
Extending Object-Oriented Languages by
Declarative Specifications of Complex Objects

using Answer-Set Programming?

Johannes Oetsch, Jörg Pührer, and Hans Tompits

Institut für Informationssysteme 184/3,
Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria
{oetsch,puehrer,tompits}@kr.tuwien.ac.at

Abstract. Many applications require complexly structured data objects.
Developing new or adapting existing algorithmic solutions for creating
such objects can be a non-trivial and costly task if the considered objects
are subject to different application-specific constraints. Often, however,
it is comparatively easy to declaratively describe the required objects. In
this paper, we propose an approach for instantiating objects in standard
object-oriented programming languages. In particular, we extend Java
with declarative specifications in terms of answer-set programming (ASP),
a well-established declarative programming paradigm from the area of
logic-based artificial intelligence, from which the required objects can be
automatically generated using available ASP solver technology.

1 Introduction

Imagine one has to write an algorithm for solving the following problem: Given
an array of network components of three different types, where each of the
components has potentially multiple cable sockets, create an undirected network
graph where each node contains a component. The number of edges incident to a
node is limited by the number of sockets of the respective network component.
Moreover, the total number of edges must not exceed a given limit, and every
component has to be transitively reachable by every other component. Also, there
must not be an edge between nodes with components of the same type. The graph
is represented by instances of a class Node that store references to their adjacent
nodes. Also, we want to identify a node with a maximal number of edges. It will
probably require some thought to come up with an algorithm that produces a
respective graph structure whenever there exists one. In general, developing an
algorithmic solution is sometimes a non-trivial task when data structures need to
be generated that are subject to complex constraints and algorithmic off-the-shelf
solutions to obtain them are unavailable. Although it might be unclear how some
desired objects can be created, it is in many cases easy to describe them, i.e., to
? This work was partially supported by the Austrian Science Fund (FWF) under

project P21698.

state what is needed, as suggested by the description of the above problem (used
as a running example in the remainder). Although such a situation is unpleasant
when one sticks to a traditional imperative programming style, this is the perfect
starting point for solving the problem using declarative programming.

Our goal is to integrate declarative object specifications in object-oriented pro-
gramming languages that allow for obtaining the desired instances automatically.
These specifications are especially beneficial in situations where

– no algorithm is known for producing the desired objects and the development
of a new procedural solution is expensive;

– objects are needed that are subject to complex constraints;
– the programmer is confronted with changing requirements on the data struc-

tures to instantiate;
– rapid prototyping is needed, i.e., when an algorithmic solution is the final

goal but not feasible before most requirements have been settled.

Our concrete proposal is to combine Java with answer-set programming (ASP),
a well-established paradigm for declarative problem solving from the area of
logic-based artificial intelligence (AI). The idea of ASP is to declaratively specify a
computational problem in terms of a logical theory (that is, a logic program) such
that the solutions of the problem correspond to the models (the “answer sets”)
of the theory. Following the principle of declarative methods of separating the
representation from the processing of knowledge, ASP solvers are used to compute
the models of the specifications. ASP has its roots in nonmonotonic reasoning
and allows for expressing constraints, recursive definitions, and non-determinism
in a quite natural way. ASP has been used in a wide range of applications,
including semantic-web reasoning [1, 2], bioinformatics [3, 4], software testing [5],
planning [6], content generation for computer games [7], configuration [8], multi-
agent systems [9], cladistics [10, 11], and super optimisation [12].

Adapted to the setting of this paper, the answer-set program corresponds
to a specification of the desired objects, whereas the problem solutions are the
objects themselves. ASP solvers allow for exhaustively generating all, a specified
number, or a random sample of objects fulfilling the specifications. Here, using
methods adapted from SAT solving, it is even possible to generate random
solution structures that are near uniformly distributed in the search space, which
is often considered a computationally challenging task.

