
“poster” — 2016/11/7 — 11:35 — page 1 — #1

20th International Conference on Knowledge Engineering and
Knowledge Management

A Benchmarking Framework for Stream
Processors

Andreas Moßburger, Harald Beck, Minh Dao-Tran, Thomas Eiter

Vienna University of Technology
Institute of Information Systems

Knowledge-Based Systems Group

Challenges

I The engines work on different data formats
I Tests must be reproducible
I No unified way to query the engines
I Output has to be generated in a unified format for easy comparison

Framework Architecture

formatted
output

output

query

stream

captured
stream

converted
static datastatic data

stream

Output Formatter

Feeder

Engine

Preprocessing

Converter

Capture

I Converter is responsible for converting any static data from the
provided format to a format that can be read by an engine.

I Capture extracts relevant data from a data stream and stores it,
allowing reproducible evaluations. The format of the stored data
should be generic, so that only minimal conversions are necessary
for a particular engine. Additionally, timing information of the
captured data should be stored, so it can be played back
authentically.

I Feeder is responsible for replaying the captured streaming data to
the engines. It allows arbitrary fine control over the streaming
process. Data may be streamed using authentic or artificial timing,
like streaming a certain amount of data per time unit.

I Engine wraps the evaluated engine. Wrappers provide a
standardized way of accessing/outputting data for different engines
but are not allowed to affect their performance.

I Output Formatter converts the output data from different engines to
a canonical form.

General Transit Feed Specification

Static Data Model

Streaming Data
I TripUpdate: represents a change to a timetable and consists of

possibly multiple delays or new arrival times for single stops of a trip.
I VehiclePosition: tells the position of a vehicle relative to a stop.

Implementation

formatted
output

output

query

stream

captured
stream

converted
static datastatic data

stream

output_formatter.py

replay_feeder.py

cqels_shim.jar

Preprocessing

converter.py

capture.py

f i le

TCP

file

RDF file

fileGTFS feed

GTFS files

Components implemented as Pyhton scripts:
I gtfs-converter.py and gtfs-capture.py implement the

converter and capture modules, resp. These scripts are specific to
the GTFS use case. All other scripts and programs are generic and
do not make any assumptions about the data domain.

I simple_feeder.py, replay_feeder.py and
triple_to_asp.py provide implementations of the feeder
module.

I output_formatter.py covers the output formatter module.
Different wrappers were implemented to access the engines.

Code and queries are available at
https://github.com/mosimos/sr_data_generator/

Evaluation with clingo as an oracle

Queries for evaluating functionality

01 Simply output all hasArrived triples.
02 Use FILTER to output only hasDelay triples with a delay greater

than a certain value.
03 Use UNION to output both hasDelay and hasArrived triples.
04 Use OPTIONAL to output hasDelay and optionally a hasArrived

triple of the same stop.
05 Calculate a value (delay in minutes) directly in SELECT clause.
06 Calculate a value (delay in minutes) using a BIND clause.
07 Aggregate function COUNT.
08 Aggregate function COUNT DISTINCT.
09 Aggregate function MAX.
10 ORDER BY

11 Simple join combining streaming and static data.
12 Simple join combining streaming and static data, using OPTIONAL

clause.
Queries

01 02 03 04 05 06 07 08 09 10 11 12
C-SPARQL X X X X X X X X X X X X
CQELS X X - - - - X X - X X -
Spark X X X X X X X X X - X X
clingo X X X X X X X X X X X X

Table: Results of functionality test (Xquery produced output, - query resulted in error or
didn’t return anything)

Correctness
I CQELSand Spark conformed to the results predicted by clingo.
I C-SPARQLmisses some output by clingo.

Contact: {mossburger,beck,dao,eiter}@kr.tuwien.ac.at

https://github.com/mosimos/sr_data_ generator/

