Benia clicks on the explanation the corresponding rule is highlighted in the ed-
itor (see Fig. 3). If the explanation refers to a rule in a specific file, this file is
automatically opened.

3.3 Additional Features in the Interpretation View

In addition to the main two components described above, the context menu of the
interpretation view of SeaLion was extended. In general, the interpretation view
provides a tree structure of each answer set of the executed program (cf. Fig. 2).
In the context menu of the interpretation some new functionalities were added.
The entry Save as Facts makes it possible to save the selected interpretation
as facts. To do so, the user has to select a project in which the new file is
inserted. The predefined name of the new file can be adapted. After finishing this

Sealion - debugging_examples/house.lp - Eclipse SDK

File Edit Navigate Search Project Run Window Help

Ci= BrQ @y B9 R Q Ef | # seaLion
Lz =B & house.lp 2 = B
2% © 1{cabinetTOthing(X,Y):cabinet(X)}1 :- thing(Y).
= i~ 6 {cabinetTOthing(X,Y):thing(¥)}, cabinet(X).

'ﬂ»debuggingl

» [#01_graph 1{roomTOcabinet (X,Y):room(X)}1:-cabinet(Y).

— . :- 5 {roomTOcabinet(X,Y):cabinet(Y]}, roem(X).

> 8 01_graph

+ @8 01_graph. personTOroom(FP,R): -personTOthing(P, %), cabinetTOthing(cC,X),

> [02_knight roomTOcabinet(R,C).
> #02_knight :-cabinetTOthing(X,Y1), cabinetTothing(X,¥2), personTOthing(Pl,Y1),

personTOthing(P2,Y2), P11=P2.
Gl
— ocrsonitroom(FLl, k), personidroom(FZ,R) 3
& T0room(P1,R) T0room(P2,R)

IT 1%

< @ Debugging Explanation £ = 8
v @ @block D Explanation: Program Element:

» @) 1 {cabine Guessed Rule: -]

r® '—&[5[<abi - personTOroom(P1, R), Persohoroom(Pz. R).; =R AT e i

) Guessed Rule: n f

» & 1{roomT - personTOroom(P1, R), personTOroom(P2, R) {guessRule(’/debugging_examples/housi

— . e oo o =

Fig. 3. Debugging Explanation View.

process the file including the facts of the interpretation is opened in the editor.
Moreover, the user can select Detect Unsatisfied Rules if he or she wants to create
a new debug configuration where the input interpretation is the one on which
the context menu was opened and where the explanation type is automatically
set to unsatisfied rules. Detect Unsatisfied Rules for Launch lets the user first
select an existing debug launch configuration in which the interpretation file
is substituted with the interpretation selected. Again, the explanation type is
automatically set to unsatisfied rules. The entries Detect Unfounded Loops as well
as Detect Unfounded Loops for Launch work analogously to the just described
functionalities, except that the explanation type is set to unfounded loops.

If these four functionalities are used, the user has to be aware of the fact
that the selected interpretations are just temporary files. That means, if the
user exits Eclipse the interpretation files will get lost. To make them persistent
the functionality Save as Facts can be used.

4 Conclusion

In this paper we described the debugging extension called Ouroboros in the
SeaLion plugin for Eclipse. It provides debugging support of Gringo programs
involving variables and cardinality constraints by explaining why a given inter-
pretation is not an answer set of a given program. We concisely presented the
the components and functionalities of the Ouroboros plugin and, by means of a
debugging example, showed how the user can kick off the debugging process.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Gelfond, M., Leone, N.: Logic programming and knowledge representation - The
A-Prolog perspective. Art. Intell. 138(1-2) (2002) 3-38

Brain, M., De Vos, M.: Debugging logic programs under the answer set semantics.
In: 3rd International Workshop on Answer Set Programming (ASP’05). CEUR
Workshop Proceedings (2005) 141-152. (2005)

Syrjanen, T.: Debugging inconsistent answer set programs. In: Proc. NMR’06.
(2006) 77-83

Gebser, M., Piihrer, J., Schaub, T., Tompits, H.: A meta-programming technique
for debugging answer-set programs. In: Proc. AAAT'08, AAAI Press (2008) 448—
453

Caballero, R., Garca-Ruiz, Y., Senz-Prez, F.: A theoretical framework for the
declarative debugging of datalog programs. In: Proc. SDKB’08, Springer (2008)
143-159

Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer
set semantics. TPLP 9(1) (2009) 1-56

Gebser, M., Piihrer, J., Schaub, T., Tompits, H., Woltran, S.: spock: A debug-
ging support tool for logic programs under the answer-set semantics. In: Post-
proc. INAP/WLP’08. Springer (2009) 247-252

Oetsch, J., Pithrer, J., Tompits, H.: Catching the Ouroboros: On debugging non-
ground answer-set programs. TPLP 10(4-6) (2010) 513-529

Polleres, A., Friihstiick, M., Schenner, G.: Debugging non-ground ASP programs
with choice rules, cardinality constraints and weight constraints. In: Proc. LP-
NMR’13, Springer (2013)

Oetsch, J., Piihrer, J., Tompits, H.: The Sealion has landed: An IDE for answer-set
programming—Preliminary report. In: Proc. WLP’11. (2011)

Busoniu, P., Oetsch, J., Piihrer, J., Skocovsky, P., Tompits, H.: Sealion: An
Eclipse-based IDE for answer-set programming with advanced debugging support.
(2013) Submitted draft.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2)
(2011) 107-124

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3) (2006) 499-562

Oetsch, J., Pihrer, J., Tompits, H.: Stepping through an answer-set program. In:
Logic Programming and Nonmonotonic Reasoning. Springer (2011) 134-147
Kloimiillner, C., Oetsch, J., Piihrer, J., Tompits, H.: Kara - A system for visualising
and visual editing of interpretations for answer-set programs. In: Proc. WLP’11.
(2011) 152-164

Mayer, W., Bettex, M., Stumptner, M., Falkner, A.: On solving complex rack
configuration problems using CSP methods. In: Proc. IJCAI’09 Workshop on
Configuration. (2009)

Friedrich, G., Ryabokon, A., Falkner, A., Haselbock, A., Schenner, G., Schreiner,
H.: (re)configuration using answer set programming. In: Proc. IJCAI'11 Workshop
on Configuration. (2011) 17-25

Aschinger, M., Drescher, C., Vollmer, H.: LoCo—A logic for configuration prob-
lems. Proc. ECAI'12 242 (2012) 73-78