Also, answer-set programs may contain optimisation expressions that allow
to express preferences for certain objects. In the network example, we could
search for graphs that involve only a minimal number of edges. Since ASP
solvers implement complete search, we can also show that no object meets some
specification. In view of the constant improvement of ASP solver technology, the
use of ASP for declarative programming becomes increasingly attractive.

In order to avoid programming overhead that would come with calling an
ASP solver as an external application within Java code, we propose to tightly
integrate Java elements into the ASP language. This way, on the one hand,
Java objects, arrays, or primitive data types, that serve as parameters for the
specification can be automatically translated to input for a respective solver and,

on the other hand, the returned answer sets can be automatically interpreted to
build up the desired Java data structures. In particular, our proposed formalism
allows Java constructors, method calls, and objects to take the role of ASP
predicates and terms. By means of those, the programmer may specify objects
by describing an arrangement of constructor and method calls such that the
resulting objects satisfy the constraints of the application.

The interface between the procedural and the declarative parts is realised by
a Java method call that takes parameters of the specification and the number of
desired solutions as arguments. In return, we get a collection of solution objects
that meet the specifications. A proof-of-concept tool for our proposed specification
language has been implemented.

2 Answer-Set Programming in a Nutshell

ASP has been proposed as a problem solving approach in the late 1990s, build-
ing on the stable-model semantics for logic programs [13] that is genuinely
declarative—in contrast to, e.g., the semantics of Prolog. ASP solvers have
become increasingly efficient in recent years. In fact, the solver Clasp [14] even
outperformed state-of-the-art SAT solvers at the latest SAT competitions in
several categories (see http://www.satcompetition.org).

ASP comes with high-level modelling capabilities that allow for specifying
problems in an easy-to-read, compact, and elaboration-tolerant way, i.e., small
variations in a problem description require only small modifications of the repre-
sentation.

For a comprehensive introduction to answer-set programming, including
formal definitions of syntax and semantics, we refer to the well-known textbook
by Baral [15]. In the following, we sketch the basic ideas of ASP.

Roughly speaking, an answer-set program is a collection of rules like

a(X?,Y?):- b(X?,Y?), not c(Y?).,

where a(X?,Y?), b(X?,Y?), and c(Y?) are atoms that might be true or false,
and X? and Y? are schematic variables that stand for an object from a domain.
Sometimes, the symbol “ ” is used to denote a fresh variable not appearing
anywhere else. The intuition of the rule is that, for all objects o1 and o2, if
b(o1,o2) is true and it is not known that c(o2) is true, then a(o1,o2) must be
true. This understanding of the negation operator not is called default negation,
or negation as failure, allowing to expressing non-determinism. Consider the
following program:

a(o):- not b(o). b(o):- not a(o). c(o):-.

It has two answer sets, {a(o),c(o)} and {b(o),c(o)}. For the first, as atom
b(o) is not known to be true, the first rule is active and derives a(o), whereas
the second rule is inactive since a(o) is known to be true. Symmetrically, for
answer set {b(o),c(o)}, the second rule is active but the first one is not. The
rule “c(o):-.” is a fact stating that c(o) is unconditionally true.

Java Parameters Object Specification

Set of Facts ∪ Answer-Set Program

Solver

Answer Set 1 . . . Answer Set m

Object 1 . . . Object m

Fig. 1. Applying the ASP paradigm for specifying objects.

Another type of rules are constraints that do not derive anything but are used
for eliminating unwanted answer sets. E.g., the constraint “:-a(o).” expresses
that a(o) cannot be true. If added to the program from above it would eliminate
the answer set {a(o),c(o)}.

We often use special atoms called cardinality constraints that allow for rea-
soning about sets of atoms, e.g., the cardinality constraint

2{edge(X?,Y?):X?<Y?}4

is only true if at least two but at most four edge atoms are true for which the
first argument is smaller than the second argument. It is assumed that < is a
comparison relation for all objects.

3 Main Approach

Figure 1 illustrates the basic idea of our approach for adopting the ASP paradigm
for automatic object instantiation. The programmer only provides a declarative
specification and parameter values that are automatically translated to an ASP
program such that the resulting answer sets are in one-to-one correspondence with
all objects satisfying the specification for the given parameters. Depending on
the needs of the application, one can compute all or just a predefined number of
solutions. Desired objects can then be instantiated automatically from the answer
sets. Intuitively, we realise such a behaviour, on the one hand, by extending the
domain over which we reason in ASP to Java objects and data values and, on
the other hand, by providing special predicates and function symbols. The latter
allow for accessing, creating, and returning Java objects and arrays, and also for
invoking constructors and object methods in the specification. In the following,
these new elements are illustrated by solving the example from the introduction.

Assume network components are instances of class Component that has the
getter-methods getNrSock() and getType(), both returning positive integers,
where the domain of the latter is {1, 2, 3}. Nodes are represented by instances of
class Node:

package example.graph;
public class Node {
Component c;
List<Node> nodes = new ArrayList<Node>();
public Node(Component c){
this.c=c;
}
public void addNode(Node node){
nodes.add(node);
}
... // getters/setters
}

The structure of the specification of the graph is as follows.

package example;
import example.graph.*;
NetworkSpec(Component[] comps, int nrCables){
... // ASP code
}

Similar to regular Java class files, a specification belongs to a package and may
import classes from other packages as needed. In the following, the missing ASP
code is introduced and explained step-by-step.

The first rule is a fact that consists of a cardinality constraint. It defines the
search space by guessing whether there is an edge between any two different
components.

0 {edge(C1?,C2?) : C1? != C2? : C1?comps(_) : C2?comps(_)} 1.

The first type of expression that extends standard ASP for use with Java is of
form C?comps(I?), a special atom that is true if the variable C? is assigned the
object with index I? in the array contained in specification parameter comps.
Consequently, edge is a relation between the Component objects from the input
array.

Next, since we deal with an undirected graph, the following rules (in pure
ASP) ensure the symmetry of edges and transitively compute reachability between
components.

edge(C1?,C2?):- edge(C2?,C1?).
reach(C1?,C2?):- edge(C1?,C2?).
reach(C1?,C2?):- reach(C1?,H?),reach(H?,C2?).

For ensuring that the number of edges from a component exceeds its number of
sockets, the next constraint is added.

:- C1?.getNrSock()+1 {edge(C1?,C2?): C2?comps(_)}, C1?comps(_).

The term C1?.getNrSock() stands for the value that is returned by the method
getNrSock() of the object contained in variable C1?. The intuitive reading of
the entire rule is that for any object C1? with an arbitrary index in parameter
array comps it cannot hold that the number of edges to other objects C2? in
comps is greater or equal to the number of sockets of C1? plus 1.

Next, the number of edges is restricted to the value of the integer parameter
nrCables.

:- nrCables+1 {edge(C1?,C2?) : C1? < C2? :
C1?comps(_) : C2?comps(_)}.

The final constraints ensure that every component is reached from every other
and that there is no edge between components of same type.

:- C1?comps(_), C2?comps(_), C1? != C2?, not reach(C1?,C2?).
:- edge(C1?,C2?), C1?comps(_), C2?comps(_),

C1?.getType() == C2?.getType().

From a logical point of view the problem is solved here. What remains is the
declarative specification of how Node objects should be instantiated and configured
and how to determine a return value.

new Node(C1?):- C1?comps(_).
exe N1?.addNode(N2?):- N1?Node(C1?), N2?Node(C2?),edge(C1?,C2?).

For every Component object C1?, we derive an atom new Node(C1?) representing
a respective constructor call with the component as argument, and hence the
instantiation of a Node object containing the component. Objects created this way
can be referenced in other rules in a similar fashion as the elements of the comps
array. In particular, an atom N1?Node(C1?) is true if N1? is the object created
by constructor call new Node(C1?). The last rule states that for two nodes N1?
and N2? whose components are connected by an edge, the addNode(Node node)
method of N1? should be invoked with N2? as argument. This is expressed by the
use of special atom exe N1?.addNode(N2?) representing a method invocation
that is automatically executed after the specified objects have been created.

It is required that one of the created nodes is returned that has the highest
number of edges. As there might be several, we choose the minimal according to
the order < which is a strict total order on the domain that is available in most
answer-set solvers.

nrEdges(C1?,Nr?):- Nr? = {edge(C1?, C2?) : C2?comps(_)},
C1?comps(_).

notReturn(C1?):- nrEdges(C1?,Nr1?), Nr1? < Nr2?,
nrEdges(C2?,Nr2?).

notReturn(C1?):- nrEdges(C1?,Nr?), C1? > C2?, nrEdges(C2?,Nr?).
return N?:- N?Node(C?), not notReturn(C?).

This completes the rules that suffice to describe the desired objects from the
example problem. Next, we show how to access the specification from Java code
to obtain the specified graph.

Component[] comps = {c1,c2,c3,c4,c5,c6};
NetworkSpec spec = new NetworkSpec();
spec.evaluate(comps,9, 1);
if(spec.hasSolution()){
Node res = (Node)spec.getSolutions().get(0);

First, the array comps is created that contains six components assumed to be
initialised earlier. Then, an object representing the NetworkSpec specification is
instantiated. We call its method evaluate that takes as arguments the parameters
of the specification, comps and nrCables, and an additional int parameter
determining the number of desired solutions, here 1 (0 stands for all). The
hasSolution method checks whether a desired graph exists, which might not be
the case for some amounts of sockets and types of components. If one exists, it is
assigned to the variable res. Note that the problem could be solved in only 23
lines of combined ASP and Java code.

There is also the possibility to employ optimisation statements for ASP solvers,
e.g., adding the statement “#minimize{edge(C1?,C2?)}.” to the specification
allows for searching solutions with a minimal number of edges. Moreover, if
random objects are needed, techniques from SAT can be used to get a near
uniformly distributed selection from the set of all specified objects [16].

We developed a prototype implementation of our approach which translates a
specification into a Java class (the NetworkSpec class in the example). Instances
of that class realise the dynamic creation of complex objects that satisfy the
specification at any point of the execution of the Java program, i.e., in response
to results of other computations and user input. To this end, it invokes Clasp
as an external solver, converts given parameters into facts, and instantiates and
configures the desired objects according to the obtained answer sets. Here, Java
objects are internally represented by automatically generated identifiers.

Features that are already supported but not part of the example is the creation
of arrays from specified or parameters objects, nested constructor and method
calls, and the possibility to specify an order of execution for calls using an exe
atom.

4 Related Work

Constraint programming (CP) is a declarative programming paradigm often used
by imperative languages through respective CP libraries. Typically, constraints
are formulated for variables over primitive data type domains. The embedding
in object-oriented languages is mostly realised by wrapper classes for variables,
constraints, and solvers. Output in CP is given as vectors of variable assignments

satisfying the constraints, which is opposed to structured information in answer
sets that we exploit for building up complex objects.

Declarative specification of complex structures is often used for testing. E.g.,
Alloy [17] is a declarative first-order language for specifying objects for bounded-
exhaustive testing, i.e., all objects that do not exceed a given size are used as
test input for a piece of code. The TestEra framework [18] provides means to
translate Alloy instances to Java objects. As Alloy structures are generated
offline, specifications do not allow for runtime parameters as in our approach,
other than size limitations. Moreover, as the target is to consider all solutions
up to some size, there is no support for getting optimal ones. Another Java
test input generator is Korat [19], which is, however, based on procedural
specifications. Object trees are generated as solution candidates which are then
checked against a checking method that accepts when the structure is a solution.
Hence, individual constraints cannot help to prune the search space. Indeed, we
see testing as one application for our combined language, e.g., red-black trees
can be concisely specified in our approach that are a popular example for test
input generation in the testing literature.

5 Future Prospects

There are many ways to continue work from here. For one, the current specification
language still misses important Java features, like direct field assignments and
static method calls that could be easily integrated.

Currently, when the result of a call to an object method needs to be considered
for solving, like when using C1?.getNrSock(), the objects considered for C1?
has to exist before solving. Moreover, in our current implementation, we need
to state that getNrSock() has to be precomputed for all objects in the comps
array. The reason is that potential values for C1? are determined only during
solving. Here, allowing the solver to interact with the Java-runtime can help.
In this respect, a tight integration of a solver and a virtual machine would be
desirable as this not only allows for executing Java code during solving, but also
for exploiting the same data structure, e.g., pointers of objects as their identifiers,
and reducing overhead for external calls.

Another possibility is to develop a tool that translates specifications without
parameters into Java code generating the specified objects without calling a
solver at runtime.

We understand this work as a first proposal towards a tight integration
of Java and ASP. One issue that is—in our perspective—very important and
requires extensive effort is the design of a simpler syntax for specifications that
is intuitive for programmers familiar with Java. Currently, the semantics of our
approach is implicitly given by that of Java, Clasp, and our prototype. The
definition of a formal semantics is left for future work.

In conclusion, we see a high potential for significantly reducing the effort that
has to be spend in a software project for writing and testing involved imperative
code by integrating declarative specifications.

References

1. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence 172(12-13) (2008) 1495–1539

2. Polleres, A.: Semantic web languages and semantic web services as application
areas for answer set programming. In: Nonmonotonic Reasoning, Answer Set
Programming and Constraints. (2005)

3. Grell, S., Schaub, T., Selbig, J.: Modelling biological networks by action languages
via answer set programming. In: Proc. ICLP 2006. Volume 4079 of LNCS, Springer
(2006) 285–299

4. Erdem, E., Erdem, O., Türe, F.: HAPLO-ASP: Haplotype inference using answer
set programming. In Proc. LPNMR 2009. Volume 5753 of LNCS, Springer (2009)
573–578

5. Erdem, E., Inoue, K., Oetsch, J., Puehrer, J., Tompits, H., Yilmaz, C.: Answer-set
programming as a new approach to event-sequence testing. In: Proc. VALID 2011.
(2011) 25–34

6. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Planning under incomplete
knowledge. In: Proc. CL 2000. Volume 1861 of LNCS, Springer (2000) 807–821

7. Smith, A.M., Mateas, M.: Answer set programming for procedural content genera-
tion: A design space approach. IEEE Transactions on Computational Intelligence
and AI in Games 3(3) (2011) 187–200

8. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in
product configuration. In: Proc. PADL’99. Volume 1551 of LNCS, Springer (1999)
305–319

9. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Logic-based
artificial intelligence, Kluwer Academic Publishers (2000) 257–279

10. Erdem, E., Lifschitz, V., Ringe, D.: Temporal phylogenetic networks and logic
programming. Theory and Practice of Logic Programming 6(5) (2006) 539–558

11. Brooks, D.R., Erdem, E., Erdogan, S.T., Minett, J.W., Ringe, D.: Inferring
phylogenetic trees using answer set programming. Journal of Automated Reasoning
39(4) (2007) 471–511

12. Brain, M., Crick, T., De Vos, M., Fitch, J.: Toast: Applying answer set programming
to superoptimisation. In: Proc. ICLP 2006. Volume 4079 of LNCS, Springer (2006)

13. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. ICLP’88. (1988) 1070–1080

14. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Communications
24(2) (2011) 105–124

15. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Cambridge, England, UK (2003)

16. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In: Proc. NIPS 2006, MIT Press (2006) 481–488

17. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering Methodology 11 (2002) 256–290

18. Khurshid, S., Marinov, D.: TestEra: Specification-based testing of Java programs
using SAT. Automated Software Engineering 11(4) (2004) 403–434

19. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A tool for generating
structurally complex test inputs. In: Proc. ICSE 2007, IEEE Computer Society
(2007) 771–774

